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Abstract

The aim of this study is to investigate r-circulant matrices containing Mersenne and Fermat numbers with arithmetic
indices. We obtain the eigenvalues and determinants of these matrices implicitly. In addition, limits for matrix norms
and spectral norms of these matrices are obtained. Thus, the results for right and skew-right circulant matrices appear
immediately.

Keywords: Mersenne numbers, Fermat numbers, Circulant matrices, Eigenvalues, Determinants, Spectral norm,
Euclidean norm
2020 MSC: Primary 11B37, 15B36; Secondary 65Q30

1 Introduction

Circulant matrices are one of the special types of matrices that can be identified by their first row. In recent years,
special matrices had wide applications in coding theory, cryptography, signal processing, linear forecast, theory of
statistical designs, engineering simulations, etc. (for instance see [5, 7, 8, 9]). Due to its special structure and wide
application in various fields, it is becoming a more interesting subject among researchers.

Recently, many authors have investigated the algebraic properties of circulant and r-circulant matrices involving
a special integer sequence such as Fibonacci, Lucas, Pell integer sequences etc. In their studies, they obtained the
formula for the eigenvalues, the determinants, norms and bounds for the spectral norm of these matrices. For instance,
Solak[15] obtained the norms for circulant matrices containing the Fibonacci and Lucas numbers. Zheng et al.[19]
found the exact inverse of circulant matrices with Fermat and Mersenne numbers. For r-circulant matrices S.-Q., Shen
et al.[14] obtained the bounds for the norms with Fibonacci and Lucas numbers and in [13], they obtained the spectral
norms with k-Fibonacci and k-Lucas numbers. Some recent works in this direction can be seen in [11, 17, 18].

Our aim is to investigate the r-circulant matrices containing two special number sequences, Mersenne and Fermat
sequences with arithmetic indices. Mersenne and Fermat sequences are Fibonacci-like sequences and can be obtained
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directly with the formulas 2n − 1 and 2n +1, respectively. In [2, 3, 6, 10, 12, 16] some studies on recent developments
in Mersenne and Mersenne-like sequences and their applications can be seen.

Throughout the paper, Mn (Rn respectively) denote the famous Mersenne (Fermat) numbers, and for n ≥ 0 defined
by the recursionMn = 3Mn−1−2Mn−2 (Rn = 3Rn−1−2Rn−2, ) with initial valuesM0 = 0, M1 = 1 (R0 = 2, R1 = 3).
The first few terms of these sequences are

n 0 1 2 3 4 5 6 7 8 ...
Mn 0 1 3 7 15 31 63 127 255 ...
Rn 2 3 5 9 17 33 65 129 257 ...

The closed form formulas known as the Binet formula for Mersenne and Fermat numbers are given by, respectively,

Mn = 2n − 1 and Rn = 2n + 1. (1.1)

The characteristic equation corresponding to the above recursion is given by α2 − 3α+2 = 0 and it has two roots,
say, α1 and α2, which have the following properties:

α1 + α2 = 3, α1α2 = 2. (1.2)

Different norms for a square matrix are given in the following lemma.

Lemma 1.1. Let H = [hij ]n×n be any square matrix, then we have

||H||1 = max
1≤j≤n

n∑
i=1

|hij |, ||H||∞ = max
1≤i≤n

n∑
j=1

|hij |,

||H||F =

√√√√ n∑
1=1

n∑
j=1

|hij |2 and ||H||2 =
√

max
1≤i≤n

µi(H∗H),

where µi(H
∗H) denote the eigenvalues of H∗H and H∗ is the conjugate transpose of H. And for matrix H, these

norms are related as
1√
n
||H||F ≤ ||H||2 ≤ ||H||F . (1.3)

Lemma 1.2. Let A = [aij ] ∈ Mm,n(C), B = [bij ] ∈ Mm,n(C) and if C is the Hadamard product of A and B, then we
have

||C||2 ≤ u(A)ν(B), (1.4)

where u(A) = max1≤i≤m

√∑n
j=1 |aij |2 and ν(B) = max1≤j≤n

√∑m
i=1 |bij |2.

Definition 1.3. [4] For r ∈ C− {0}, a matrix Cr is said to be r-circulant matrix if it is of the form

Cr =



c0 c1 c2 · · · cn−2 cn−1

rcn−1 c0 c1 · · · cn−3 cn−2

rcn−2 rcn−1 c0 · · · cn−4 cn−3

...
...

...
. . .

...
...

rc2 rc3 rc4 · · · c0 c1
rc1 rc2 rc3 · · · rcn−1 c0


n×n

and it is denoted by Cr = Circ(r; c⃗), where c⃗ = (c0, c1, ..., cn−1) is the first row vector. For r = 1 and r = −1, we get
the right circulant and skew-right circulant matrices, respectively.

Some results used in our work are shown in the following lemmas.
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Lemma 1.4. [4] Let Cr be r-circulant matrices then its eigenvalues µi are given by

µi =

n−1∑
j=0

cj(ρω
−i)j , i = 0, 1, 2, ..., n− 1,

where ω is the nth root of unity and ρ is the nth root of r.

Lemma 1.5. The Euclidean norm of r-circulant matrix Cr is given by

||Cr||E =

√√√√n−1∑
j=0

|Cj |2[n− j(1− |r|2)]. (1.5)

Lemma 1.6. [1] For any a and b, we have

n−1∏
i=0

(a− bρiω−i) = an − rbn, (1.6)

where ρi are the nth roots of r.

Now, we obtain the eigenvalues, the determinant, Euclidean norms and bounds for the spectral norm of r-circulant
matrices containing Mersenne and Fermat numbers with arithmetic indices. As consequences, we obtain many new
identities for Mersenne and Fermat numbers.

2 Main results

Let s and t be non negative integers and r ∈ C−{0}. The r-circulant matrices with Mersenne and Fermat numbers
are denoted by Mr and Rr, respectively, and defined as follows.

Definition 2.1 (Mersenne r-circulant matrix). The Mersenne r-circulant matrix is defined as Mr = Circ(r; c⃗)
where first row vector is c⃗ = (Ms,Ms+t,Ms+2t...,Ms+(n−1)t), i.e., matrix of the form

Mr =


Ms Ms+t Ms+2t · · · Ms+(n−2)t Ms+(n−1)t

rMs+(n−1)t Ms Ms+t · · · Ms+(n−3)t Ms+(n−2)t

...
...

...
. . .

...
...

rMs+2t rMs+3t rMs+4t · · · Ms Ms+t

rMs+t rMs+2t rMs+3t · · · rMs+(n−1)t Ms

 . (2.1)

Definition 2.2 (Fermat r-circulant matrix). The Fermat r-circulant matrix is defined as Rr = Circ(r; c⃗) where
first row vector is c⃗ = (Rs, Rs+t, Rs+2t..., Rs+(n−1)t), i.e., matrix of the form

Rr =


Rs Rs+t Rs+2t · · · Rs+(n−2)t Rs+(n−1)t

rRs+(n−1)t Rs Rs+t · · · Rs+(n−3)t Rs+(n−2)t

...
...

...
. . .

...
...

rRs+2t rRs+3t rRs+4t · · · Rs Rs+t

rRs+t rRs+2t rRs+3t · · · rRs+(n−1)t Rs

 . (2.2)

In the following theorems, we give the formula for the eigenvalues of the matrices Mr and Rr and as special cases
for r = 1,−1, the eigenvalues for right circulant and skew-right circulant matrices are obtained.

Theorem 2.3. The eigenvalues of Mersenne r-circulant matrices Mr are

µi(Mr) =



Ms − rMs+nt − ρω−i[2tMs−t − rMs+(n−1)t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
: s > t,

Ms − rM(n+1)s + ρω−irMns

(1− αs
1ρω

−i)(1− αs
2ρω

−i)
: s = t,

Ms − rMs+nt − ρω−i[2sMt−s − rMs+(n−1)t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
: s < t,

(2.3)

where i = 0, 1, 2, ..., n− 1.



124 Kumari, Prasad, Tanti, Özkan

Proof . We have

µi(Mr) =

n−1∑
j=0

Ms+jt(ρω
−i)j , i = 0, 1, 2, ..., n− 1

=

n−1∑
j=0

(αs+jt
1 − αs+jt

2 )(ρω−i)j

= αs
1

n−1∑
j=0

(αt
1ρω

−i)j − αs
2

n−1∑
j=0

(αt
2ρω

−i)j (2.4)

= αs
1

[
1− (rαnt

1 )

1− αt
1ρω

−i

]
− αs

2

[
1− r(αnt

2

1− αt
2ρω

−i

]
=

(αs
1 − αs

2)− r(αs+nt
1 − αs+nt

2 )− ρω−i[(αs
1α

t
2 − αs

2α
t
1)− r(αs+nt

1 αt
2 − αs+nt

2 αt
1)]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)

=
Ms − rMs+nt − ρω−i[(αs

1α
t
2 − αs

2α
t
1)− r2tMs+(n−1)t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
, (using Eq. (1.2)).

And by using Eq. (1.2), we have

αs
1α

t
2 − αs

2α
t
1 =


2tMs−t : s > t,

: s = t,

2sMt−s : s < t.

This completes the proof. □

Corollary 2.4. For r = 1 and r = −1, we get the eigenvalues for the Mersenne right circulant and Mersenne skew-right
circulant matrices, respectively, given as

µi(M1) =
Ms −Ms+nt − ω−i[(αs

1α
t
2 − αs

2α
t
1)− 2tMs+(n−1)t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
,

µi(M−1) =
Ms +Ms+nt − ζω−i[(αs

1α
t
2 − αs

2α
t
1) + 2tMs+(n−1)t]

(1− αt
1ζω

−i)(1− αt
2ζω

−i)
,

where ζ is the nth root of -1 and

αs
1α

t
2 − αs

2α
t
1 =


2tMs−t : s > t,

0 : s = t,

2sMt−s : s < t.

Theorem 2.5. The eigenvalues of Fermat r-circulant matrices are

µi(Rr) =



Rs − rRs+nt + ρω−i[r2tRs+(n−1)t − 2tRs−t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
: s > t,

Rs − rR(n+1)s + 2sρω−i[rRns − 2]

(1− αs
1ρω

−i)(1− αs
2ρω

−i)
: s = t,

Rs − rRs+nt + ρω−i[r2tRs+(n−1)t − 2sRt−s]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
: s < t.

Proof . The argument is the same as Theorem 2.3. □
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Corollary 2.6. For r = 1 and r = −1 in Theorem 2.5, we have

µi(R1) =



Rs −Rs+nt + ρω−i[2tRs+(n−1)t − 2tRs−t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
: s > t,

Rs −R(n+1)s + 2sρω−i[Rns − 2]

(1− αs
1ρω

−i)(1− αs
2ρω

−i)
: s = t,

Rs −Rs+nt + ρω−i[2tRs+(n−1)t − 2sRt−s]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
: s < t.

µi(R−1) =



Rs +Rs+nt − ζω−i[2tRs+(n−1)t + 2tRs−t]

(1− αt
1ζω

−i)(1− αt
2ζω

−i)
: s > t,

Rs +R(n+1)s − 2sζω−i[Rns + 2]

(1− αs
1ζω

−i)(1− αs
2ζω

−i)
: s = t,

Rs +Rs+nt − ζω−i[2tRs+(n−1)t + 2sRt−s]

(1− αt
1ζω

−i)(1− αt
2ζω

−i)
: s < t.

As a consequence of the above results, we have the following sum identity for Mersenne and Fermat numbers.

Theorem 2.7. For a positive integer n, we have

n−1∑
i=0

Ms − rMs+nt − ρω−i[(αs
1α

t
2 − αs

2α
t
1)− r2tMs+(n−1)t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
= n(2s − 1).

Proof . To obtain the result, we use the fact that the trace of a square matrix is the sum of its eigenvalues. Hence
for Mersenne r-circulant matrices Mr, we have

n−1∑
i=0

µi(Mr) =

n−1∑
i=0

Ms − rMs+nt − ρω−i[(αs
1α

t
2 − αs

2α
t
1)− r2tMs+(n−1)t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
.

Since r-circulant matrices Mr are diagonal constant and the diagonal entries are Ms, the sum of diagonal entries
of Mr is nMs. Therefore,

n−1∑
i=0

Ms − rMs+nt − ρω−i[(αs
1α

t
2 − αs

2α
t
1)− r2tMs+(n−1)t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
= nMs

= n(2s − 1).

This completes the proof. □

If s = 0, then we have the following identity

n−1∑
i=0

ρω−i[Mt + r2tM(n−1)t]− rMnt

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
= 0.

Note that the sum identity proposed in the above theorem is independent of r.

Theorem 2.8. For n ∈ N and Fermat numbers Rs, we have

n−1∑
i=0

Rs − rRs+nt + ρω−i[r2tRs+(n−1)t − (αs
1α

t
2 + αs

2α
t
1)]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
= n(2s + 1).

and
n−1∑
i=0

2− rRnt + ρω−i[r2tR(n−1)t −Mt]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)
= 2n.

Proof . The argument is the same as in the proof of Theorem 2.7. □

In the next results, we give the determinants of r-circulant matrices involving Mersenne and Fermat numbers and
as consequence, we get the determinant for the right and skew-right circulant matrices.
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Theorem 2.9. Determinant of Mr is given by

det(Mr) =
(Ms − rMs+nt)

n − r[(αs
1α

t
2 − αs

2α
t
1)− r2tMs+(n−1)t]

n

1− rRnt + 2ntr2
.

Proof . With eigenvalues µi of matrix Mr, the determinant is given by det(Mr) =
∏n−1

i=0 µi. Hence,

det(Mr) =

n−1∏
i=0

(Ms − rMs+nt)− ρω−i[(αs
1α

t
2 − αs

2α
t
1)− r2tMs+(n−1)t]

(1− αt
1ρω

−i)(1− αt
2ρω

−i)

=
(Ms − rMs+nt)

n − r[(αs
1α

t
2 − αs

2α
t
1)− r2tMs+(n−1)t]

n

(1− rαnt
1 )(1− αnt

2 )
(using Eq. (1.6))

=
(Ms − rMs+nt)

n − r[(αs
1α

t
2 − αs

2α
t
1)− r2tMs+(n−1)t]

n

1− rRnt + 2ntr2
.

This completes the proof. □

Corollary 2.10. The determinants of the Mersenne right circulant and skew-right circulant matrices are given as

det(M1) =
(Ms −Ms+nt)

n − [(αs
1α

t
2 − αs

2α
t
1)− 2tMs+(n−1)t]

n

1−Rnt + 2nt
,

det(M−1) =
(Ms +Ms+nt)

n + [(αs
1α

t
2 − αs

2α
t
1) + 2tMs+(n−1)t]

n

1 +Rnt + 2nt
.

Theorem 2.11. The determinant of the Fermat r-circulant matrix is given as

det(Rr) =
(Rs − rRs+nt)

n − r[(αs
1α

t
2 + αs

2α
t
1)− r2tRs+(n−1)t]

n

1− rRnt + 2ntr2
.

Proof . The argument is the same as Theorem 2.9. □

Corollary 2.12. The determinants of Fermat right and skew-right circulant matrices are given as

det(R1) =
(Rs −Rs+nt)

n − [(αs
1α

t
2 + αs

2α
t
1)− 2tRs+(n−1)t]

n

1−Rnt + 2nt
,

det(R−1) =
(Rs +Rs+nt)

n + [(αs
1α

t
2 + αs

2α
t
1) + 2tRs+(n−1)t]

n

1 +Rnt + 2nt
.

The sum identities

On setting i = 0, r = 1 and ρ = 1 in equations (2.3) and (2.5), the following sum identities are verified for the
Mersenne and Fermat numbers.

n−1∑
j=0

Ms+jt =



Ms −Ms+nt − 2tMs−t +Ms+(n−1)t

1−Rt + 2t
: s > t,

Ms −M(n+1)s +Mns

1−Rs + 2s
, : s = t,

Ms −Ms+nt − 2sMt−s +Ms+(n−1)t

1−Rt + 2t,
: s < t,

and

n−1∑
j=0

Rs+jt =



Rs −Rs+nt − 2tRs+(n−1)t + 2tRs−t

1−Rt + 2t
: s > t,

Rs −R(n+1)s + 2s(Rns + 2)

1−Rs + 2s
: s = t,

Rs −Rs+nt − 2tRs+(n−1)t + 2sRt−s

1−Rt + 2t
: s < t.
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3 Norm of Mersenne and Fermat r-circulant matrices

Consider the following matrices (special case when s = 0 and t = 1),

M ′
r =


M0 M1 M2 · · · Mn−2 Mn−1

rMn−1 M0 M1 · · · Mn−3 Mn−2

...
...

...
. . .

...
...

rM2 rM3 rM4 · · · M0 M1

rM1 rM2 rM3 · · · rMn−1 M0

 (3.1)

and

R′
r =


R0 R1 R2 · · · Rn−2 Rn−1

rRn−1 R0 R1 · · · Rn−3 Rn−2

...
...

...
. . .

...
...

rR2 rR3 rR4 · · · R0 R1

rR1 rR2 rR3 · · · rRn−1 R0

 . (3.2)

To obtain the different matrix norms, we need to prove some results on the sum of squares of the Mersenne and
Fermat numbers which we show in the following lemmas.

Lemma 3.1. The finite sum of squares of the Mersenne numbers is given by

n−1∑
j=0

M2
j =

M2n − 6Mn + 3n

3
. (3.3)

Proof . By using Eq. (1.1), we get

n−1∑
j=0

M2
j =

n−1∑
j=0

(2j − 1)2

=

n−1∑
j=0

(22j − 2j+1 + 1)

=
4n − 1

3
− 2(2n − 1) + n

=
M2n − 6Mn + 3n

3
.

This completes the proof. □

By a similar argument, the next lemma can be proved.

Lemma 3.2. The finite sum of squares of the Fermat numbers is given by

n−1∑
j=0

R2
j =

R2n + 6Rn + 3n− 14

3
.

Theorem 3.3. The maximum absolute column sum and maximum absolute row sum matrix norm for the matrix M ′
r

are given as
||M ′

r||1 = ||M ′
r||∞ = |r|(Mn − n).

Proof . Since, for r-circulant matrices we have ||.||1 = ||.||∞, from Lemma 1.1, we have

||M ′
r||1 = ||M ′

r||∞ = max
1≤j≤n

n∑
i=1

|mij |

= M0 + |r|
n−1∑
k=1

|Mk|

= |r|(Mn − n) (Since, M0 = 0).
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This completes the proof. □

Theorem 3.4. The Euclidean norm for the Mersenne r-circulant matrices is given by

||M ′
r||E =

√√√√n

n−1∑
j=0

(R2j − 4)[n− j(1− |r|2)].

Proof . By Eq. (1.5), we have

||M ′
r||2E =

n−1∑
j=0

|Mj |2[n− j(1− |r|2)]

=

n−1∑
j=0

(αj
1 − αj

2)
2[n− j(1− |r|2)]

=

n−1∑
j=0

(α2j
1 + α2j

2 − 2α1α2)[n− j(1− |r|2)]

=

n−1∑
j=0

(R2j − 4)[n− j(1− |r|2)].

This completes the proof. □

Theorem 3.5. The Euclidean norm for the Fermat r-circulant matrices is given by

||R′
r||E =

√√√√n−1∑
j=0

(R2j + 4)[n− j(1− |r|2)].

Proof . The argument is the same as the above theorem. □

Theorem 3.6. The bound for the spectral norm of the Mersenne r-circulant matrices is,
√

M2n − 6Mn + 3n

3
≤ ||M ′

r||2 ≤
√
|r|2M2n − 6Mn + 3n

3

√
1 +

M2n − 6Mn + 3n

3
: |r| ≥ 1,

|r|
√

M2n − 6Mn + 3n

3
≤ ||M ′

r||2 ≤
√

n
M2n − 6Mn + 3n

3
: |r| ≤ 1.

Proof . By Eq. (1.5), the Euclidean norm is given as,

||M ′
r||2E =

n−1∑
j=0

|Mj |2[n− j(1− |r|2)].

Case-1: If |r| ≥ 1, then from Lemma 3.1, we get

||M ′
r||2E =

n−1∑
j=0

(n− j)|Mj |2 + |r|2
n−1∑
j=0

j|Mj |2 ≥
n−1∑
j=0

(n− j)|Mj |2 +
n−1∑
j=0

j|Mj |2

≥
n−1∑
j=0

n|Mj |2

≥ n

(
M2n − 6Mn + 3n

3

)
,

which implies
||M ′

r||E√
n

≥
√

M2n − 6Mn + 3n

3
.
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And from Eq. (1.3), we get

||M ′
r||2 ≥

√
M2n − 6Mn + 3n

3
. (3.4)

Now, to obtain the upper bound for the spectral norm, we write M ′
r in the form of the Hadamard product of

two matrices. Let, X =


M0 1 1 · · · 1

rM(n−1) M0 1 · · · 1
...

...
...

. . .
...

rM2 rM3 rM4 · · · 1
rM1 rM2 rM3 · · · M0

 and Y =


1 M1 M2 · · · Mn−1

1 1 M1 · · · Mn−2

...
...

...
. . .

...
1 1 1 · · · M1

1 1 1 · · · 1

 . Then clearly,

M ′
r = X ◦ Y , where ◦ denotes the Hadamard product. Now,

u(X) = max
1≤i≤n

√√√√ n∑
j=1

|xij |2

=

√√√√M2
0 + |r|2

n−1∑
j=1

M2
j

=

√
|r|2M2n − 6Mn + 3n

3

and

ν(Y ) = max
1≤j≤n

√√√√ n∑
i=1

|yij |2

=

√√√√1 +

n−1∑
i=1

M2
i

=

√
1 +

M2n − 6Mn + 3n

3
.

Thus, by Lemma 1.2, we write

||M ′
r||2 ≤ u(X)ν(Y ) =

√
|r|2M2n − 6Mn + 3n

3

√
1 +

M2n − 6Mn + 3n

3
.

Hence, we have√
M2n − 6Mn + 3n

3
≤ ||M ′

r||2 ≤
√
|r|2M2n − 6Mn + 3n

3

√
1 +

M2n − 6Mn + 3n

3
.

Case-2: If |r| < 1, then from Eq. (1.5) and Lemma 3.1, we get

||M ′
r||2E ≥

n−1∑
j=0

(n− j)|r|2|Mj |2 +
n−1∑
j=0

j|r|2|Mj |2

≥ n|r|2
(
M2n − 6Mn + 3n

3

)
,

which implies
||M ′

r||E√
n

≥ |r|
√

M2n − 6Mn + 3n

3
.

And from Eq. (1.3), we get

||M ′
r||2 ≥ |r|

√
M2n − 6Mn + 3n

3
.
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Next, we calculate the upper bound for the spectral norm of M ′
r.

Let

P =


1 1 1 · · · 1
r 1 1 · · · 1
...

...
...

. . .
...

r r r · · · 1
r r r · · · 1

 and Q =


M0 M1 M2 · · · Mn−1

Mn−1 M0 M1 · · · Mn−2

...
...

...
. . .

...
M2 M3 M4 · · · M1

M1 M2 M3 · · · M0

 .

Then clearly, M ′
r = P ◦Q, where ◦ denotes the Hadamard product. So,

u1(P ) = max
1≤i≤n

√√√√ n∑
j=1

|pij |2 =
√
n

and

ν1(Q) = max
1≤j≤n

√√√√ n∑
i=1

|qij |2

=

√√√√n−1∑
j=0

M2
j

=

√
M2n − 6Mn + 3n

3
.

Hence, by Lemma 1.2, we have

||M ′
r||2 ≤ u1(P )ν1(Q) =

√
n
M2n − 6Mn + 3n

3
.

Thus,

|r|
√

M2n − 6Mn + 3n

3
≤ ||M ′

r||2 ≤
√
n
M2n − 6Mn + 3n

3
.

This completes the proof. □

Theorem 3.7. Lower and upper bounds for the spectral norm of the Fermat r-circulant matrices are
√

R2n + 6Rn + 3n− 14

3
≤ ||R′

r||2 ≤
√
|r|2R2n + 6Rn + 3n− 14

3

√
1 +

R2n + 6Rn + 3n− 14

3
: |r| ≥ 1,

|r|
√

R2n + 6Rn + 3n− 14

3
≤ ||R′

r||2 ≤
√
n
R2n + 6Rn + 3n− 14

3
: |r| < 1.

Proof . Using Lemma 3.2 and proceeding as the above theorem, we get the required result. □

Conclusion

In this study, we defined r-circulant matrices Mr and Rr involving Mersenne and Fermat numbers, respectively,
having arithmetic indices. We obtained eigenvalues, determinant, Euclidean norm and lower and upper bounds for
the spectral norm of these matrices in closed form. We also obtained all the algebraic properties discussed as a special
case of the main results for r = 1 and r = −1 for right-circulant and skew-right circulant matrices. And, in conclusion,
some interesting results and the sum identities have been obtained.
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