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Abstract

Let 87 (A) and CV (M) be the classes of functions f, analytic in the unit disc A = {z: |z| < 1}, with the normalization
f(0) = f/(0) — 1 = 0, which satisfies the conditions

zf'(2) zf"(z)

f(z) f'(z)
where < is the subordination relation, respectively. The classes S5 (A) and CVp(A) are subfamilies of the known classes
of strongly starlike and convex functions of order A. We consider the relations between Sj(A), CVr(A) and other
classes geometrically defined. Also, we obtain the sharp radius of convexity for functions belonging to Sj (A) class.
Furthermore, the norm of pre-Schwarzian derivatives and univalency of functions f which satisfy the condition

2f"(z) A
§R{1+ f’(z)}<1+2 (z€A),

< (142" and <1—|— )4(14—2))‘ (0<A<T),

are considered.
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1 Introduction and preliminary

Let H denote the class of holomorphic functions in the open unit disc A = {z: |z| < 1} on the complex plane C,
and let A denote the subclass of functions f € H of the form

fR)=z24> anz"  (z€4). (1.1)

The subclass of A consisting of all univalent functions f in A, is denoted by S. Robertson [14], Brannan and
Kirwan [5], introduced the classes ST (B), CV(B), of starlike and convex functions of order 0 < f < 1, and §§*(«x)
and CV* () strongly starlike and convex functions of order 0 < o < 1, respectively, which are defined by

ST(B) = {feA: m{zjf(ij)} > B, zeA},

CV(B) = {f € A: 3‘%{1+ Zf(i§>} B, ze A},
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and

SS* () == {feA: ‘Arg{zﬁg)}‘ < zeA},

CV* (o) = {f € A: ‘Arg{1+ Zf"(z)}‘ < ? z € A}.

We also note that S§*(1) = ST(0) =: ST and CV*(1) = CV(0) =: CV are the well-known classes of all normalized
starlike and convex functions in A, respectively. Let S(a,b) denote the class of functions f € A which satisfy the

inequality
cen{E0)) .
<3?{ B <b (z€A),

for some real number a; (0 < ¢ < 1) and some real number b; (b > 1) (See [7]). We define the norm of pre-Schwarzian
derivatives ||T%||, as follows:
f"(2)

f'(z)

| Ty|| = sup (1 — |2/)
zZEA

)

for function f € S.

Definition 1.1 ([6]). Let f and g be analytic in A. Then the function f is said to be subordinate to g in A, written
by f(z) < g(2), if there exists a function w(z) € B such that f(z) = g(w(z)), z € A, where B is the family of all
self-maps functions

wz) =Y w.z"  (Jw(zx) <1, z€A). (1.2)

From the definition of subordination, it is easy to show that the subordination f(z) < g(z) implies that f(0) = g(0)
and f(A) C ¢g(A). In particular, if g(z) is univalent in A, then the subordination f(z) < g¢(z) is equivalent to the
conditionf(0) = ¢g(0) and f(A) C g(A).

Let ¢ be an analytic function with positive real part in A, ¢(0) = 1, ¢’(0) > 0 and map A onto a region starlike
with respect to ¢(0) = 1 and symmetric with respect to real axis. Ma and Minda [§] introduced the class S*(¢) defined
by

S*(¢) = {f cA zJJ:(S) < é(2), z€ A} , (1.3)
C(¢) = {f eA (1 n Z;(S)) < é(2), ze A}. (1.4)

Associated to classes $*(¢) and C(¢), a family P(¢) to be introduced which consists of analytic functions p such
that p(0) = 1 and p(D) C ¢(D), or equivalently p < ¢. The Carathéodory class

P={p(z) =1+piz+p2®+- ,Rp(z) >0,z €D}

is a simply the class P((1 + 2)/(1 — 2)).

Definition 1.2. A locally univalent function f € A is said to belong to G(s) for some s > 0, if it satisfies the
condition (2)
2f"(z s
Rl 14 = A).
{+f’(z)}< +3 (z € A)

In [I1], Ozaki introduced the class G(1) and proved that functions in the class G(1) are univalent. In [20], Umezawa
generalized Ozaki’s result for a version of the class G(1) (convex functions in one direction). A function f € A is said
to belong to N (s) for some s > 0, if it satisfies the condition

?R{Z]J:;S)}<1+; (z€A).

It is easy to see that f € G(s) if and only if zf’ € N (s).
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Let us denote by Q the class of functions f that are analytic and injective on A\E(f), where E(f) = {(: ( € 0A and lim,_,,
and are such that

(@ #0 for Ce€ OA\E(f).

Lemma 1.3. [0, p.24] Let ¢ € Q with ¢(0) =1 and let p(z) =1+ p1z+ --- be analytic in A with p(z) #1. If p £ ¢
in A, then there exits points zg € A and ¢ € 0A \ E(q) and there exits a real number m > 1 for which

Pzl <lzo]) Ca(d),  p(z0) =q(0), 209 (20) = mlq'(O).

The purpose of this work is to define a new subfamily of P related to a domain bounded by sinusoidal spiral

A
LB(A) = {pe“" p-(?cos%) , —<(p<}

= {w eC: R{w}>0, &E{wil/?‘}

Il
—
(@
-
(an)
—

Since p = (2 cos %\3))\, we have

1 1 .
pl/A = <2cos %) or p~ /A cos% =3 or %{w‘lﬁ‘} =3 when w = pe'¥

7?((1 + 2)7‘), we present a new resolution to get the norm of pre-Schwarzian derivatives and univalence from class
functions G(A).

The remainder of the paper proceeds as follows. In sections[2] in order to express our original theorem, we introduce
a family of functions and properties. The classes S (A) and CV (M) are introduced and its properties and its relevance
to other classes presented. In the sequel, we get the extremal functions of classes S (A) and CV(A). Furthermore,
we obtain norm of pre-Schwarzian derivatives and univalency of functions f in class G(A). Also, some examples are
presented.

2 The classes S7(A) and CVL(A) and its properties

This section provides a detailed exposition of an analytic function that maps the unit disk onto a domain bounded
by a sinusoidal spiral and contained in a right half-plane. In fact, taking into account:

qa(2) i= (1 + 2)" = eMlos(1+2) (0<A<],

where the branch of the power is chosen to be g (0) = 1, more explicitly,

oo

Z )‘ Et D) 1+ZBkz (2.1)
k=1 k=1
:1+7\z+AO\;1)22+)\(7\71250\72)23+~' (z€A).

The set qx(A) lies in the region bounded by the right loop of the sinusoidal spiral given by

; e\ AT AT
= 1. = —_— _——
LB(A) {pe i p (20057\) , > << — 5 }

To see this, note that writing z = €'©, where 0 € (—m, 7), we have

A A
q)\(eie) =(1 —i—eie))\ = (2005 g) ol = (2 cos g) (cos);e + isin 7\26) . (2.2)
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By (2.2)), we have

A
R{ar ()} = (2 cos g) cos ? = u(0) =u (—m<B<m,

A
S{ar ()} = (2 cos g) sin% =v(0)=v (—mr<O<m.

So we can see that u(0) and v(0) are well defined also for 6 = 7. The function w(0) with —7t < 6 < 7 attains
its minimal value when 0 = 7, and maximum value when 6 = 0 and The function v(0) with —7t < 6 < 7t attains its
minimal value when 8 = —7t/(1 4+ A), and maximum value when 6 = 7t/(1 4+ A). On the other hand for —m <0 <7

0 < Rfar ()} < 2%,

A A
T . TIA 0 T . A
(200s2>\+2> s1n2)\+2§%{q;\(e )}g(Qcosz}\+2) sm2)\+2.

If we take qx (eie) = pe'®, simple calculations show that @ = A0/2 and p = (2 cos g))\. Therefore qx (eie) in the
polar coordinates will be as follows

i . A A A
qy\(ele){wpel‘p: p:<2COS%), ;<¢§;}. (2.3)

Thus from (2.3) we have ’Arg {ax (eie)}} < Art/2. Additionally, the right loop of the sinusoidal spiral LB(A) is a
boundary of the domain qx(A). Also note that

: A A A
qA(A):{w:pe“": p<<2005%)7 —27-[<(p<27-[}

_ {w eC: R{w} >0, %{w—m} g ;}

is a domain which is symmetric about the real axis, starlike with respect to the point qA(0) = 1, and satisfies
g4 (0) = A > 0. Also, LB(A) has tangential radial vector ¢ = £A7/2.

Lemma 2.1. The functions gx(z) are convex univalent in A for each 0 < A < 1. Moreover ga(z) = (qa(z) — 1)/A €
CV((14+A)/2) and g1(2) = q1(z) — 1 =z € CV. Also, if |z| =r < 1, then

min [q(2)| = qa(=r)  and  max|qz(2)] = qa(r).

|z|=r |z|=r

Proof . Let us consider
a(z)=(m(z) —1)/A  (z€4).

zga(2) | o) 1+ Az A+1
o Z5 {5

so gx € CV((A+1)/2) € ST. In order to prove the second part of lemma, if 0 € [0,27), then the function

Then, we have

D>

Q6) = ‘CI)\(Teie)| = ‘1 +re®|" = (147 + 2rcos0)

0<r<1)

attains its minimum at 8 = 7t and maximum at 8 = 0. This ends the proof. O

The following theorem describes some properties of the functions that are in class

Plar) ={peH:p=<a}
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Theorem 2.2. Let p € P(qa). Then

AT T A TIA
|[Arg {p(2)}| < - 0<R{p(2)} < AR IS{p(2)}| < (2 cos T 2) sin S (2.4a)
and
‘pl/}‘(z) - 1’ <1, (2.4b)
> 0< %{pw‘(z)} <2. (2.4¢)

Conversely, if p € P with |[Arg {p(z)}| < At/2 and p satisfies (2.4b)), then p < g in A.

Proof . The subordination p < gq) with p(0) = ga(0), and the geometric properties of qa(A) yield (2.4a]). In order to
prove the second part of theorem, since p € P(qy), then

A
p(2) = (1+w(2)" or w(z)=p" ) -1, |w(z)| <1,
where w € B and finally assertion (2.4b|) as follows. For the prove ([2.4c)) we rewrite (2.4b|) as
—1< = ) - 1 S ROV - 1) < ) -1 < 1

that reduces to (2.4d). Conversely, it is enough to show that p(A) C qa(A). To do this, let w = pe'® € p(A). Since w
satisfy the condition (2.4b]), we conclude

p*/N < 2cos % (2.44d)

Making use of [Arg {w}| < (Ar)/2, we have Rw'/* > 0 or, equivalently cos(@/A) > 0. From (2.4d), we obtain
w € ga(A) and completes the proof. [

Using the same notation and the same reasoning as in the proof of Theorem we get the following Theorem.

Theorem 2.3. Let p € P(q)). Then

1
—1/A =
§R{p (z)} >3, (2.52)
or
0< yf{pm(z)} <2 (2.5b)
Conversely, if p € P and p satisfies (2.5a)), then p < g in A.
Definition 2.4. Let S;(A) denote the class of analytic functions f € A satisfying the condition
2f'(2)
< qa(z z€A). 2.6a
I ine  cea) (260)
and CVr(A) denote the class of analytic functions f € A satisfying the condition
21"(2)
1 A). 2.6b
( + f’(z) ’<q7\(z) (ZE ) ( )

Geometrically, the condition and means that the quantities zf'(z)/f(z) and 1+ zf”/f’ lies in the
region bounded by the right loop of the sinusoidal spiral LB(A), respectively. Since a domain qx(A) is contained in a
right half-plane, we deduce that S} (A) and CV 1 (A) are proper subset of classes of a starlike functions ST and convex
functions CV, respectively. Now we turn to the relationship between the classes S} (A) and CVL(A) and the classes

mentioned in the section [Il By Theorems [2.2] and [2.3] we get
<1, ze A}

[Zf’(Z)] o
- {f €ST: §R{ [ZJ{(S)} _m} > % z€ A},

Si(\) = {f € 8S*(M):

f(2)
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" 1/A
e

70) <1,26A}

. | 1G]
Si(A) c 88" (x) and CVp(A) CCV*(x) for A< a<1,

S;(\) € 8(0,b) and CVp(A) € §(0,b) for b> 2",
S;(A) CSi(A2) and CVi(M) CCVL(A2) for A < Ao

[1+

CVL(A) = { Fecvin:

Applying the Lemma and Theorem and the Briot-Bouquet differential subordination [9, Theorem 3.2a], we
can easily see that CV(A) C S7(A).

Lemma 2.5. Let 0 < A < 1. If M > 2!, then

(142 < MMz = Pulz)  (€A). (2.7)

M—(M—1)

Proof . Since ¢(0) = Py(0) = 1, from Definition [I.1]it is enough to prove qx(A) C Py(A). Since for —m/2 < @ /A <
m/2, we have

A
(2 cos %) < (2cos o) <2 cos @. (2.8)
Also, the function P, is univalent in A, and maps the unit circle onto the circle

7T 7T
=2M D= = —}.
{p cos @ 2<(p<2

For the establishment of relation ga(A) C Py(A), taking into account relation (2.8), we deduce 2 < 2M and

A (A) C {pei“": p < 2M cos @, —g <p< g, M > 27“1} = Py (A).

Moreover
zf'(2)
f(2)

SZ(A)C{feA:‘ —M'<M, zeA,M227‘1}.

O

The Relation (2.8) show that the image of the unit circle |z| = 1 under the functions g (The right-half of the
lemniscate of Bernoulli yq: p = (2 cos 57%)7\) and Py (The circle yo: p = 2" cos @ with —71/2 < @ < 7'[/2) forA=1/5
and M = 1/+/16, respectively.

By possessing a comprehensive form of functions p, i.e. p € P(qx), we obtain by integration, the exhibition formula
for the functions in S (A) and CV(A). Namely, f € S5 (A) if and only there exists a function p € P(ga) such that

() = zexp (/O pit) =1 dt) (z € A), (2.92)

t

or, f € CVr(A) if and only there exists a function p € P(q)) such that
f(z) = / exp < / % dt) dw (2 €A). (2.9b)
0 0

Let g € A and let z¢'(2)/g(2) = p(2) (1 + 29" (2)/g'(2) = p(z) resp.) with p € P(qnr), z € A. Clearly, g € S;(A)
(CVL(A) resp.) and g is extremal function in the class Sj (A) (CVL(A) resp.). This representation gives many examples
of functions in class S5 (A) (CV (M) resp.). To do this, by taking p(z) = qa(z™) with n = 1,2,3, ..., the function Fj ,
with definition

z t")—1 A b 2) — nA
F;\n(z):zexp / q?\( ) dt :Z+7Zn+1+ (n+ ) n 22n+1
’ 0 t n 4n?
7\((2n2 +9n + 6) A% — (6n2 + 9n) A+ 4n2)
+
36n3

2 (€AY, (2.9¢)
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is extremal function for several problems in the class S} (A). Especially for n = 1 we have

Fa(2) = Fra(2) = 2 exp (/0 ‘“(’27_1 dt)

3AZ—A 17A3 — 1572 + 4A
=AY )22+ + 24+ (2.9d)
4 36
Also, by taking p(z) = qa(2") with n = 1,2,3, ..., the function K ,, with definition
) faa(tt) —1 A 41, M +2)—nh 54
Kyn(z) = ————dt|dw = —2" —_— 2"
An(2) /0 eXp(/O ¢ YEER LTS T et
7\((2n2 + 9n + 6) Az — (6n2 + 9n) A+ 4n2) 341
" A 2.1
+ 36n3(3n 1 1) F A (zEA), (2.10a)
is extremal function for several problems in the class CV (A). Especially for n = 1 we have
z w t _ 1
Kx(z) := Kx1(2) :/ exp(/ q}\(zdt> dw
0 0
B Ao 32—\ 4 17A% — 15A% +4A\
=2+ 52 +( 13 >z+ Tid z8+---. (2.10b)
Theorem 2.6. Let p be an analytic function in the unit disk A, such that p(0) = 1. If
/
A
%{Zp(z)}< 0<A<1,z€A), (2.11)
p(z) 2
then
p € P(da).

Proof . From ([2.11) it follows that p(z) # 0 for all z € A. Otherwise, suppose that p has a point zero of order m,
m > 1 at the point  that satisfies |{| < 1. Then we have p(z) = (2 — {)"™ q(2), q(z) # 0 on A and
/ /
P me ()

p(z)  z2—-0C  q(z)°

A simple calculation shows that for z € A

lim, ¢ mz+lim,_,(z — Q) zg;S) for C+#0

zhinc(z B C) p(z) - 22¢'(2)
m+lim, ¢ q‘iz) for (=0

{mC for (#0,
m for C¢=0.

Then zp’/p has a simple pole at {, which contradicts (2.11). We conclude that p(z) # 0, as required. Let
p(z) 4 qa(z) on A. Then by Lemma [1.3| there exist zp € A and (y € A with (y # —1 such that

p(20) = qa(Co)s 20’ (20) = mCodi (Co) m > 1.

R e e N

But this contradicts our assumption (2.11]) and therefore p < q) on A. O

Taking into account p(z) = f’(z) in Theorem the norm of pre-Schwarzian derivatives and univalency of
functions on class G(A) are investigated.

Thus
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Lemma 2.7. If a function f belongs to the class G(A), then [’ € P(gx). Also, f is univalent function in A and
2 ) —1 : wop(E) — 1
Z exp (/ % dt) € S7(A) and / exp( % dt) dw € CVL(A).
0 0 0

Lemma 2.8. Let f be a function in G(A). Then ||Tf|| < 2A. Moreover, equality holds for f given by f(z) = u®(uz),
where p is an unimodular constant and

(142" -1

*E) =75

(z € A). (2.12)

Proof . Suppose that f € G(A). Making use of Lemma there exits w € B such that
() = (1+ w(2))" and

e Meel
’f’(z) “frae) €Y
By the Schwarz-Pick Lemma, ,
()] < T 19 1'_“;2? (z€4), (2.13)
we conclude
/@) _ Mo’ A= fw)P) A+ 2]
F@E 1 N+w)] — A-[P) 0 -]w(z)]) = 1-z]?

and
[T¢ < sup A1+ |z]) < 2A.
zEA

We have equality in the Schwarz-Pick lemma inequality (2.13), if and only if w(z) = pz with |u| = 1 and p is
complex number. Thus for function

FE)=0+w@) =0+r)" o f(z) = B(p2),
where ® given by (2.12), it follows that ||| = 2A. O

For p(z) = f(2)/z or p(z) = z/f(z) in Theorem and taking into account relation we get the following
results.

Corollary 2.9. 1. Let f € A. If f € N(A), then

T L gp(z) and zeXp(/Oz f(tzz_tdt> e SiN).

2. Let fe A If fe feST(1—MN/2), then

= z) and zex Tt i) 7
7 <o zeo( [T AR ) esion

Taking into account p(z) = zf'(z)/f(z) in Theorem we have the following corollary is a starlikeness condition
for analytic functions of the unit disk.

Corollary 2.10. If a function f € H satisfy the condition

S YA
§R{”f'(@ f(Z)}<2 (ze4),

then f € S;(A) C ST.

Example 2.11. The Corollary provides many examples of functions in class Sj(A). Let

fi(z) =2+ 412", (n = 2), faz) = 1—2A2z’ fg(Z):m.
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For N A A
A< — Agl < —— Azl < ——
O<ilsgi—— O<Medsgiz 0<ll= 75
the functions f;, i = 1,2,3 belong in class A'(A). Then the appropriate functions

@ =zen( M) )= 1 el = e 12
gi1(z) = zexp n—1 y  g2(% _1—A22:’ gs\z _]__A3zep ]_—AgZ ’

belong to the class Sj (A).

Example 2.12. For 0 < |[A| <A/(2—]7)

fz)= (eAz —1) €CVL(N)

o | =

and for 0 < |A| < A/(2+A)

f(z)= —% In(1 — Az) € CVL(A).

From the results in [§], function (2.9d), and Lemma[2.1] we have the following sharp estimates for function f € Sj (A)
(f € CVL(A) resp.).
Theorem 2.13. If f € S; (M) and |z| = r < 1, then

1. Growth Theorem: —Fy(—r) < |f(2)] < Fa(r),
2. Distortion Theorem: F}(—r) < |f'(z)| < Fx(r),
3. Rotation Theorem: |Arg{f(z)/z}| < max|,|—. Arg {Fi(2)/z}. Equality holds for some z # 0 if and only if f is

a rotation of Fy given by (2.9d)).
4. Covering Theorem: If f € S (M), then either f is a rotation of Fy or

{weC: |w| <-=F\(-1)} C f(A).
Here —Fy(—1) = lim,_,;- —Fx(—r).

Theorem 2.14. If f € CV(A) and |z| = r < 1, then

1. Growth Theorem: —Kx(—r) < |f(2)] < Kxa(r),

2. Distortion Theorem: K} (—r) < |f'(2)| < K} (r),

3. Rotation Theorem: |Arg{f’(2)}| < max|.|—, Arg{K,(z)}. Equality holds for some z # 0 if and only if f is a
rotation of K, given by .

4. Covering Theorem: If f € S (M), then either f is a rotation of F» or
{fweC:  |w| <-K)\(-1)} C f(4).
Here —K)(—1) = lim, ;- —Kx(—7).

For the special case A = 1/2, results for functions belonging to the class

simaom={ress(5): |55 -

ZHOIN
= fesST: R { ] >—z€EA
{ i) 2
and its generalizations can be found in [T, 2 [3] [I3] I5] [16] [I'7, 18, 19]. The function f € S; if and only if quantity
zf'(2)/ f(z) lies in the region bounded by the right loop of the lemniscate of Bernoulli

<17z€A},

1 .
LIB%(2> = {pe“”: p= (2cos2q))1/27 —g << g}

= {w eC: R{w}>0, éR{qu} = ;} U {0}.

Below, we get the sharp radius of convexity of the class Sj(A).
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Theorem 2.15. Let g denote the positive root of the equation
1—r)"* =X rel0,1).
If f e S5(A), then f is convex in the disk |z| < ro. This result is sharp.
Proof . Let f € S;(A). Then from Definition [2.4] we obtain

zf'(2) _ w1 -
8 =[14 w(z)] (zeA), (2.14)

where w € B with |w(z)| < |z|, z € A. Logarithmic differentiation of (2.14) yields that
1" )\ I
%{1 i (2)} = 9%{[1 + ) - [Zw(z)}

f'(z) 1+ w(2)]

From Lemma 2.1] and inequality (2.13), it follows that

2F(2) SO B
%{” ) }Z%{““"(Z” } =M e =T

A2
(1—lz)

> (1-2))" -

The function g(z) = (1 —1r)" — (1}%) with |z| = r € [0,1) is decreasing in [0,1) and ¢(0) = 1. The equation

g(r) = 0 is equivalent to
(]. — r)1+7\ = Ar re [0’ 1) (215)

The only real positive root of (2.15) is equal to rg. For a function F) given by (2.9d)), we have

é)%{l + Z;}(S)} = @}%{(1 2+ 1122} = G(2)

and G(—rg) = 0, this shows the sharpness of ry. O
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