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Abstract

The purpose of this paper is to obtain new complexity results for solving the semidefinite optimization (SDO) problem.
We define a new proximity function for the SDO by a new kernel function with an efficient logarithmic barrier term.
Furthermore, we formulate an algorithm for the large and small-update primal-dual interior-point method (IPM) for
the SDO. It is shown that the best result of iteration bounds for large-update methods and small-update methods can

be achieved, namely O
(
qn

q+1
2q log n

ϵ

)
for large-update and O(q2

√
n log n

ϵ ) for small-update methods, where q > 1. The

analysis in this paper is new and different from the one using for LO. Several new tools and techniques are derived in
this paper. Furthermore, numerical tests to investigate the behavior of the algorithm so as to be compared with other
approaches.
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1 Introduction

The semidefinite optimization problem (SDO) is an important class of convex optimization problems, which includes
linear optimization (LO) and second-order cone optimization (SOCO) as special cases. To resolve the problem, the
interior-point methods (IPMs) gain much more attention. Several IPMs designed for LO have been successfully
extended to SDO due to their polynomial complexity and practical efficiency.

Kernel functions play an important role in the design and analysis of IPMs. They are not only used for determining
the search directions but also for measuring the distance between the given iterate and the µ-center for algorithms.
Currently, algorithms based on kernel functions are the most effective algorithms for solving LO, SOCO, SDO and
symmetric optimization (SO) and constitute very active research areas in mathematical programming.

Due to literature, nowadays, it seems that primal-dual IPMs based on kernel functions received a great of interest
by the researchers in this field, we refer the interested reader to the works proposed in [2, 3, 5, 6, 7, 9].
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Motivated by these works, in this paper, we define a new proximity function then we formulate the corresponding
algorithm for solving the SDO. So, we propose the following kernel function

ψ(t) =
t2 − 1− log t

2
+
t1−q − 1

2(q − 1)
, (1.1)

where q > 1 is a parameter. The iteration complexity obtained for large-and small-update methods is, namely,

O
(
qn

q+1
2q log

n

ϵ

)
, and O(q2

√
n log

n

ϵ
)

respectively. These theoretical results have important theoretical significance in convex quadratic SDO [20, 18] and
semidefinite complementarity problems (SDLCP) [1].

The paper is organized as follows : in section 2, we introduce some useful results concerning the cone of symmetric
matrices and some concepts of central path for SDO problem. We also describe the generic corresponding algorithm.
In section 3, we give the properties of the kernel function. An estimation for the step size is given in section 4. In
section 5, the polynomial iteration complexity is provided. Some illustrative and comparative numerical results are
reported in section 6. Finally, some remarks are given in the conclusion.

The following notations are used throughout the paper: Rn, Rn
+ and Rn

++ denote the set of vectors with n
components, the set of nonnegative vectors and the set of positive vectors, respectively. ∥.∥ is used as the Frobenius
norm for matrices and as the Euclidian norm for vectors. Rm×n is the space of all m× n matrices whose components
are from R. Sn, Sn+ and Sn++ denote the cone of symmetric, symmetric positive semidefinite and symmetric positive
definite matrices of the order n× n, respectively. E denote the identity matrix. For A,B ∈ Rn×n, we use the classical
lower partial ordering ⪰ for symmetric matrices by the mean of A ⪰ B (A≻B ) if and only if A − B is positive
semidefinite matrix (positive definite matrix). Given A ∈ Rn×n, Tr(A) stands for the trace of the matrix A. For
A,B ∈ Rm×n, the inner product is defined by A • B = Tr(ABT ). For any symmetric definite matrix Q ∈ Sn++, the

expression Q
1
2 stands for symmetric square root of Q. For V ∈ Sn++, we assume that the eigenvalues of V are arranged

in non-increasing order, that is, λ1(V ) ≥ λ2(V ) ≥ ... ≥ λn(V ). For a vector x ∈ Rn, diag(x) is a diagonal matrix
whose diagonal entries are component of vector x. Finally, if g(x) ≥ 0 is a real valued function of real nonnegative
variable, the notation g(x) = O(x) means that g(x) ≤ c̄x for some positive constant c̄ and g(x) = Θ(x) that c̄1x
≤ g(x) ≤ c̄2x for two positive constants c̄1 and c̄2.

2 Preliminaries for SDO

In this section, we first introduce some useful results regarding the property of the symmetric matrices. Then some
concepts of central path for SDO problems are briefly recalled. The structure of generic primal-dual IPMs based on
kernel function is also given in this section.

2.1 Special matrix functions

Let us recall some basic facts linear algebra.

Theorem 2.1. ( Spectral theorem for symmetric matrices in [19] ). The real n×n matrix A is symmetric if and only
if there exists an orthogonal basis with respect to witch Λ is real and diagonal, i.e., a matrix U ∈ R n×n such that
UTU = E and UTAU = Λ where Λ is a diagonal matrix.

The columns ui of the orthogonal matrix U are the eigenvectors of A, satisfying Aui = λiui, i = 1, 2, ..., n, where
λi is the i-th diagonal entry of Λ.

Definition 2.2. Let V ∈ Sn++ and V = QT diag (λ (V ))Q, where Q is any nonsingular matrix that diagonalizes V .
Let ψ (t) be defined in (1.1). Then the matrix function ψ (V ) : Sn++ → Sn++ is defined by

ψ (V ) = QT diag (ψ(λ1(V )) , ψ(λ2(V )), ..., ψ(λn(V )))Q. (2.1)

The real valued matrix function Ψ(V ) : Sn++ → R+ is defined as follows
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Definition 2.3.

Ψ(V ) = tr (ψ (V )) =

n∑
i=1

ψ(λi(V )), (2.2)

where ψ (V ) is given by (2.1)

Suppose that ψ (t) is a twice differentiable function for all t > 0. So, the first and the second order derivatives of
the matrix function ψ (V ), are defined as below[12]:

ψ′ (V ) = QT diag (ψ′(λ1(V )) , ψ′(λ2(V )), ..., ψ′(λn(V )))Q.

ψ′′ (V ) = QT diag (ψ′′(λ1(V )) , ψ′′(λ2(V )), ..., ψ′′(λn(V )))Q.

Definition 2.4. A matrix X(t) is said to be a matrix of function (or a matrix-valued function) if each entry of X(t)
is a function of t. i.e., X(t) = [Xij (t)].

Remark 2.5. In the following, when we apply the function ψ(.) and its derivatives ψ′(.) and ψ′′(.), indeed, we face
with matrix functions if the argument is a matrix and with a univariate function if the argument is in R++.

In the next lemma we describe some law about the first derivative of matrix of functions. One can find the proof
in [11, 13].

Lemma 2.6. Suppose that X (t) and Y (t) are two matrices of functions, thus, one has:

X ′ (t) =
d

dt
X (t) =

(
d

dt
Xij (t)

)
. (2.3)

d

dt
tr (X (t)) = tr

(
d

dt
X (t)

)
= tr (X ′ (t)) . (2.4)

d

dt
tr (ψ(X (t))) = tr (ψ′(X (t))X ′) . (2.5)

d

dt
(X (t)Y (t)) =

(
d

dt
X (t)

)
Y (t) +X (t)

(
d

dt
Y (t)

)
(2.6)

= X ′ (t)Y (t) +X (t)Y ′ (t) .

2.2 The central path for SDO

We consider the standard semidefinite optimization problem in the standard form

min
X
C •X s.t. Ai •X = bi, i = 1, 2, ...,m, X ⪰ 0, (P)

and its dual:

max
(y,S)

bT y s.t.

m∑
i=1

yiAi + S = C, S ≥ 0, (D)

where each C,Ai ∈ Sn, for 1 ≤ i ≤ m and b, y ∈ Rm. Moreover, we assume that the matrices Ai are linearly
independent. We also assume that both problem (P ) and (D) satisfy the interior-point condition (IPC), i.e., there
exists X0 ≻ 0 and

(
y0, S0

)
with S0 ≻ 0 in the feasible set of problem (P ) and (D), respectively, i.e., Ai •X0 = bi, i = 1, 2, ...,m,

m∑
i=1

y0iAi + S0 = C.
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It is well know that the IPC can be assumed without loss of generality. In fact we may choose X0 = S0 = E as
the initial start point. The detailed analysis can be found in [8, 19]. The optimality condition for (P ) and (D) are
given by the following system 

Ai •X = bi , i = 1, 2, ...,m,
m∑
i=1

yiAi + S = C,

XS = 0,
X ⪰ 0, S ⪰ 0.

(2.7)

If the IPC hold, the µ-central of (P ) and (D) is defined by the solution (X(µ), y(µ), S(µ)) of the following system
Ai •X = bi , i = 1, 2, ...,m,
m∑
i=1

yiAi + S = C,

XS = µE,
X ⪰ 0, S ⪰ 0,

(2.8)

with µ > 0. The set of µ-centers (with µ running through all positive real numbers) gives a homotopy path, which is
called the central path of (P ) and (D). If µ → 0 then the limit of the central path exists and since the limit points
satisfy the complementarity condition, the limit yields an ϵ-approximate solution for (P ) and (D) [8, 19]. Applying
Newton’s method to system (2.8) produces the following equations for the search direction ∆X, ∆y and ∆S:


Ai •∆X = 0, i = 1, 2, ...,m,
m∑
i=1

∆yiAi +∆S = 0,

X∆SS−1 +∆X = µS−1 −X .

(2.9)

A decisive observation for SDO is that the above Newton system might have no symmetric solution ∆X. Many
researchers have proposed different ways of symmetrizing the third equation in the Newton system so the new system
has a unique symmetric solution [15, 16]. In this paper, we use the Nesterov-Todd (NT) symmetrization scheme [2].
Let us define

P := X
1
2 (X

1
2SX

1
2 )−

1
2X

1
2 = S− 1

2 (S
1
2XS

1
2 )S. (2.10)

We replace the term X∆SS−1in the third equation of (2.9) by P∆SPT . The system (2.9) becomes
Ai •∆X = 0, i = 1, 2, ...,m,
m∑
i=1

∆yiAi +∆S = 0,

∆X + P∆SPT = µS−1 −X, X, S ⪰ 0.

(2.11)

Furthermore, we define D = P
1
2 , which can be used to scale X and S to the same matrix V because

V =
1
√
µ
D−1XD−1 =

1
√
µ
DSD =

1
√
µ

(
D−1XSD

)1
2 . (2.12)

Let us further define


Ai =

1
√
µ
DAiD, i = 1, ...,m,

DX =
1
√
µ
D−1∆XD−1,

DS =
1
√
µ
D∆SD.

(2.13)

Then NT search direction can be written as the solution of the following system:
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
Ai •DX = 0, i = 1, ...,m,
n∑

i=1

∆yiAi +DS = 0,

DX +DS = V −1 − V.

(2.14)

Define the so-called classical kernel function

ψc (t) =
t2 − 1

2
− log t.

Then −ψ′
c (V ) is the same as the right-hand side of the third equation in (2.14). For our IPM, in place of ψc (t) , we

use kernel function defined in (1.1). The new search direction DX and DS are derived by solving the following system
Ai •DX = 0, i = 1, ...,m,
n∑

i=1

∆yiAi +DS = 0,

DX +DS = −ψ′ (V ) .

(2.15)

Since DX and DS are orthogonal due to the orthogonality of ∆X and ∆S, it is trivial to verify that DX •DS =
DX •DS = 0. Then we have

DX = DS = On×n ⇔ ψ′(V ) = On×n ⇔ V = E ⇔ Ψ(V ) = 0,

i.e., if and only if XS = µE, that is, if and only if X = X (µ) and S = S (µ) as it should. Otherwise Ψ (V ) > 0,
hence, if (X, y, S) ̸= (X (µ) , y (µ) , S (µ)), then (∆X,∆y,∆S) is nonzero. By taking a step along the search direction,
with the step size α , one constructs a new triple (X+, y+, S+) according to

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S. (2.16)

We can now describe the algorithm in a more formal way. The generic form of this algorithm is shown below

Algorithm 1:Generic primal-dual Algorithm for SDO

Input:
a kernel function ψ (t) ;
a threshold parameter τ > 1;
an accuracy parameter ϵ > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
begin

X := E;S := E;µ := 1;V := E;
while nµ ≥ ϵ do
begin (outer iteration)

µ := (1− θ)µ;
V := V√

1−θ
;

while Ψ(V ) > τ do
begin (inner iteration)

Solve system (2.15) and use (2.13) to obtain (∆X,∆y,∆S);
determine a step size α;
X := X + α∆X;
S := S + α∆S;
y := y + α∆y;

V :=
1
√
µ
D−1XD−1 =

1
√
µ
DSD;

end (inner iteration);
end (outer iteration);

end.
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It is clear from this description that closeness of (X, y, S) to (X(µ), y(µ), S(µ)) is measured by the value of Ψ (V ),
with τ as threshold value: if Ψ (V ) ≤ τ , then start a new outer iteration by performing a µ-update, otherwise we
enter an inner iteration relative to the current value of µ and apply (2.16) to get new iterates.The parameters τ, θ
and the step size α should be chosen in such a way that the number of iterations required by the algorithm is as
small as possible. Recently in [7] a new kernel function with logarithmic barrier term is proposed. It improves all
results of the complexity bound for-update methods based on logarithmic kernel functions for LO. For the case of

SDO, we will prove that the corresponding algorithm has O
(
qn

q+1
2q log

n

ϵ

)
complexity bound for large-update method

and O
(
q2
√
n log

n

ϵ

)
for small-update method.

3 Properties of the kernel (Barrier) function

We start by recalling some properties of ψ(t)

ψ′(t) = t− 1
2t −

1
2 t

−q,
ψ′′(t) = 1 + 1

2t2 + q
2 t

−q−1 > 1,

ψ′′′(t) = − 1
t3 − q(q+1)

2 t−q−2 < 0,
ψ(1) = 0, ψ′(1) = 0 ,
lim
t→0+

ψ(t) = lim
t→+∞

ψ(t) = +∞.

(3.1)

Moreover, from (3.1) we have the following lemmas.

Lemma 3.1. [7] For ψ(t), we have

ψ(t) is exponentially convex for all t > 0; that is,

ψ
(√
t1t2

)
≤ 1

2
(ψ (t1) + ψ (t2)) . (a)

ψ′′(t) is monotonically decreasing for all t > 0. (b)

tψ′′(t)− ψ′(t) > 0 for all t > 0. (c)

ψ′′(t)ψ′(βt)− βψ′(t)ψ′′(βt) > 0, t > 1, β > 1. (d)

Lemma 3.2. [7] For ψ(t), we have

1

2
(t− 1)

2 ≤ ψ(t) ≤ 1

2
[ψ′(t)]

2
, t > 0. (3.2)

ψ(t) ≤ q + 3

4
(t− 1)

2
, t > 1. (3.3)

Let σ : [0,+∞[ → [1,+∞[ be the inverse function of ψ(t) for t ≥ 1 and ρ : [0,+∞[ → ]0, 1] be the inverse function
of − 1

2ψ
′(t) for all t ∈ ]0, 1]. Then we have the following lemma.

Lemma 3.3. [7] For ψ (t), we have

1 +

√
4

q + 3
s ≤ σ(s) ≤ 1 +

√
2s, s ≥ 0. (3.4)

ρ(s) >
1

(4s+ 2)
1
q

, s ≥ 0. (3.5)

At some place below we apply the function Ψ to a positive vector v. The interpretation of Ψ(v) is compatible with
Definition 2.2, when identifying the vector v with its diagonal matrix V = diag(v). When applying Ψ to this matrix
we obtain

Ψ(V ) =

n∑
i=1

ψ (vi) , v ∈ int Rn
+.
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Theorem 3.4. (Theorem 3 in [18]) Let σ be as defined in Lemma 3.3. Then for any positive definite matrix V , and
any β ≥ 1, one has

Ψ(βV ) ≤ nψ

(
βσ

(
Ψ(V )

n

))
.

In the next theorem, we obtain an estimate for the effect of a µ−update on the value of Ψ(V ).

Theorem 3.5. Let 0 ≤ θ < 1 and V+ = V√
1−θ

. If Ψ(V ) ≤ τ , then

Ψ(V+) ≤ nψ

σ
(
τ)

n

)
√
1− θ

 ≤
(
nθ + 2τ + 2

√
2τn

)
2(1− θ)

.

Proof . Since 1√
1−θ

≥ 1 and σ

(
Ψ(V )

n

)
≥ 1, we have 1√

1−θ
σ

(
Ψ(V )

n

)
≥ 1. Using Theorem 3.4 with β = 1√

1−θ
and

the function σ is monotonically increasing since ψ(t) is that for t ≥ 1, we have

Ψ(V+) ≤ nψ

σ
(
Ψ(V )

n

)
√
1− θ

 ≤ nψ

σ
(
τ)

n

)
√
1− θ

 .

This prove the first inequality. The second inequality follows from: for t ≥ 1, we have ψ(t) ≤ t2−1
2 . Then

Ψ(V+) ≤ nψ

σ
(
τ)

n

)
√
1− θ

 ≤ n

2

σ
2

(
τ)

n

)
1− θ

− 1


=

n

2 (1− θ)

(
σ2

(
τ)

n

)
− (1− θ)

)

≤ n

2 (1− θ)

(1 +√2τ

n

)2

− (1− θ)


=

(
nθ + 2τ + 2

√
2τn

)
2(1− θ)

.

□

Denote

Ψ0 =

(
nθ + 2τ + 2

√
2τn

)
2(1− θ)

, (3.6)

then Ψ0 is an upper bound for Ψ(V ) during the Newton process of the algorithm.

3.1 Properties of Ψ(V ) and δ (V )

In the analysis of the algorithm, we also use the norm- based proximity measure δ (V ) defined by

δ (V ) :=
1

2
∥Ψ′(V )∥ =

1

2

√√√√ n∑
i=1

ψ′ (λi (V ))
2
=

1

2
∥DX +DS∥ , (3.7)

in term of Ψ(V ). Since Ψ(V ) is strictly convex and attains its minimal value zero at V = E, we have

Ψ′(V ) = 0 ⇐⇒ δ (V ) = 0 ⇐⇒ V = E.
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Lemma 3.6. Let δ (V ) be as defined in (3.7). Then we have

δ (V ) ≥
√

Ψ(V )

2
. (3.8)

Proof . From (3.2) and (3.7), we have

Ψ(V ) =

n∑
i=1

ψ (λi (V )) ≤
n∑

i=1

1

2
ψ′ (λi (V ))

2
=

1

2
∥∇Ψ(V )∥2 = 2δ (V )

2
,

Hence, we have δ (V ) ≥
√

Ψ(V )

2
. This completes the proof. □

Remark 3.7. Throughout the paper, we assume that τ ≥ 1. Using Lemma 3.6 and the assumption that Ψ(V ) ≥ τ ,

we have δ (V ) ≥ 1√
2
.

4 An estimation for the step size

At the start of each outer iteration, just before the update of µ with the factor 1 − θ, we have Ψ(V ) ≤ τ . Due
to the update of µ, the matrix V defined by (2.12) is divided by the factor

√
1− θ, with 0 < θ < 1, wich leads to

an increasing in the value of Ψ(V ). Then, during the inner iterations, Ψ(V ) decreases until it passes the threshold τ
again. Hence, during the course of the algorithm the largest values of Ψ(V ) occur just after the updates of µ. After
that , we derive an estimate for the effect of µ-update on the value of Ψ(V ).

4.1 Decrease of Ψ(V ) in the inner iteration

In each inner iteration the search directions ∆X, ∆y and ∆S are obtained by solving the system (2.15), and using
(2.13). After a step with size α, the new iterate is given by

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S.

We may write
X+ = X + α∆X = X + α

√
µDDXD =

√
µD(V + αDX)D,

and
S+ = S + α∆S = S + α

√
µD−1DSD

−1 =
√
µD−1(V + αDS)D,

denoting the matrix V after the step as V+, we have

V+ =
1
√
µ

(
D−1X+S+D

) 1
2 ,

note that V 2
+ is unitarily similar to the matrix 1

µX
1
2
+S+X

1
2
+ and thus to

(V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 .

Consequently, the eigenvalues of the matrix V+ are precisely the same as those of the matrix

Ṽ+ =
(
(V + αDX)

1
2 (V + αDS)(V + αDX)

1
2

) 1
2

.

By the definition of Ψ(V ), we obtain
Ψ(V+) = Ψ(Ṽ+).

Defining
f(α) = Ψ(V+)−Ψ(V ) = Ψ(Ṽ+)−Ψ(V ). (4.1)
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Lemma 4.1. ([Lemma 9 in [10]) Let V1and V2 be two symmetric positive definite matrices, then

Ψ
(
(V

1
2
1 V2V

1
2
1 )

1
2

)
≤ 1

2
(Ψ (V + αDX) + Ψ (V + αDS)) .

Using Lemma 4.1, it follows that

Ψ(V+) = Ψ(Ṽ+) ≤
1

2
(Ψ (V1) + Ψ (V2)) .

From the definition (4.1) of f(α), we now have f(α) ≤ f1(α), where

f1(α) =
1

2
[Ψ (V + αDX) + Ψ(V + αDS)]−Ψ(V ),

which means that f1(α) gives an upper bound for the decrease of the barrier function Ψ(V ). Furthermore, we can
easily verify that

f(0) = f1(0) = 0.

Taking the derivative with respect to α, we get

f ′1(α) =
1

2
Tr (ψ′ (V + αDX)DX + ψ′ (V + αDS)DS) .

Using the last equation of (2.15) and (3.7), we obtain

f ′1(0) =
1

2
tr (ψ′ (V ) (DX +DS)) =

1

2
tr
(
−ψ′(V )2

)
= −2δ(V )2.

Differentiating once more, we obtain

f ′′1 (α) =
1

2
Tr
(
ψ′′ (V + αDX)D2

X + ψ′′ (V + αDS)D
2
S

)
. (4.2)

In what follows, we use the short notation: δ := δ(V ), and state some important results.

Lemma 4.2. (Lemma 10 in [10] ). One has

f ′′1 (α) ≤ 2δ2ψ′′(λn(V )− 2αδ).

Next we will choose a suitable step size for the algorithm. This should be chosen such that X+ and S+ are feasible
and another one is to make Ψ(V+)−Ψ(V ) decreases sufficiently. Putting vi = λi(V ), 1 ≤ i ≤ n, and νn := min(v),
we have:

f ′′1 (α) ≤ 2δ2ψ′′(vn − 2αδ),

which is the same inequality as in Lemma 4.1 in [3]. From this stage on we can apply similar arguments as in [3, 9]
for the LO case to obtain the following results which require no further proof.

Lemma 4.3. (Lemma. 4.2 in [3]) One has f ′1(α) ≤ 0, certainly holds if α satisfies the inequality

−ψ′(vn − 2αδ) + ψ′(vn) ≤ 2δ. (4.3)

Lemma 4.4. (Lemma. 4.3 in [3]) The largest step size α that satisfies (4.3) is given by

ᾱ :=
1

2δ
(ρ (δ)− ρ (2δ)) . (4.4)

Lemma 4.5. (Lemma. 4.4 in [3]) Let ᾱ is defined in Lemma 4.4. Then

ᾱ ≥ 1

ψ′′(ρ (2δ))
.
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As in the LO case, we use a default step size α̃ that is the lower bound of the ᾱ and consists of δ.

α̃ :=
1

ψ′′(ρ (2δ))
. (4.5)

Lemma 4.6. Let ρ and ᾱ be as defined in Lemma 4.5. If Ψ (V ) ≥ τ ≥ 1, then we have

ᾱ ≥ 2

2 + (q + 1)(8δ + 2)
q+1
q

.

Proof . Using (3.1), (3.5) and Lemma 4.5, we have

ᾱ ≥ 1

ψ′′(ρ (2δ))
=

1

1 + 1
2 (

1
ρ(2δ) )

2 + q
2 (

1
ρ(2δ) )

q+1

≥ 1

1 + 1
2 (4(2δ) + 2)

2
q + q

2 (4(2δ) + 2)
q+1
q

≥ 1

1 + 1
2 (8δ + 2)

q+1
q + q

2 (8δ + 2)
q+1
q

=
2

2 + (q + 1)(8δ + 2)
q+1
q

.

This completes the proof. □

Denoting

α̃ :=
2

2 + (q + 1)(8δ + 2)
q+1
q

. (4.6)

Lemma 4.7. (Lemma 1.3.3 in [12]) Let h(t) be a twice differentiable convex function with h(0) = 0, h′(0) < 0 and
let h(t) attain its (global) minimum at t∗ > 0. If h′′(t) is increasing for t ∈ [0, t∗], one has

h(t) ≤ th′(0)

2
, 0 ≤ t ≤ t∗.

Since f1(α) holds the condition of the above lemma, f(α) ≤ f1(α) ≤
f ′1(0)

2
α for all 0 ≤ α ≤ ᾱ, then we have the

following lemma to obtain the upper bound for the decreasing value of the proximity in the inner iteration.

Lemma 4.8. (Lemma 4.5 in [3]) if the step size α satisfies α ≤ ᾱ, then

f(α) ≤ −αδ2.

Lemma 4.9. Let α̃ be the default step size as defined in (4.6) and Ψ(V ) ≥ 1, then

f(α̃) ≤ −
√
2

(q + 1) 148
[Ψ(V )]

q−1
2q .
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Proof . Using Lemma 4.8, Remark 3.7, and substituting the value of α̃, we have

f(α̃) ≤ −α̃δ2

= − 2δ2

2 + (q + 1)(8δ + 2)
q+1
q

≤ − 2δ2

2(2δ) + (q + 1)(4(2δ) + 2(2δ))
q+1
q

≤ − 2δ2

2(2δ)
q+1
q + (q + 1)(12δ))

q+1
q

= − 2δ2(
2(2)

q+1
q + (q + 1)(12)

q+1
q

)
(δ)

q+1
q

≤ − 2δ
q−1
q

2(2)2 + (q + 1)(12)2

≤ − 2δ
q−1
q

(q + 1)148

≤ −
√
2

(q + 1)148
[Ψ(V )]

q−1
2q .

This completes the proof. □

5 Iteration complexity

In this section, we derive the complexity bounds for large and small-update methods.

5.1 Upper bound for the number of inner iterations

We denote the value of Ψ(V ) after µ-update by Ψ0

Ψ(V+) ≤ Ψ0 =

(
nθ + 2τ + 2

√
2τn

)
2(1− θ)

= L (n, θ, τ) .

We need to count how many inner iterations are required to return to the situation where Ψ(V ) ≤ τ . the subsequent
values in the same outer iteration are denoted as Ψk , k = 1, 2, ...,K, where K denotes the total number of inner
iterations in the outer iteration. According to decrease of f(α̃), for k = 1, 2, ...,K − 1, we obtain

Ψk+1 ≤ Ψk −
√
2

(q + 1) 148
[Ψ(V )]

q−1
2q . (5.1)

Lemma 5.1. (Lemma 14 in [13]) Let {tk > 0, k = 0, 1, ...,K} be a sequence of positive numbers satisfying tk+1 ≤

tk − βt1−γ
k , k = 0, 1, ...,K − 1, where β > 0 and 0 < γ ≤ 1. Then K ≤

[
tγ0
βγ

]
.

Letting tk = Ψk, β =

√
2

(q + 1) 148
and γ =

q + 1

2q
.

Theorem 5.2. Let K be the total number of inner iterations in the outer iterations. Then we have

K ≤
(
148
√
2q
)
[Ψ0]

q+1
2q .

Proof . By Lemma 5.1, we have K ≤
[
tγ0
βγ

]
=
(
148

√
2q
)
[Ψ0]

q+1
2q . This completes the proof. □
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5.2 Upper bound for total number of iterations

The number of outer iterations is bounded above by
1

θ
log

n

ϵ
(cf. Lemma II. 17, p.116, in [14] Multiplication of this

number by the bound for the number of inner iterations in Theorem 5.2 yields the total number of iterations, namely,

(
148
√
2q
)
[Ψ0]

q+1
2q

log
n

ϵ
θ

. (5.2)

For large-update methods, with τ = O(n) and θ = Θ(1). After some elementary reductions, the iteration bound
becomes

O
(
qn

q+1
2q log

n

ϵ

)
.

In the case of small-update methods, we have τ = O(1), θ = Θ(
1√
n
) and by (3.3), with

ψ(t) ≤ q + 3

4
(t− 1)2, t > 1,

we obtain

Ψ(V+) ≤ nψ

(
1√
1− θ

σ

(
Ψ(V )

n

))
≤ n

q + 3

4

(
1√
1− θ

σ

(
Ψ(V )

n

)
− 1

)2

=
n(q + 3)

4(1− θ)

(
σ

(
Ψ(V )

n

)
−
√
1− θ

)2

.

Using (3.4), we have

n(q + 3)

4(1− θ)

(
σ

(
Ψ(V )

n

)
−
√
1− θ

)2

≤ n(q + 3)

4(1− θ)

(
1 +

√
2
Ψ(V )

n
−

√
1− θ

)2

=
n(q + 3)

4(1− θ)

((
1−

√
1− θ

)
+

√
2
Ψ(V )

n

)2

≤ n(q + 3)

4(1− θ)

(
θ +

√
2
τ

n

)2

=
n(q + 3)

4(1− θ)

(
θ
√
n+

√
2τ
)2

= Ψ0.

where we also used that 1 −
√
1− θ =

θ

1 +
√
1− θ

≤ θ and Ψ(V ) ≤ τ , using this upper for Ψ0, we get the following

iteration bound: (
148
√

2q
)
[Ψ0]

q+1
2q

log
n

ϵ
θ

.

Note now Ψ0 = O(q), and the iteration bound becomes O(q2
√
n log

n

ϵ
) iteration complexity.

6 Numerical results

In this section, our main focus is to provide a numerical experiences regarding the practical performance of the new
proposed kernel function in comparison with some other kernel functions which have been proposed in the literature.
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The Algorithm is coded in MATLAB (R2014a) and our experiments were performed on PC with Processor Genuine
Intel (R) CPR T2080 @ 1,73GHZ installed memory (RAM) 2,00GO. Let us consider the following special case of SDO
problem, whose primal-dual pair have the following data [17]

A1 =


0 1 0 0 0
1 2 0 0 −1
0 0 0 0 1
0 0 0 −2 −1
0 −1 1 −1 −2

 , A2 =


0 0 −2 2 0
0 2 1 0 2
−2 1 −2 0 1
2 0 0 0 0
0 2 1 0 2

 ,

A3 =


2 2 −1 −1 1
2 0 2 1 1
−1 2 0 1 0
−1 1 1 −2 0
1 1 0 0 −2

 , C =


3 3 −3 1 1
3 5 3 1 2
−3 3 −1 1 2
1 1 1 −3 −1
1 2 2 −1 −1

 , b =

 −2
2
−2

 .
The optimal solution of the primal problem is given by

X∗ =


0.0714 −0.0718 0.0169 0.0649 −0.1583
−0.0718 0.0724 −0.0183 −0.0602 0.1676
0.0169 −0.0183 0.0103 −0.0084 −0.0772
0.0649 −0.0602 −0.0084 0.1481 0.0056
−0.1583 0.1676 −0.0772 0.0056 0.6022

 ,

and for the dual problem an optimal solution is given by

S∗ =


1.4338 0.5754 −0.0295 −0.4043 0.2169
0.5754 1.0956 0.3401 0.2169 −0.1120
−0.0295 0.3401 1.1874 0.2169 0.0478
−0.4043 0.2169 0.2169 0.2831 −0.1415
0.2169 −0.1120 0.0478 −0.1415 0.0957

 ,

y∗ =

 0.8585
1.0937
0.7831

 .
the optimal value of both problem is equal to −1.0957.

Starting by the strictly feasible primal and dual solution X = E, S = E and y = (1, 1, 1), we apply algorithm 1 on
the above mentioned SDO problem with the proposed kernel function ψ(t) and the kernel functions listed in Table 1

Table 1: Considered kernel functions

ψ1(t)=
t2−1
2 − log(t) [14]

ψ2(t)=
t2−1
2 − (t− 1)e

1
t−1 [20]

ψ3(t) =
t2−1
2 +

1
t−1

2 − t−1
2 [12]

ψ4(t) =
t2−1
2 + q

1
t
−1−1

q log q − q−1
q (t− 1), q > 1 [1]

ψ5(t) = t− 1 + t1−q−1
q−1 , q > 1 [2]

.

The threshold parameter τ = 3, and the accuracy parameter ϵ = 10−8 in all experiments. We compute at each
inner iteration a practical step size αmax such that X + αmax ∆X > 0 and S + αmax ∆S > 0 with αmax = ρ min
(α

X
, αS) and ρ ∈ (0, 1), where

α
X
=

{
− 1

λmin(X−1∆X) if λmin(X
−1∆X) < 0

1 if λmin(X
−1∆X) ≥ 0

,
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and

αS =

{
− 1

λmin(S−1∆S) if λmin(S
−1∆S) < 0

1 if λmin(S
−1∆S) ≥ 0

.

The number of iterations and the time produced by Algorithm 1 are denoted by ‘It’ and ‘T ’, respectively. The
results of applying Algorithm 1 on our kernel function with (q = 2) and different values of θ and different values of
the step size α are given in Table 2.

Table 2: Numerical results of ψ

α \ θ
0.1

It T
0.3

It T
0.5

It T
0.7

It T
0.3
0.7
0.9
αmax

79 0.5612
28 0.4453
19 0.4513
15 0.3077

74 0.3862
25 0.2849
17 0.3161
15 0.1651

71 0.3292
26 0.1925
16 0.1640
15 0.1749

68 0.3157
23 0.0998
16 0.1925
16 0.1455

0.9
It T
60 0.4755
19 0.2442
12 0.0618
15 0.0710

It is clear from Table 2, that the performance of our kernel function with the practical step size αmax is well
promising in solving SDO problems. It provides less number of iterations and reduced calculation time.

To illustrate the numerical behavior of the proposed function against some other kernel functions in the literature,
we have implemented Algorithm 1 with these kernel functions and we have resumed the results in Table 3.

Table 3: Numerical results of ψi(t) (1 ≤ i ≤ 5) and ψ(t)

θ
0.1

It T
0.3

It T
0.5

It T
0.7

It T
ψ1(t)
ψ2(t)
ψ3(t)
ψ4(t)
ψ5(t)
ψ(t)

15 0.4000
15 0.3771
15 0.4007
15 0.3243
15 0.2738
15 0.3077

15 0.2689
15 0.1182
15 0.1908
15 0.2939
15 0.4743
15 0.1651

15 0.1479
15 0.2279
15 0.2875
15 0.1970
15 0.4191
15 0.1749

16 0.1340
16 0.1187
16 0.1412
16 0.2637
16 1.1946
16 0.1455

0.9
It T
15 0.2429
15 0.2024
16 0.1330
16 0.2079
16 0.1319
15 0.0710

7 Conclusion

In this paper, we have defined a new primal-dual path-following interior-point algorithm for solving the semidefinite
optimization problem with full NT-symmetrization scheme and derived the currently best know iteration bound for
the algorithm with large-and small-update methods, namely,

O
(
qn

q+1
2q log

n

ϵ

)
, and O(q2

√
n log

n

ϵ
), where q > 1 is a parameter.

The analysis in this paper is new and different from the one using for LO. Several new tools and techniques are
derived in this paper. Numerical results shows that the proposed kernel function is well promising and outperforms
some existing kernel functions in the literature.

Some interesting topics remain for further research. Firstly, find new kernel functions and insist on their analytical
behavior in order to reduce the number of iterations. Secondly, the search directions used in this paper are all based on
the NT-symmetrization scheme. It may be possible to design similar algorithms using other symmetrization schemes
and to obtain polynomial time iteration bounds. Finally we would like to point out that our result can also be extended
in other direction. For instance, the local convergence properties of these algorithms deserves to be investigated. It is
also worthwhile to build similar algorithms for convex quadratic, linear complementarity problems and general convex
optimization problems
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