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Abstract

In this paper, we will consider one numerical solution to solve the nonlinear Gardner equation. The quartic B-spline
(QBS) collocation method will be used to determine the unknown term in this equation. In this regard, we apply the
quasilinearization technique to linearize the nonlinear terms of the equation and then, combine the QBS collocation
method in space with the finite difference in time. This operation provides an efficient explicit solution with high
accuracy and minimal computational effort for this problem. It is further proved that the proposed method has the
order of convergence O(k + h2). Also, the method is shown to be unconditionally stable using the Von-Neumann
method. Finally, the efficiency and robustness of the proposed approach for solving the nonlinear Gardner equation
are demonstrated by one numerical example. These numerical computations will be compared to radial basis functions
(RBFs).
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1 Introduction

The nonlinear partial differential equations arise in a wide variety of physical problems such as fluid dynamics,
plasma physics, solid mechanics, and quantum field theory [1, 6, 18, 29]. Real physical systems show nonlinear and
disordered behaviors. Mathematical solutions of the differential equations for these systems are sometimes impossible
to manage and some special methods needed to be applied to reach the analytic solutions. One of these types of
equations is called the Gardner equation or the combined KdV-mKdV equation, given by [26]

ut + 2αuux − 3βu2ux + uxxx = 0, α, β > 0, β > α, (1.1)

where α and β are arbitrary constants, and u(x, t) is the amplitude of the relevant wave mode. Equation (1.1) is
completely integrable, like the KdV equation, by the inverse scattering method and is studied in [9, 26] where new
kinds of solutions were obtained. The Gardner equation has been investigated in the literature because it is used to
model a variety of nonlinear phenomena. This equation is widely used in various branches of physics, such as plasma
physics, fluid physics, quantum field theory, hydrodynamics, and theoretical physics [3, 9, 10, 14, 27, 28]. It also
describes a variety of wave phenomena in plasma and solid-state [13, 26]. Various methods for studying integrability
properties and exact solutions of the Gardner equation have been reported [15, 17, 26].

∗Corresponding author
Email addresses: n.azizi@std.du.ac.ir (Naser Azizi), pourgholi@du.ac.ir (Reza Pourgholi)

Received: April 2022 Accepted: July 2022

http://dx.doi.org/10.22075/ijnaa.2022.26826.3419


102 N. Azizi, R. Pourgholi

The theory of B-spline functions has possessed attention in the literature for the numerical solution of linear and
nonlinear boundary value problems in science and engineering. The numerical solution of some partial differential
equations can be obtained using B-spline functions of different degrees, [2, 4, 7, 8, 16, 21, 24, 25].

Our main goal in this paper is to solve the Gardner equation using the QBS method. For this purpose, assuming
Ωx = (0, 1) and Ωt = (0, tfin). We have considered the equation (1.1) in the dimensionless form

ut + 2αuux − 3βu2ux + uxxx = 0, α, β > 0, (1.2)

with the initial condition

u(x, 0) = f(x), x ∈ Ω̄x, (1.3)

and the boundary conditions

u(0, t) = p(t), u(1, t) = q(t), ux(0, t) = h(t), t ∈ Ω̄t, (1.4)

where f(x), p(t), q(t), and h(t) are piecewise known continuous functions, and tfin represents the final existence time
for the time evolution of the problem.

The current study aims to clarify the accuracy issues of the quartic B-splines, for solving the Gardner equation
(1.2)–(1.4), which can be one of the advantages of our method.

The paper is arranged in the following manner: In the next section, the primary results of the quartic B-splines are
presented. In Section 3, the QBS method is detailed for solving the Gardner equation (1.2)–(1.4). The convergence
analysis of this method is discussed in Section 4. In Section 5, stability of the method is discussed. A numerical
example is reported of the efficiency of the proposed method computationally in Section 6. Finally, the conclusion is
made in Section 7.

2 Primary results of QBS

We divide the solution domain Ω̄x in to N -subintervals by the set of N +1 nodal points xi, 0 ≤ i ≤ N . This gives
a partition Π : 0 = x0 < x1 < · · · < xN−1 < xN = 1 of Ω̄x, where h = xi − xi−1, for each 1 ≤ i ≤ N . We define the
quartic B-spline Bi(x) for i = −2, 0, . . . , N + 1 by the following relation

Bi(x) =
1

h4



(x− xi−2)
4, x ∈ [xi−2, xi−1),

(x− xi−2)
4 − 5(x− xi−1)

4, x ∈ [xi−1, xi),

(x− xi−2)
4 − 5(x− xi−1)

4 + 10(x− xi)
4, x ∈ [xi, xi+1),

(xi+3 − x)4 − 5(xi+2 − x)4, x ∈ [xi+1, xi+2),

(xi+3 − x)4, x ∈ [xi+2, xi+3],

0, otherwise.

(2.1)

It can be easily seen that the functions in {B−2, B−1, B0, . . . , BN , BN+1} are linearly independent on Ω̄x. If we
consider B(Π) := span{B−2, B−1, B0, . . . , BN , BN+1} ⊆ C2(Ω̄x), then B(Π) is a finite-dimensional linear subspace of
C2(Ω̄x) of dimension N + 4. The values of Bm(x) and its derivatives at the nodal points xm are given by

Bi(xm) =



1, if i = m− 2,

11, if i = m− 1,

11, if i = m,

1, if i = m+ 1,

0, otherwise,

B′
i(xm) =



− 4
h , if i = m− 2,

− 12
h , if i = m− 1,

12
h , if i = m,

4
h , if i = m+ 1,

0, otherwise,

B′′
i (xm) =



12
h2 , if i = m− 2,

− 12
h2 , if i = m− 1,

− 12
h2 , if i = m,

12
h2 , if i = m+ 1,

0, otherwise,

B′′′
i (xm) =



− 24
h3 , if i = m− 2,

72
h3 , if i = m− 1,

− 72
h3 , if i = m,

24
h3 , if i = m+ 1,

0, otherwise,

(2.2)
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3 Description of the proposed numerical method

In this section, we present our method based on the QBS functions for solving the equation (1.2).
A numerical solution of (1.2) will be derived by using the collocation method based on quartic B-splines. Therefore,
an approximation solution U(x, t) to the analytical solution u(x, t) will be desired in the form of an expansion of
B-splines,

u(x, t) ≃ U(x, t) =

N+1∑
i=−2

ci(t)Bi(x) ∈ B(Π), (3.1)

where Bis are the quartic B-splines and cis are unknown time-dependent quantities to be determined. It is required
that approximate solutions (3.1), satisfies equation (1.2)–(1.4) at the uniform mesh (xm, tn) to discretize the region
Ω̄x × Ω̄t, where xm = mh and tn = nk for 0 ≤ m ≤ N and 1 ≤ n ≤ M . Also, h and k are space and time steps,
respectively.

By using the approximation (3.1) and the quartic B-splines and its derivatives in (2.2), the nodal value U and it’s
first, second, and third derivatives respect to variable x, at the nodes (xm, tn) are obtained as

u(xm, tn) ≃ U(xm, tn) = cnm−2 + 11cnm−1 + 11cnm + cnm+1,

ux(xm, tn) ≃ Ux(xm, tn) = − 4

h

(
cnm−2 + 3cnm−1 − 3cnm − cnm+1

)
,

uxx(xm, tn) ≃ Uxx(xm, tn) =
12

h2

(
cnm−2 − cnm−1 − cnm + cnm+1

)
,

uxxx(xm, tn) ≃ Uxxx(xm, tn) = −24

h3

(
cnm−2 − 3cnm−1 + 3cnm − cnm+1

)
.

(3.2)

For solving the equation (1.2), by using the QBS functions, at first, the time derivative is discretized in a forward
finite difference approximation

ut(xm, tn) =
u(xm, tn+1)− u(xm, tn)

k
. (3.3)

On the other, to linearized the nonlinear terms uux and u2ux in equation (1.2), we use the quasilinearization technique
[5], as follows

u(x, t)ux(x, t) = ux(x, tn)u(x, tn+1) + u(x, tn)ux(x, tn+1)− u(x, tn)ux(x, tn),

u2(x, t)ux(x, t) = 2u(x, tn)ux(x, tn)u(x, tn+1)− 2u2(x, tn)ux(x, tn) + u2(x, tn)ux(x, tn+1).
(3.4)

So, by using (3.3) and (3.4), the nonlinear equation (1.2) can be rewritten as

Γ1(xm, tn)u(xm, tn+1) + Γ2(xm, tn)ux(xm, tn+1) = Γ(xm, tn), (3.5)

where,

Γ1(xm, tn) = 1− 6βku(xm, tn)ux(xm, tn) + 2αkux(xm, tn),

Γ2(xm, tn) = 2αku(xm, tn)− 3βku2(xm, tn),

Γ(xm, tn) =k
(
2αu(xm, tn)ux(xm, tn)− 6βu2(xm, tn)ux(xm, tn)− uxxx(xm, tn)

)
+ u(xm, tn).

Now, substituting the approximate solution U for u and using equations (3.2) in (3.5), yields the following difference
equation with the variables c

Γ1(xm, tn)
(
cn+1
m−2 + 11cn+1

m−1 + 11cn+1
m + cn+1

m+1

)
−

( 4

h

)
Γ2(xm, tn)

(
cn+1
m−2 + 3cn+1

m−1 − 3cn+1
m − cn+1

m+1

)
= Γ(xm, tn), (3.6)

where,

Γ1(xm, tn) = 1 +
24

h
βk
(
cnm−2 + 11cnm−1 + 11cnm + cnm+1

)(
cnm−2 + 3cnm−1 − 3cnm − cnm+1

)
− 8

h
αk
(
cnm−2 + 3cnm−1 − 3cnm − cnm+1

)
,

Γ2(xm, tn) = 2αk
(
cnm−2 + 11cnm−1 + 11cnm + cnm+1

)
− 3βk

(
cnm−2 + 11cnm−1 + 11cnm + cnm+1

)2
,
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and

Γ(xm, tn) = k

[
− 8

h
α
(
cnm−2 + 11cnm−1 + 11cnm + cnm+1

)(
cnm−2 + 3cnm−1 − 3cnm − cnm+1

)
+

24

h
β
(
cnm−2 + 11cnm−1 + 11cnm + cnm+1

)2(
cnm−2 + 3cnm−1 − 3cnm − cnm+1

)
+

24

h3

(
cnm−2 − 3cnm−1 + 3cnm − cnm+1

)]
+
(
cnm−2 + 11cnm−1 + 11cnm + cnm+1

)
.

The system (3.6), consists of the (N + 1) equations in the (N + 4) unknown parameters. So, we still need three
equations. To this end, we develop the boundary conditions, as follows

u(x0 = 0, tn+1) ≃ U(x0, tn+1) = cn+1
−2 + 11cn+1

−1 + 11cn+1
0 + cn+1

1 = p(tn+1),

u(xN = 1, tn+1) ≃ U(xN , tn+1) = cn+1
N−2 + 11cn+1

N−1 + 11cn+1
N + cn+1

N+1 = q(tn+1),

ux(x0 = 0, tn+1) ≃ Ux(x0, tn+1) = − 4

h

(
cn+1
−2 + 3cn+1

−1 − 3cn+1
0 − cn+1

1

)
= h(tn+1).

Therefore, the system (3.6) is changed to a system of (N + 4) linear equations in (N + 4) unknowns parameters,
given by

AXn+1 − BXn+1 = F , (3.7)

where,

A =



1 11 11 1 0 0 · · · · · · · · · 0

− 4

h
−12

h

12

h

4

h
0 0 · · · · · · · · · 0

Γ1(x0, tn) 11Γ1(x0, tn) 11Γ1(x0, tn) Γ1(x0, tn) 0 0 · · · · · · · · · 0

0 Γ1(x1, tn) 11Γ1(x1, tn) 11Γ1(x1, tn) Γ1(x1, tn) 0 · · · · · · · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · · · · · · · 0 Γ1(xN , tn) 11Γ1(xN , tn) 11Γ1(xN , tn) Γ1(xN , tn)

0 0 · · · · · · · · · 0 1 11 11 1



,

B =



0 0 0 0 0 0 · · · · · · · · · 0

0 0 0 0 0 0 · · · · · · · · · 0

4

h
Γ2(x0, tn)

12

h
Γ2(x0, tn) −12

h
Γ2(x0, tn) − 4

h
Γ2(x0, tn) 0 0 · · · · · · · · · 0

0
4

h
Γ2(x1, tn)

12

h
Γ2(x1, tn) −12

h
Γ2(x1, tn) − 4

h
Γ2(x1, tn) 0 · · · · · · · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · · · · · · · 0
4

h
Γ2(xN , tn)

12

h
Γ2(xN , tn) −12

h
Γ2(xN , tn) − 4

h
Γ2(xN , tn)

0 0 · · · · · · · · · 0 0 0 0 0



,
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F =



p(tn+1)

h(tn+1)

Γ(x0, tn)

Γ(x1, tn)

...

Γ(xN , tn)

q(tn+1)



, Xn+1 =



cn+1
−2

cn+1
−1

cn+1
0

cn+1
1

...

cn+1
N

cn+1
N+1



.

Equation (3.7) is a linear system, which can be easily and efficiently solved. To solve this system, we need the

initial vector X0 =
(
c0−2 c0−1 c00 c01 · · · c0N c0N+1

)T
, which can be obtained from the procedure of Subsection

3.1.

3.1 The initial vector X0

We can determine the initial vector X0 by using the initial and boundary conditions (1.3) and (1.4), as the following
expression

u(xm, t0) ≃ U(xm, t0) = c0m−2 + 11c0m−1 + 11c0m + c0m+1 = f(xm), 0 ≤ m ≤ N,

u(x0 = 0, t0) ≃ U(x0, t0) = c0−2 + 11c0−1 + 11c00 + c01 = p(t0),

u(xN = 1, t0) ≃ U(xN , t0) = c0N−2 + 11c0N−1 + 11c0N + c0N+1 = q(t0),

ux(x0 = 0, t0) ≃ Ux(x0, t0) = − 4

h

(
c0−2 + 3c0−1 − 3c00 − c01

)
= h(t0).

This system is the form
AX0 = B, (3.8)

where

A =



1 11 11 1 0 0 · · · · · · · · · 0
− 4

h − 12
h

12
h

4
h 0 0 · · · · · · · · · 0

1 11 11 1 0 0 · · · · · · · · · 0
0 1 11 11 1 0 · · · · · · · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 · · · · · · · · · 0 1 11 11 1
0 0 · · · · · · · · · 0 1 11 11 1


, B =



p(t0)
h(t0)
f(x0)
f(x1)

...

...
f(xN )
q(t0)


.

From equation (3.8), the initial vector X0 can be successively calculated.

4 Convergence analysis

In this section, we analyze the convergence of our proposed scheme. First, we need to recall a theorem.

Theorem 4.1. [11] Suppose that u(x) ∈ C5(Ω̄x) and for all x ∈ Ω̄x, |u(5)(x)| ≤ L. Also, assume that

Π : 0 = x0 < x1 < · · · < xN−1 < xN = 1,

be the partition of Ω̄x with step size h. If SΠ(x) be the unique spline function interpolate u(x) at nodes x0, . . . , xN ∈ Π,
then, there exist constants λj ≤ 2 such that∥∥∥u(j) − S(j)

Π

∥∥∥
∞

≤ λjLh5−j , j = 0, 1, 2, 3, 4. (4.1)
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Now, we state and prove the following convergence theorem.

Theorem 4.2. The collocation approximation U(x, t) from the space B(Π) for the solution u(x, t) of the problem
(1.2)-(1.4) satisfy the following error estimate ∥∥∥u− U

∥∥∥
∞

≤ γh2,

for sufficiently small h (i.e. for sufficiently large N) where γ is a positive constant.

Proof . Let u(x, t) be the exact solution of the problem (1.2)-(1.4). Also, we set

U(x, t) =

N+1∑
i=−2

ci(t)Bi(x),

to be B-spline collocation approximation to u(x, t). Due to round off errors in computations, we assume that Ũ(x, t)
be the computed spline for U(x, t) so that

Ũ(x, t) =

N+1∑
i=−2

c̃i(t)Bi(x).

To estimate the error ∥u−U∥∞, it is needed to estimate the errors ∥u− Ũ∥∞ and ∥Ũ −U∥∞, separately. Following
(3.7) for Ũ we have

AX̃n+1 − BX̃n+1 = F̃ , (4.2)

where

X̃n+1 =
[
c̃n+1
−2 , c̃n+1

−1 , c̃n+1
0 , c̃n+1

1 , . . . , c̃n+1
N , c̃n+1

N+1

]T
,

F̃ =
[
p(tn+1), h(tn+1), Γ̃(x0, tn), Γ̃(x1, tn), . . . , Γ̃(xN , tn), q(tn+1)

]T
.

By subtracting (3.7) and (4.2) we have(
A− B

)(
Xn+1 − X̃n+1

)
=
(
F − F̃

)
. (4.3)

On the other hand

F − F̃ =
[
0, 0,Γ(x0, tn)− Γ̃(x0, tn),Γ(x1, tn)− Γ̃(x1, tn), . . . ,Γ(xN , tn)− Γ̃(xN , tn), 0

]T
, (4.4)

such that for every 0 ≤ m ≤ N ,

Γ(xm, tn) = k

[
ϕ
(
xm, tn, (c

n
m−2 + 11cnm−1 + 11cnm + cnm+1), (−

4

h
)(cnm−2 + 3cnm−1 − 3cnm − cnm+1)

)
+

24

h3

(
cnm−2 − 3cnm−1 + 3cnm − cnm+1

)]
+
(
cnm−2 + 11cnm−1 + 11cnm + cnm+1

)
,

Γ̃(xm, tn) = k

[
ϕ
(
xm, tn, (c̃

n
m−2 + 11c̃nm−1 + 11c̃nm + c̃nm+1), (−

4

h
)(c̃nm−2 + 3c̃nm−1 − 3c̃nm − c̃nm+1)

)
+

24

h3

(
c̃nm−2 − 3c̃nm−1 + 3c̃nm − c̃nm+1

)]
+
(
c̃nm−2 + 11c̃nm−1 + 11c̃nm + c̃nm+1

)
,

where

ϕ
(
xm, tn, (c

n
m−2 + 11cnm−1 + 11cnm + cnm+1), (−

4

h
)(cnm−2 + 3cnm−1 − 3cnm − cnm+1)

)
=

− 8

h
α
(
cnm−2 + 11cnm−1 + 11cnm + cnm+1

)(
cnm−2 + 3cnm−1 − 3cnm − cnm+1

)
+

24

h
β
(
cnm−2 + 11cnm−1 + 11cnm + cnm+1

)2(
cnm−2 + 3cnm−1 − 3cnm − cnm+1

)
,
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and

ϕ
(
xm, tn, (c̃

n
m−2 + 11c̃nm−1 + 11c̃nm + c̃nm+1), (−

4

h
)(c̃nm−2 + 3c̃nm−1 − 3c̃nm − c̃nm+1)

)
=

− 8

h
α
(
c̃nm−2 + 11c̃nm−1 + 11c̃nm + c̃nm+1

)(
c̃nm−2 + 3c̃nm−1 − 3c̃nm − c̃nm+1

)
+

24

h
β
(
c̃nm−2 + 11c̃nm−1 + 11c̃nm + c̃nm+1

)2(
c̃nm−2 + 3c̃nm−1 − 3c̃nm − c̃nm+1

)
.

So,∣∣∣∣∣F(xm)− F̃(xm)

∣∣∣∣∣ =
∣∣∣∣∣k[ϕ(xm, U(xm), U ′(xm))− ϕ(xm, Ũ(xm), Ũ ′(xm))

]
− k[U ′′′(xm)− Ũ ′′′(xm)] + [U(xm)− Ũ(xm)]

∣∣∣∣∣.
By following Theorem 4.1 and [19] (page 218) we obtain∥∥∥∥∥F − F̃

∥∥∥∥∥
∞

≤ kM

(∣∣∣U(xm)− Ũ(xm)
∣∣∣+ ∣∣∣U ′(xm)− Ũ ′(xm)

∣∣∣)+ kλ3Lh2 + λ0Lh5

≤ kMλ0Lh5 + kMλ1Lh4 + kλ3Lh2 + λ0Lh5

= h2
(
kMλ0Lh3 + kMλ1Lh2 + kλ3L+ λ0Lh3

) (4.5)

where ∥ϕ′∥∞ ≤ M. Therefore, we can rewrite (4.5) as follows∥∥∥F − F̃
∥∥∥
∞

≤ w∗h2, (4.6)

where w∗ = kMλ0Lh3+kMλ1Lh2+kλ3L+λ0Lh3. Also, it is obvious that the matrix (A−B) in (4.3) is a nonsingular
matrix, thus we have

Xn+1 − X̃n+1 =
(
A− B

)−1(
F − F̃

)
.

Taking the infinity norm, then using (4.6), one can deduce that∥∥∥Xn+1 − X̃n+1
∥∥∥
∞

=
∥∥∥(A− B)−1

∥∥∥
∞

∥∥∥F − F̃
∥∥∥
∞

≤ wh2,

where w = w∗
∥∥∥(A− B)−1

∥∥∥
∞
. Now, we compute

∥∥∥u− U
∥∥∥
∞

as the following∥∥∥u− U
∥∥∥
∞

≤
∥∥∥u− Ũ

∥∥∥
∞

+
∥∥∥Ũ − U

∥∥∥
∞
. (4.7)

From Theorem 4.1 we have ∥∥∥u− Ũ
∥∥∥
∞

≤ λ0Lh5. (4.8)

Also,

U(x)− Ũ(x) =

N+1∑
i=−2

(ci − c̃i)Bi(x),

thus, ∣∣∣U(xm)− Ũ(xm)
∣∣∣ ≤ max

−2≤i≤N+1

∣∣∣ci − c̃i

∣∣∣ ∣∣∣N+1∑
i=−2

Bi(xm)
∣∣∣, 0 ≤ m ≤ N.

By using the values of Bi(xm)’s given in Section 2, one can easily see that
∣∣∣N+1∑
i=−2

Bi(xm)
∣∣∣ ≤ 35, 0 ≤ m ≤ N (see,

[20, Lemma 2.1]), therefore ∥∥∥U − Ũ
∥∥∥
∞

≤ 35wh2. (4.9)
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So, by substituting (4.8) and (4.9) in (4.7), we obtain∥∥∥u− U
∥∥∥
∞

≤ λ0Lh5 + 35wh2 = h2
(
λ0Lh3 + 35w

)
.

Setting γ = λ0Lh3 + 35w, we have ∥∥∥u− U
∥∥∥
∞

≤ γh2.

This completes the proof. □

Theorem 4.3. Let u(x, t) be the solution of the initial boundary value problem (1.2)-(1.4). Also, suppose that U(x)
is the collocation approximation of the solution u(x) after the temporal discretization stage. Then, the error estimate
of the discrete scheme is given by ∥∥∥u− U

∥∥∥
∞

≤ ϑ(k + h2),

where ϑ is some finite constant.

Proof . The time discretization process (3.3) that we use to discretize the system (1.2)-(1.4) in the time variable is
of the one order convergence (see, [22]). So, according to Theorem 4.2, we have∥∥∥u− U

∥∥∥
∞

≤ ϑ(k + h2),

where ϑ is some finite constant. □

Remark 4.4. According to Theorem 4.3, the order of convergence of our process is O(k + h2).

5 Stability analysis

Von-Neumann stability method [23] is used for the stability of scheme developed in Section 3. Being applicable
to only linear schemes, the nonlinear term uux and u2ux is linearized by taking u as a locally constant value δ. The
linearized form of proposed scheme is given as

cn+1
m−2 + 11cn+1

m−1 + 11cn+1
m + cn+1

m+1 = θ2c
n
m−2 + θ3c

n
m−1 + θ4c

n
m + θ5c

n
m+1, (5.1)

where

θ2 = 1 +
4

h
θ1k +

24

h3
k, θ3 = 11 +

12

h
θ1k − 72

h3
k,

θ4 = 11− 12

h
θ1k +

72

h3
k, θ5 = 1− 4

h
θ1k − 24

h3
k,

θ1 = 2αδ − 3βδ2.

Substitution of cnm = ξneimφ, i =
√
−1, into equation (5.1) leads to

ξ
[
1 + 11eiφ + 11e2iφ + e3iφ

]
= θ2 + θ3e

iφ + θ4e
2iφ + θ5e

3iφ. (5.2)

Simplifying equation (5.2), we get

ξ =
X1 + iY1

X2 − iY2
,

where

X1 = θ2 + θ3 cos(φ) + θ4 cos(2φ) + θ5 cos(3φ), Y1 = θ3 sin(φ) + θ5 sin(3φ) + θ4 sin(2φ),

X2 = 1 + 11 cos(φ) + 11 cos(2φ) + cos(3φ), Y2 = 11 sin(φ) + sin(3φ) + 11 sin(2φ).

A method is stable if |ξ| ≤ 1. Since,

X 2
1 +Y2

1 −X 2
2 −Y2

2 =
128 k2 (cos(x)− 1)

(
6 cos(x)− 6β δ2 h2 + 4α δ h2 − 3β δ2 h2 cos(x) + 2α δ h2 cos(x)− 6

)2
h6

≤ 0,

|ξ| ≤ 1 is provided. Hence, the scheme is unconditionally stable.
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6 Numerical test

In this section, we demonstrate the effectiveness of the proposed method for solving the Gardner equation (1.2)–
(1.4). To show the ability, rigidity, and proficiency of the presented method, we use the root-mean-square error
(RMSE) and the infinity-norm of absolute error to reveal the accuracy of the method, using following formulas

RMSE =

√√√√ 1

N − 1

N−1∑
i=1

(
u(xi, t)− U(xi, t)

)2
,

L∞ = ||u(x, t)− U(x, t)||∞ = max
1≤i≤N−1

|u(xi, t)− U(xi, t)|.

Numerical results are compared with the RBF method (Multiquadrics-RBF) [12]. The proposed method is written
in the MATLAB R2015b and is tested on a personal computer with Intel(R) Core(TM)2 Duo CPU and 4GB RAM.
In the following numerical example, we take α = 1, β = 3, tfin = 1, h = 0.1, and k = 0.0001.

Example 6.1. We consider the Gardner equation (1.2)–(1.4) satisfying,

ut + 2uux − 9u2ux + uxxx = 0, x ∈ Ωx, t ∈ Ωt.

The exact solution is given as [26]

u(x, t) =
1

9

[
1− tanh

( 1

3
√
6
(x− 2

27
t)
)]

, x ∈ Ω̄x, t ∈ Ω̄t,

Tables 1 and 2, compare the RMSE and the infinity-norm for QBS and RBF methods at the different values of
time t = 0.1, 0.5, 0.8, and 1. Figures 1 and 2, show the difference between the u(x, t) and U(x, t) in QBS and RBF
methods at x = 0.2, 0.7, respectively.

Table 1: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.1, 0.5.

t = 0.1 t = 0.5

x u(x, t) QBS RBF u(x, t) QBS RBF

0.1 0.109711 0.109722 0.099315 0.110159 0.110163 0.088315

0.2 0.108200 0.108213 0.094104 0.108647 0.068081 0.068086

0.3 0.106689 0.106704 0.092479 0.107137 0.107146 0.053876

0.4 0.105181 0.105197 0.091064 0.105627 0.105640 0.045539

0.5 0.103674 0.103690 0.087693 0.104120 0.104134 0.041860

0.6 0.102170 0.102185 0.082503 0.102616 0.102630 0.042436

0.7 0.100670 0.100681 0.077840 0.101114 0.101127 0.047992

0.8 0.099173 0.099178 0.077041 0.099616 0.099626 0.059368

0.9 0.097681 0.097676 0.082809 0.098122 0.098128 0.076247

RMSE − 1.262832e− 05 1.693915e− 02 − 1.043002e− 05 4.829083e− 02

L∞ − 1.634052e− 05 2.282962e− 02 − 1.399932e− 05 6.225995e− 02
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Table 2: Comparison among the exact and numerical solutions for u(x, t) at times t = 0.8, 1.

t = 0.8 t = 1

x u(x, t) QBS RBF u(x, t) QBS RBF

0.1 0.110495 0.110497 0.082581 0.110719 0.110735 0.080184

0.2 0.108983 0.108989 0.055607 0.109207 0.109223 0.050408

0.3 0.107472 0.107481 0.037616 0.107696 0.107712 0.031032

0.4 0.105963 0.105974 0.029442 0.106186 0.106201 0.023240

0.5 0.104455 0.104467 0.028814 0.104678 0.104690 0.024165

0.6 0.102950 0.102962 0.033549 0.103172 0.103179 0.030742

0.7 0.101447 0.101459 0.042943 0.101670 0.101668 0.041629

0.8 0.099949 0.099958 0.057151 0.100170 0.100157 0.056764

0.9 0.098454 0.098460 0.075765 0.098675 0.098647 0.075825

RMSE − 9.379007e− 06 5.837684e− 02 − 1.535156e− 05 6.226015e− 02

L∞ − 1.251616e− 05 7.652068e− 02 − 2.821895e− 05 8.294669e− 02
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Figure 1: Difference between the u(0.2, t) and U(0.2, t) in QBS and RBF methods.
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Figure 2: Difference between the u(0.7, t) and U(0.7, t) in QBS and RBF methods.

CPU time consumption in Matlab for the QBS method is 338.568102 and for the RBF method is 1283.362879
seconds. These computational results show that our proposed method (QBS) is effective and accurate in comparison
with RBF. Also, the QBS method is superior to the RBF method due to the smaller CPU time.

7 Conclusion

In this paper, we used the QBS method to solve the Gardner equation (1.2)–(1.4). The convergence analysis of
the proposed method has been discussed and shown that the order of convergence of our process is O(k + h2). The
obtained results show the accuracy of this method and its stability compared to accurate solutions. We also compared
this method with the RBF method to show the effectiveness of the QBS method. The results of this comparison also
confirm the accuracy of the method. Compared to the execution time of the program, the QBS method has a better
speed with low-storage space. Given that the Gardner equation is nonlinear, the QBS method can be considered a
suitable method for solving such equations.
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