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Abstract

Let R be the set of real numbers and
(
Y, ∥ · ∥

)
be a real quasi-β-Banach space. In this paper, we prove the Hyers-Ulam

stability on a restricted domain in quasi-β-spaces for the following two radical functional equations

f
(√

x2 + y2
)
= f(x) + f(y)

and
f
(√

x2 + y2
)
= g(x) + f(y)

where f, g : R → Y . Also, we discuss an asymptotic behavior for these equations.
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1 Introduction

When defining, in some way, a class of approximate solutions of a given functional equation, one can ask if each
mapping from this class can be approximated in some way by an exact solution of the considered equation. Specifically,
when a functional equation is replaced with an inequality that serves as a perturbation of the considered equation. S.
M. Ulam proposed the first functional equation stability problem in 1940 [23].

Ulam’s problem:

Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group with a metric d(., .). Given ε > 0, does there exists a
δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d
(
h(x ∗1 y), h(x) ∗2 h(y)

)
< ε

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d
(
h(x), H(x)

)
< δ
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for all x ∈ G1?

We say that the homomorphism equation h(x ∗1 y) = h(x) ∗2 h(y) is stable if the answer is affirmative. Many
researchers have interested in this issue since then. In 1941, D. H. Hyers [9] offered a first partial response to Ulam’s
problem, presenting the stability result as follows:

Theorem 1.1. [9] Let E1 and E2 be two Banach spaces and f : E1 → E2 be a function such that

∥f(x+ y)− f(x)− f(y)∥ ≤ δ

for some δ > 0 and for all x, y ∈ E1. Then the limit

A(x) := lim
n→∞

2−nf(2nx)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive function such that

∥f(x)−A(x)∥ ≤ δ

for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then the function A is linear.

T. Aoki [1] and D. G. Bourgin [2] investigated the stability problem with unbounded Cauchy variations. Th. M.
Rassias [16] used a direct method to prove a generalization of Theorem 1.1 by weakening the condition for the bound
of the norm of Cauchy difference.

Theorem 1.2. [16] Let E1 and E2 be two Banach spaces. If f : E1 → E2 satisfies the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ
(
∥x∥p + ∥y∥p

)
for some θ ≥ 0, for some p ∈ R with 0 ≤ p < 1, and for all x, y ∈ E1, then there exists a unique additive function
A : E1 → E2 such that

∥f(x)−A(x)∥ ≤ 2θ

2− 2p
∥x∥p

for each x ∈ E1. If, in addition, f(tx) is continuous in t for each fixed x ∈ E1, then the function A is linear.

Theorem 1.2 was then modified and improved by Th. M. Rassias [17],[18] as follows:

Theorem 1.3. [17],[18] Let E1 be a normed space, E2 be a Banach space, and f : E1 → E2 be a function. If f satisfies
the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ θ
(
∥x∥p + ∥y∥p

)
(1.1)

for some θ ≥ 0, for some p ∈ R with p ̸= 1, and for all x, y ∈ E1 − {0E1
}, then there exists a unique additive function

A : E1 → E2 such that

∥f(x)−A(x)∥ ≤ 2θ

|2− 2p|
∥x∥p (1.2)

for each x ∈ E1 − {0E1}.

When p = 0, Theorem 1.3 is reduced to Theorem 1.1. The equivalent result is not valid for p = 1. A number
of authors have studied the stability problems of many functional equations in-depth, and there are many interesting
findings to be found (see, for instance, [5, 10, 19, 20] and references therein).

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1.3)

is referred to as a quadratic functional equation. A quadratic mapping is defined as a solution of the quadratic functional
equation. In 1983, F. Skof [21] proved a generalized Hyers-Ulam stability problem for the quadratic functional equation
for mappings f : E → F , where E is a normed space and F is a Banach space.

P. W. Cholewa [3] proved that the Skof’s result is still true if the relevant domain E is replaced by an abelian
group. There are various interesting results which deal with the stability of functional equations in restricted domains
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[4, 5, 11, 13, 14, 15]. In 2004, J. Tabor [22] presented and proved a version of the Hyers-Rassias-Gajda stability in
quasi-Banach spaces.

In this paper, we discuss the Hyers-Ulam stability on restricted domain in quasi-β-normed spaces for the following
two equations of these equations.

f
(√

x2 + y2
)
= f(x) + f(y) (1.4)

and
f
(√

x2 + y2
)
= g(x) + f(y) (1.5)

where f, g : R → Y are functions such that Y is a quasi-β-Banach space, also we obtain an asymptotic behavior for
them. Some basic facts about quasi-β-normed spaces must be remembered.

Definition 1.4. Let β be a fixed real number with 0 < β ≤ 1, and K be either R or C. Let X be a linear space over
K. A quasi-β-norm ∥ · ∥ is a real-valued function on X satisfying the following:

1. ∥x∥ ≥ 0 for all x ∈ X and ∥x∥ = 0 if and only if x = 0,

2. ∥λx∥ = |λβ | · ∥x∥, for all x ∈ X and λ ∈ K,

3. There is a constant K ≥ 1 such that ∥x+ y∥ ≤ K(∥x∥+ ∥y∥), for all x, y ∈ X.

The pair (X, ∥ · ∥) is called a quasi-β-normed space if ∥ · ∥ is a quasi-β-norm on X. The smallest possible K is
called the module of concavity of ∥ · ∥. A quasi-β-Banach space is a complete quasi-β-normed space.

2 Stability results for Eq. (1.4)

Let
(
Y, ∥ · ∥

)
be a quasi-β-Banach space. In 2012, Kim et al. [12] gave the Hyers-Ulam stability for Eq. (1.4) in

quasi-β-normed spaces as follows:

Theorem 2.1. [12] Let ε ≥ 0. If a function f : R → Y such that f(0) = 0 and satisfies the following inequality

∥f(
√

x2 + y2)− f(x)− f(y)∥ ≤ ε

for all x, y ∈ R, then there exists a unique quadratic function F : R → Y satisfying Eq. (1.4) and the following
inequality

∥f(x)− F (x)∥ ≤ 2Kε

2β −K
, K < 2β

for all x ∈ R.

In the following theorem, we present an investigation of the Hyers-Ulam stability for Eq. (1.4) on restricted domain
in quasi-β-normed spaces.

Theorem 2.2. Let d > 0 and ε ≥ 0 be fixed. If a mapping f : R → Y , such that f(0) = 0, satisfies the following
functional inequality ∥∥∥f (√

x2 + y2
)
− f(x)− f(y)

∥∥∥ ≤ ε (2.1)

for all (x, y) ∈ R2 with |x|+ |y| ≥ d, then there exists a unique solution F : R → Y of Eq. (1.4) satisfying the following
inequality

∥f(x)− F (x)∥ ≤ 2K2(2K + 1) ε

2β −K
, K < 2β , (2.2)

for all x ∈ R.

Proof . We consider the difference operator Df : R2 → Y defined as:

Df (x, y) := f
(√

x2 + y2
)
− f(x)− f(y), x, y ∈ R.
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We observe that

Df (x, y) =f
(√

x2 + y2
)
+ f(t)− f

(√
x2 + y2 + t2

)
+ f

(√
x2 + y2 + t2

)
− f

(√
x2 + t2

)
− f(y)

+ f
(√

x2 + t2
)
− f(t)− f(x)

= −Df

(√
x2 + y2, t

)
+Df

(√
x2 + t2, y

)
+Df (x, t),

for all x, y, t ∈ R. Assume that |x|+ |y| < d and let t ∈ R such that |t| = d. Therefore, we note√
x2 + y2 + |t| ≥ d,√
x2 + t2 + |y| ≥ d

and
|x|+ |t| ≥ d.

Using the definition of Df , we obtain

∥Df

(√
x2 + y2, t

)
∥ ≤ ε, ∥Df (

√
x2 + t2, y)∥ ≤ ε, ∥Df (x, t)∥ ≤ ε,

for all x, y ∈ R. Thus, using the triangle inequality, we get∥∥Df (x, y)
∥∥ ≤ K(2K + 1) ε (2.3)

for all x, y ∈ R. According to Theorem 2.1, there exists a unique solution F : R → Y of Eq. (1.4) and the following
inequality

∥f(x)− F (x)∥ ≤ 2K2(2K + 1) ε

2β −K
, K < 2β , (2.4)

for all x ∈ R. □
In view of Theorem 2.2, we get the following corollary.

Corollary 2.3. Suppose that f : R → Y such that f(0) = 0 and satisfying the equation

f
(√

x2 + y2
)
− f(x)− f(y) = 0 (2.5)

for all (x, y) ∈ R2 with |x|+ |y| ≥ d. Then, the equation (2.5) holds for all x, y ∈ R.

Let us define a set B as B :=
{
(x, y) ∈ R2 : |x| < d and |y| < d

}
for some d > 0. In view of the fact that{

(x, y) ∈ R2 : |x|+ |y| ≥ 2d
}
⊂ R2 −B,

we deduce that the following corollary is a direct consequence of Theorem 2.2.

Corollary 2.4. Assume that a mapping f : R → Y with f(0) = 0 satisfies the inequality (2.1) for all (x, y) ∈ R2 −B
and some ε ≥ 0. Then there exists a unique solution F : R → Y of Eq. (1.4) that satisfies the inequality (2.2).

In the following corollary, we give the asymptotic behavior of Eq. (1.4).

Corollary 2.5. Suppose that f : R → Y with f(0) = 0 satisfies the condition∥∥f(√x2 + y2
)
− f(x)− f(y)

∥∥ → 0, as |x|+ |y| → ∞. (2.6)

Then f is a solution of Eq. (1.4).
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Proof . Due to the asymptotic condition (2.6), there exists a strictly positive sequence
{
εn

}
n∈N monotonically

decreasing to 0 such that ∥∥f(√x2 + y2
)
− f(x)− f(y)

∥∥ ≤ εn, (2.7)

for all x, y ∈ R with |x| + |y| > n. Hence, it follows from (2.7) and Theorem 2.2 that there exists a unique solution
Fn : R → Y of Eq. (1.4) such that ∥∥f(x)− Fn(x)

∥∥ ≤ 2K2(2K + 1) εn
2β −K

, K < 2β , (2.8)

for all x ∈ R. Let l,m ∈ N such that m ≥ l. Since
{
εn

}
n∈N is a monotonically decreasing to 0 and in view of (2.8), we

obtain ∥∥f(x)− Fm(x)
∥∥ ≤ 2K2(2K + 1) εm

2β −K

≤ 2K2(2K + 1)εl
2β −K

, K < 2β ,

for all x ∈ R. Then the uniqueness of Fn implies that Fm = Fl. Hence, letting n → ∞ in (2.8), we deduce that f = Fm

which satisfies Eq. (1.4). □

3 Stability results for Eq. (1.5)

In this section, we give the Hyers-Ulam stability for the functional equation (1.5) on restricted domain in quasi-β-
normed spaces.

Theorem 3.1. Let ε ≥ 0. If the functions f, g : R → Y , with f(0) = 0, satisfy the following inequality∥∥f(√x2 + y2
)
− g(x)− f(y)

∥∥ ≤ ε, (3.1)

for all x, y ∈ R, then there exists a unique solution F : R → Y of Eq. (1.4) such that satisfies the following two
inequalities ∥∥f(x)− F (x)

∥∥ ≤ 2K2(2K2 +K + 1) ε

2β −K
, K < 2β

and ∥∥g(x)− F (x)
∥∥ ≤ 2K3(2K2 +K + 1)ε

2β −K
+ 2K2(K + 1) ε, K < 2β

for all x ∈ R.

Proof . Letting x = y = 0 in (3.1), we get ∥∥g(0)∥∥ ≤ ε. (3.2)

Setting x = 0 and y = x in (3.1), we have∥∥f(|x|)− g(0)− f(x)
∥∥ ≤ ε, x ∈ R. (3.3)

Putting y = 0 in (3.1), we obtain ∥∥f(|x|)− g(x)
∥∥ ≤ ε, x ∈ R. (3.4)

So, it follows from (3.1), (3.2), (3.3) and (3.4) that∥∥f(√x2 + y2
)
− f(x)− f(y)

∥∥ ≤ K(2K2 +K + 1) ε, x, y ∈ R. (3.5)

According to Theorem 2.1, there exists a unique solution F : R → Y of Eq. (1.4) such that satisfies the following
inequality ∥∥f(x)− F (x)

∥∥ ≤ 2K2(2K2 +K + 1) ε

2β −K
, K < 2β

for all x ∈ R. Thus, from the last inequality and in view of (3.2), (3.3) and (3.4), we conclude that

∥∥g(x)− F (x)
∥∥ ≤ 2K3(2K2 +K + 1)ε

2β −K
+ 2K2(K + 1) ε, K < 2β ,

for all x ∈ R. □
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Theorem 3.2. Let d > 0 and ε ≥ 0 be fixed. If the functions f, g : R → Y such that f(0) = 0 satisfy the functional
inequality ∥∥f(√x2 + y2

)
− g(x)− f(y)

∥∥ ≤ ε (3.6)

for all (x, y) ∈ R2 with |x| + |y| ≥ d. Then there exists a unique solution F : R → Y of Eq. (1.5) and satisfies the
following inequalities ∥∥f(x)− F (x)

∥∥ ≤ 4K3(K + 1)(2K2 +K + 1) ε

2β −K
, K < 2β

and ∥∥g(x)− F (x)
∥∥ ≤ 4K4(K + 1)(2K2 +K + 1) ε

2β −K
+ 4K3(K + 1)2 ε, K < 2β

for all x ∈ R.

Proof . Let us consider the difference operator C : R2 → Y defined as:

C(x, y) = f
(√

x2 + y2
)
− g(x)− f(y),

for all x, y ∈ R. Notice that

C(x, y) =f
(√

x2 + y2
)
+ g(t)− f

(√
x2 + y2 + t2

)
+ f

(√
x2 + y2 + t2

)
− f

(√
y2 + t2

)
− g(x)

+ f
(√

y2 + t2
)
− g(t)− f(y)

=− C
(√

x2 + y2, t
)
+ C

(√
y2 + t2, x

)
+ C(y, t),

for all x, y ∈ R. Assume that |x|+ |y| < d and let t ∈ R such that |t| = d. So,√
x2 + y2 + |t| ≥ d,√
y2 + t2 + |x| ≥ d

and
|y|+ |t| ≥ d

for all x, y, t ∈ R. This implies that∥∥C(√
x2 + y2, t

)∥∥ ≤ ε,
∥∥C(√

y2 + t2, x
)∥∥ ≤ ε,

∥∥C(y, t)
∥∥ ≤ ε.

for all x, y, t ∈ R. Using the triangle inequality, we get∥∥C(x, y)
∥∥ ≤ 2K(K + 1)ε (3.7)

for all x, y ∈ R. Now, according to Theorem 3.1, there exists a unique solution F : R → Y of Eq. (1.5) such that
satisfies the following inequalities

∥∥f(x)− F (x)
∥∥ ≤ 4K3(K + 1)(2K2 +K + 1) ε

2β −K
, K < 2β

and ∥∥g(x)− F (x)
∥∥ ≤ 4K4(K + 1)(2K2 +K + 1)ε

2β −K
+ 4K3(K + 1)2ε, K < 2β

for all x ∈ R. □

Corollary 3.3. Suppose that f, g : R → Y be two functions, with f(0) = 0, satisfy the equation

f
(√

x2 + y2
)
− g(x)− f(y) = 0 (3.8)

for all (x, y) ∈ R2 with |x|+ |y| ≥ d. Then, the functional equation (3.8) holds for all x, y ∈ R.
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Let us define the set B as
B :=

{
(x, y) ∈ R2 : |x| < d and |y| < d

}
for some d > 0. Indeed, we have

{
(x, y) ∈ R2 : |x|+ |y| ≥ 2d

}
⊂ R2 −B.

Then, we present the following corollary as a direct consequence of Theorem 3.2.

Corollary 3.4. Assume that a mapping f : R → Y such that f(0) = 0 and satisfies the inequality (3.6) for all
(x, y) ∈ R2 − B and some ε ≥ 0. Then there exists a unique solution F : R → Y of Eq. (1.5) that satisfies the
inequality (2.2).

By similar method of the proof of Corollary 2.5, we can prove the following corollary.

Corollary 3.5. Suppose that f, g : R → Y be two functions, with f(0) = 0, satisfy the condition∥∥f(√x2 + y2
)
− g(x)− f(y)

∥∥ → 0, as |x|+ |y| → ∞. (3.9)

Then f, g satisfy the functional equation (1.5).

Proof . From the condition (3.9), we get that there exists a strictly positive sequence
{
εn

}
n∈N monotonically

decreasing to 0 such that ∥∥f(√x2 + y2
)
− g(x)− f(y)

∥∥ ≤ εn (3.10)

for all x, y ∈ R with |x| + |y| > n. Hence, it follows from (3.10) and Theorem 3.2 that there exists a unique solution
Fn : R → Y of Eq. (1.5) such that

∥∥f(x)− Fn(x)
∥∥ ≤ 4K3(K + 1)(2K2 +K + 1) εn

2β −K
, K < 2β (3.11)

and ∥∥g(x)− Fn(x)
∥∥ ≤ 4K4(K + 1)(2K2 +K + 1) εn

2β −K
+ 4K3(K + 1)2 εn, K < 2β (3.12)

for all x ∈ R. Let l,m ∈ N such that m ≥ l. Since
{
εn

}
n∈N is a monotonically decreasing to 0 and in view of (3.11)

and (3.12), we get

∥∥f(x)− Fm(x)
∥∥ ≤ 4K3(K + 1)(2K2 +K + 1) εm

2β −K

≤ 4K3(K + 1)(2K2 +K + 1) εl
2β −K

, K < 2β

and ∥∥g(x)− Fm(x)
∥∥ ≤ 4K4(K + 1)(2K2 +K + 1) εm

2β −K
+ 4K3(K + 1)2 εm

≤ 4K4(K + 1)(2K2 +K + 1) εl
2β −K

+ 4K3(K + 1)2 εl, K < 2β .

Then the uniqueness of Fn implies that Fm = Fl. Hence, letting n → ∞ in (3.11) and (3.12), we deduce that
f = g = Fm which satisfies Eq. (1.5). □
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