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Abstract

The aim of this work is to present and study the concepts of non-expansive, quasi-nonexpansive, α-nonexpansive and
asymptotically-nonexpansive of the linear random dynamical systems, and several essential facts be given. Also, the
relationships between these concepts are shown.
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1 Introduction

The main objetive of the theory of dynamical system is the know of the global orbit structure of maps and flows.The
new approach of study the dynamical system is so call Random Dynamical Systems(RDSs). The Random Dynamical
Systems are an importance in the modeling of several phenomena in biology, physics, etc. In 1945 Ulam and von
Neumann the first lesson the RDS . L. Arnold and I.D. Chueshov [3] to introduce the concept of RDS.

The aim of this work is the study of non-expansitivity in linear random dynamical system where the phase space
consider as a Banach space. In the following some previous studies. In 2011, Koji Aoyama, Fumiaki Kohsaka [1] present
the type of α- nonexpansive functions in Banach spaces. This type satisfies the type of non-expansive functions and
addition, they obtain a fixed point theorem for α-nonexpansive functions in uniformly convex Banach spaces. I. J.
Kadhim and A. H. Khalil [6] study the expansive random operator modeled with uniform random dynamical systems.
Sami Atailia and other [4] were reflected generalized contractions of Suzuk type. In 2021, Pant, R. and others [7]
extant certain fixed point consequences for a non-expansive and α− Krasnosel’ski1̂ functions. Furthermore, they
extant certain convergence results of one parameter non-expansive semi-groups.

Definition 1.1 ([5]). The (T,Ω,F ,P, θ) is called a metric dynamical system ( Shortly MDS) if (Ω,F ,P) is a
probability space and the function θ : T× Ω → Ω satisfy

1. θ is measurable,

2. θ (0, ω) = ω, for every ω ∈ Ω,

3. θt+s (ω) = (θt ◦ θs)(ω) for ever ω ∈ Ω, t, s ∈ T and

4. P(θtF ) = P(F )for every F ∈ F and every t ∈ T .
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Definition 1.2 (Random Dynamical System). [2] Let X be a topological space and θ be a MDS. A topological
random dynamical system on X over θ is a function φ : T× Ω×X → X, admit the following properties:

1. φ(·, ω, ·) : T×X → X is continuous for every ω ∈ Ω.

2. The mapping φ (t, ω)φ (t, ω, ·) : X → X form a cocycle on θ (·), that is satisfy
φ (0, ω)x = x.
φ(t+ s, ω) = φ (t, θsω) ◦ φ (s, ω) for all s, t ∈ T, ω ∈ Ω.

Definition 1.3 (Linear RDSS). [2] A linear random dynamical system LRDS is an RDS (θ, φ) on the Banach
space X such that φ (t, ω) is linear operators of X for each t ∈ T, ω ∈ Ω.

Definition 1.4. [5] Suppose that (X, d) be a metric space which is a measurable space with Borel σ-field B (X) and
(Ω,F) be a measurable space. The set-valued function A : Ω → B (X) , ω 7−→ A(ω) , is a random set if the mapping
ω 7−→ d(x,A (ω)) is measurable for each x ∈ X. The random set A(ω) is called a random closed(compact) set , if
it is closed (compact) for all ω ∈ Ω.

Definition 1.5. [2] Let A : Ω → B(X) take values in the subspace of closed subsets of a Polish space X. Then:

1. A is a random closed set if and only if the set {ω : Aω ∩ U ̸= ∅} is measurable for all open sets U ⊂ X.

2. graph(A) ∈ F
⊗

B ,if A is a random closed set.

Definition 1.6 (Invariance Property). [2] Let (θ, φ) be a (RDSS). A multifunction ω 7−→ D(ω) is said to be

1. forward invariant with respect to (θ, φ)ifφ(t, ω)D(ω) ⊆ D(θtω),∀ t > 0, ω ∈ Ω, i.e. if x ∈ D(ω)impliesφ(t, ω)x ∈
D(θtω) for all t ≥ 0 and ω ∈ Ω;

2. backward invariant with respect to (θ, φ) if φ (t, ω)D (ω) ⊇ D (θtω) ,∀ t > 0, ω ∈ Ω, i.e. for every t > 0, ω ∈ Ω
and y ∈ D(θtω) there exists x ∈ D(ω) such that φ (t, ω)x = y;φ(t, ω) D(ω) ⊆ D(θtω), t < 0.

Definition 1.7. [5] Let (θ, φ) be a (RDS). A a random variable x : Ω −→ X is called a random fixed point if there

exists a full measure set Ω̃ in Ω such that φ (t, ω)x (ω) = x(θtω), for all t ∈ R, ω ∈ Ω̃. The set of all random fixed
points of (θ, φ) is symbolized FXΩ.

Definition 1.8. [8] Let D be a family of random closed sets is called a universe of sets if it is closed with respect
to inclusions (i.e. if D1 ∈ D and a random closed set D2 possesses the property D2(ω) ⊂ D1(ω) for all ω ∈ Ω, then
D2 ∈ D).

2 Main Results

Here some types of the nonexpansitivity are introduces and studied in LRDS’ s , where the phase spaceX considered
as a Banach space, also it is considers as a measurable space with Borel σ-algebra.

Definition 2.1. A LRDS (θ, φ) is said to nonexpansive if for every random variables x, y : Ω → X and

P {ω : x (ω) ̸= y (ω)} = 1

we have ∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ ∥x (ω)− y(ω)∥.

Remark 2.2. If x and y are any two points (not necessarily random) inX, then the above definition can be formulated
as follows:

A LRDS (θ, φ) is said to be a nonexpansive if for every x, y ∈ X and x ̸= y we have

∥φ (t, θ−tω)x− φ (t, θ−tω) y∥ ≤ ∥x− y∥.

Definition 2.3. A LRDS (θ, φ) is said to be a quasi-nonexpansive if for all x ∈ XΩ and z ∈ FXΩ∥∥φ (t, θ−tω)x(θ−tω)− z (θ−tω)
∥∥ ≤ ∥x(ω)− z(ω)∥.
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Definition 2.4. Let (θ, φ) be a LRDS and Y be a nonempty subset of X is said to be satisfies condition (REµ) on
Y if there exists µ ≥ 1 such that

∥x(ω)− φ (t, θ−tω) y(θ−tω) ∥ ≤ µ∥x(ω)− φ (t, θ−tω)x(θ−tω)∥+ ∥x(ω)− y(ω)∥

for all random variables x, y : Ω :−→ Y . (θ, φ) satisfies condition (REµ) on Y when satisfies (REµ) for some µ ≥ 1.

Proposition 2.5. If a LRDS (θ, φ) is satisfies condition (RE) with FXΩ ̸= ∅ then (θ, φ) is quasi-nonexpansive

Proof . Let x ∈ XΩ and z ∈ FXΩ. Since (θ, φ) satisfies condition (RE),∥∥φ (t, θ−tω)x(θ−tω)− z (ω)
∥∥ ≤

∥∥φ (t, θ−tω)x(θ−tω)− z (ω)
∥∥+ ∥z(ω)− z (ω)∥

≤ µ
∥∥z (ω)− φ (t, θ−tω) z(θ−tω)

∥∥+ ∥z (ω)− x (ω)∥
≤ µ∥z (ω)− z(ω)∥+ ∥z (ω)− x (ω)∥
≤ µ∥z (ω)− x (ω)∥.

This means that (θ, φ) is quasi-nonexpansive. □

Definition 2.6. A LRDS (θ, φ) is called be a generalized α-nonexpansive if there exists α ∈ [0, 1) and a full measure

Ω̃ of Ω such that
1

2

∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥ ≤ ∥x(ω)− y(ω)∥

implies ∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ max {P (x, y) , Q(x, y)} (2.1)

for every x, y ∈ X, where

P (x, y) := α
∥∥φ (t, θ−tω)x(θ−tω)− x(ω)

∥∥+ α
∥∥φ (t, θ−tω) y(θ−tω)− y(ω)

∥∥+ (1− 2α)∥x(ω)− y(ω)∥
Q (x, y) := α

∥∥φ (t, θ−tω)x(θ−tω)− y(ω)
∥∥+ α

∥∥φ (t, θ−tω) y(θ−tω)− x(ω)
∥∥+ (1− 2α)∥x(ω)− y(ω)∥.

Definition 2.7. Let Y is a nonempty convex subset of X and (θ, φ) LRDS, φα is said to be a α –convex if there
exists α ∈ (0, 1) such that,

φα (t, θ−tω)x(θ−tω) = (1− α )x(ω) + α φ (t, θ−tω)x(θ−tω)

for all random variable x : Ω −→ Y.

Definition 2.8. Let Y is a nonempty convex subset of X. The LRDS (θ, φ) is called asymptotically regular if for

every sequences {tn} in R+ with tn → +∞ there exists a full measure Ω̃ ⊂ Ω such that

lim
n,m→∞

∥∥φ (tn, θ−tnω)x(θ−tn
ω)− φ (tm, θ−tmω)x(θ−tm

ω)
∥∥ = 0,

for all n,m ∈ N and m > n and ω ∈ Ω̃.

Definition 2.9. The LRDS (θ, φ) is called asymptotically-nonexpansive if for all x, y ∈ X, with x ̸= y and sequence

{tn} in R+ with tn → +∞, there exists a full measure Ω̃ of Ω such that

lim
n→∞

∥∥φ (tn, θ−tnω)xθ−tnω)− φ (tn, θ−tnω) y(θ−tω)
∥∥ = 0, ω ∈ Ω̃.

Definition 2.10. The LRDS (θ, φ) is called a symptotically-expansive if for all x, y ∈ X,x ̸= y , and sequence {tn}
in R+ with tn → +∞, there exists a full measure Ω̃ of Ω

lim
n→∞

∥∥φ (tn, θ−tnω)x(θ−tn
ω)− φ (tn, θ−tnω) y(θ−tn

ω)
∥∥ = ∞ , ω ∈ Ω̃.

Definition 2.11. A LRDS (θ, φ) is call α-nonexpansive if there is an 0 < α < 1 such that for all x, y ∈ X∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ α

∥∥φ (t, θ−tω)x(θ−tω)− y(ω)
∥∥

+ α
∥∥φ (t, θ−tω) y(θ−tω)− x(ω)

∥∥+ (1− 2α)∥x(ω)− y(ω)∥.
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Definition 2.12. A LRDS (θ, φ) is a α-nonexpansive is called uniformly a symptotically regular ( u.a.r.) if for
any S∈ R+ and any closed random set D in the universal
D ≡ universal

lim
t→∞

sup
x∈D(θ−tω)

∥∥φ (s+ t, θ−tω)x(θ−tω)− φ (t, θ−tω)x(θ−tω)
∥∥ = 0

Definition 2.13. A LRDS (θ, φ) is called a generalized contraction type-β if there exists β ∈ (0, 1) and α1, α2, α3 ∈
[0, 1] where α1 + 2α2 + 3α3 = 1 a full measure Ω̃ of Ω such that for every x, y ∈ X ,

β
∥∥x(ω)− φ (t, θ−tω)x(θ−tω)

∥∥ ≤ ∥x(ω)− y(ω)∥

implies∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ α1∥x(ω)− y(ω)∥+ α2

(∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥

+
∥∥y(ω)− φ (t, θ−tω) y(θ−tω)

∥∥)
+ ≤ α3

(∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥+

∥∥y(ω)− φ (t, θ−tω)x(θ−tω)
∥∥).
(2.2)

Theorem 2.14. If LRDS (θ, φ) be a generalized contraction type-β ( with β = 1/2 ) then (θ, φ) is a generalized α-
nonexpansive.

Proof . Suppose that every x, y ∈ X,

1

2

∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥ ≤ ∥x(ω)− y(ω)∥.

By hypothesis (θ, φ) is a generalized contraction type- β ( with β = 1/2 ), then by definition we have∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ α1∥x(ω)− y(ω)∥+ α2

(∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥

+
∥∥y(ω)− φ (t, θ−tω) y(θ−tω)

∥∥)
≤ α3

(∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥+

∥∥y(ω)− φ (t, θ−tω)x(θ−tω)
∥∥).
(2.3)

Case 1.∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥+∥∥y(ω)− φ (t, θ−tω) y(θ−tω)

∥∥
≥

∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥+

∥∥y(ω)− φ (t, θ−tω)x(θ−tω)
∥∥.

Then 2.3 becomes∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ α1∥x(ω)− y(ω)∥

+ (α2 + α3)
(∥∥x(ω)− φ (t, θ−tω)x(θ−tω)

∥∥+
∥∥y(ω)− φ (t, θ−tω) y(θ−tω)

∥∥).
Take α = α2 + α3, since α1 + 2α2 + 3α3 = 1, α1 = 1− 2α, the above condition becomes∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)

∥∥ ≤ α
∥∥x(ω)− φ (t, θ−tω)x(θ−tω)

∥∥+ α
∥∥y(ω)− φ (n, θ−nω) y(θ−tω)

∥∥
+ (1− 2α)∥x(ω)− y(ω)∥.

(2.4)

Case 2.∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥+

∥∥y(ω)− φ (t, θ−tω) y(θ−tω)
∥∥ <

∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥

+
∥∥y(ω)− φ (t, θ−tω)x(θ−tω)

∥∥.
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Then (3) reduces to∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ α1∥x(ω)− y(ω)∥+ (α2 + α3)

(∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥

+
∥∥y(ω)− φ (t, θ−tω)x(θ−tω)

∥∥).
Again, take α = α2 + α3 , since α1 + 2α2 + 3α3 = 1, α1 = 1− 2α , thus the above condition becomes

∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)∥ ≤ α∥x (ω)− φ (t, θ−tω) y (θ−tω)∥+ α
∥∥y(ω)− φ (t, θ−tω)x(θ−tω)

∥∥
+(1− 2α)∥x(ω)− y(ω)∥.

(2.5)

Let

P (x, y) := α
∥∥φ (t, θ−tω)x(θ−tω)− x(θ−tω)

∥∥+ α
∥∥(t, θ−tω) y(θ−tω)− y(ω)

∥∥+ (1− 2α)∥x(ω)− y(ω)∥

Q (x, y) := α
∥∥φ (t, θ−tω)x(θ−tω)− y(ω)

∥∥+ α
∥∥φ (t, θ−tω) y(θ−tω)− x(ω)

∥∥+ (1− 2α)∥x(ω)− y(ω)∥.

Then, by 2.4 and 2.5 we have

φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω) ≤ max {P (x, y) , Q(x, y)}.

This proves the theorem. □

Lemma 2.15. Suppose (θ, φ) a LRDS and a generalized contraction of type-β and β ∈
[
1
2 , 1

)
. Then

∥∥x(ω)− φ (t, θtω) y(θ−tω)
∥∥ ≤ 2 + α 1 + α2 + 3α3

1− α2 − α3

(∥∥x(ω)− φ (t, θtω)x(θ−tω) ∥ + ∥ x(ω)− y(ω) ∥
∥∥).

Proof . By the triangular inequality, to admit∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤

∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥+

∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)
∥∥.

Now, if∥∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ α1∥(xω)− y(ω)∥

+ α2

(∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥)+∥∥y(ω)− φ (t, θ−tω) y(θ−tω)

∥∥
+ α3

(∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥+

∥∥y(ω)− φ (t, θ−tω)x(θ−tω)
∥∥)

then ∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ α1∥(xω)− y(ω)∥+ (1 + α2)

∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥

+ α2

(∥∥y(ω)− φ (t, θ−tω) y(θ−tω)
∥∥)

+ α3

(∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥+

∥∥y(ω)− φ (t, θ−tω)x(θ−tω)
∥∥).

Similarly∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ α1∥x (ω)− y (ω)∥+ (1 + α2)

∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥

+ α2

(
∥x (ω)− y(ω)∥

)
+
∥∥x(ω)− φ (t, θ−tω) y(θ−tω)

∥∥
+ α3

(∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥+ ∥x (ω)− y(ω)∥+

∥∥x(ω)− φ (t, θ−tω)x(θ−tω)
∥∥).

It follows that

(1− α2 − α3)
∥∥x(ω)− φ (t, θ−tω) y(θ−tω)

∥∥ ≤ (α1 + α2 + α3)
∥∥x(ω)− φ (t, θ−tω)x(θ−tω)

∥∥.
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Thus∥∥x(ω)− φ (t, θ−tω) y(θ−tω)
∥∥ ≤ (

α1 + α2 + α3

1− α2 − α3
)∥x (ω)− y(ω)∥+ (

1 + α2 + α3

1− α2 − α3
)
∥∥x(ω)− φ (t, θ−tω)x(θ−tω)

∥∥
= ∥x (ω)− y(ω)∥+ (

1 + α2 + α3

1− α2 − α3
)
∥∥x(ω)− φ (t, θ−tω)x(θ−tω)

∥∥.
□

Proposition 2.16. Suppose that (θ, φ) a LRDS and a generalized contraction of type- β. Then (θ, φ) satisfies
condition (RE)

Proof . Take µ = 2+α1+α2 +3∝3

1−∝2−∝3
≥ 1 in Lemma 2.15, then (θ, φ) satisfies the condition (RE)

2 + α1 + α2 + 3 ∝3

1− ∝2 − ∝3
≥ 1 if and only if 2 + α1 + α2 + 3α3 ≥ 1− α2 − α3

if and only if 1 + α1 + 2α2 + 4α3 ≥ 0

if and only if 1 + α1 + 2α2 + 2α3 + 2α3 ≥ 0 (since α1 + 2α2 + 2α3 ≥ 1)

if and only if 1 + 1 + 2α3 ≥ 0

if and only if 2 + 2α3 ≥ 0

if and only if α3 ≥ −1.

□

Definition 2.17. A set of random variable XΩ is called almost surly closed if for every sequence {xn} ∈ XΩ, we
have xn −→ x ∈ XΩ almost surly .

Definition 2.18. Let X a normed linear space, and let xn, x ∈ XΩ. We say that xn, converges strongly almost surly
to x, and write xn −→ x, if there exists a full measure Ω∗ subset of Ω

lim
n−→∞

∥xn(ω)− x(ω)∥ = 0, for all ω ∈ Ω∗.

Theorem 2.19. Let LRDS (θ, φ) satisfy the condition (RE) with FXΩ ̸= ∅, then

1. FXΩ is almost surly closed.

2. If the subset Y is convex, then FXΩ is convex.

3. If the subset Y is convex compact and X strictly(convex)compact, φ (t, θ−tω) : X −→ X is continuous mapping,
then for any y0 ∈ Y, α ∈ (0, 1), the α− convex process { φα (n, θ−nω) y0} converges to some y∗ ∈ FXΩ.

Proof .

1. Define FXΩ = {x : Ω −→ X : φ (t, θ−tω)x(θ−tω) = x(ω), ∀ t ∈ R }. Let {xn} ⊂ FXΩ such that

xn −→ x almost surly (2.6)

This means that P {ω : xn(ω) −→ x (ω)} = 1. Since φ (t, θ−tω ) : X −→ X is continuous, we have

φ (t , θ−tω )xn(θ−tω) −→ φ (t , θ−tω)x(θ−tω).

But φ (t , θ−tω)xn(θ−tω) = xn(ω), so

xn(ω) −→ φ (t, θ−tω)x(θ−tω). (2.7)

Thus by the uniqueness of the limit of the sequence we have

φ (t, θ−tω)x(θ−tω) = x(ω).

This means that x ∈ FXΩ. Consequently FXΩ is almost surly closed.
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2. Since X is strictly convex, Y is convex. Let β ϵ (0, 1 ) and x, y ∈ FXΩ with x ̸= y, put z(ω) = βx(ω) +
(1− β) y(ω) ∈ Y, for every ω ∈ Ω. Then z(ω) ∈ Y, for every ω ∈ Ω. Since (φ, θ) is satisfies condition (RE),

∥x(ω)− φ (t, θ−tω) z(θ−tω)∥ ≤ ∥x(ω)− φ(t, θ−tω)x(θ−tω)∥+ ∥x(ω)− z(ω)∥ = ∥x(ω)− z(ω)∥.

From strict convexity of X, there is a µ ∈ [0, 1] such that

φ (t, θ−tω) z(θ−tω) = µφ (t, θ−tω)x(θ−tω) + (1− µ)φ (t, θ−tω) y(θ−tω)

= µx(ω) + (1− µ) y(ω)

implies

(1− µ) ∥x(ω)− y(ω)∥ = ∥φ (t, θ−tω)x(θ−tω)− φ (t, θ−tω) z(θ−tω)∥
≤ ∥x(ω)− z(ω)∥ = (1− β)∥x(ω)− y(ω)∥

(2.8)

and

∥x(ω)− y(ω)∥ = ∥φ (t, θ−tω) y(θ−tω)− φ (t, θ−tω) z(θ−tω)∥
≤ ∥y (ω)− z (ω)∥ = β∥x (ω)− y (ω)∥.

(2.9)

From 2.8 and 2.9
1− µ ≤ 1− β and µ ≤ β then µ = β.

Hence φ (t, θ−tω) z(θ−tω) = z(ω), and z ∈ FXΩ

3. Let us define (yn) by yn(ω) = φα (t, θ−tω) y0(θ−tω), y0 ∈ Y, where

φα (t, θ−tω) y0(θ−tω) = (1− α) y0(ω) + αφ (t, θ−tω) y0(θ−tω), α ∈ (0, 1).

Since Y is compact, there is a subsequence (ynk(ω)) of (yn(ω)) converges (almost surly) to some y∗(ω) ∈ Y
.Since φ (t, θ−tω) is continuous, from given we have FXΩ ̸= ∅ , We prove that y∗ ∈ FXΩ let x0 ∈ FXΩ

∥yn(ω)− x0(ω)∥ = ∥φα (t, θ−tω) y0(θ−tω)− x0(ω)∥
≤ ∥φα (t, θ−tω) y0(θ−tω)− x0(ω)∥ = ∥yt−1(ω)− x0(ω)∥.

Therefore, {∥yn(ω)− x0(ω)∥} is a decreasing sequence for every ω ∈ Ω which bounded below by 0. So, it
converges. Furthermore, since φα is a continuous,

∥y∗(ω)− x0(ω)∥ = lim
k−→∞

∥∥ynk+1
(ω)− x0(ω)

∥∥
≤ lim

k−→∞

∥∥ynk+1
(ω)− x0(ω)

∥∥
= lim

k−→∞
∥φα (t, θ−tω) ynk

(θ−tω)− x0(ω)∥

= ∥φα (t, θ−tω) y
∗(θ−tω)− x0(ω)∥

= (1− α) ∥y∗(ω) + αφ (t, θ−tω) y
∗(θ−tω)− y0(ω)∥ (2.10)

= (1− α) ∥y∗(ω)− x0(ω)∥+ α∥φ (t, θ−tω) y
∗(θ−tω)− x0(ω)∥.

Since α ̸= 0, it implies that
∥y∗ − x0∥ ≤ ∥φ (t, θ−tω) y

∗(θ−tω)− x0(ω)∥.
Since φ is a quasi-nonexpansive

∥φ (t, θ−tω) y
∗(θ−tω)− x0(ω)∥ ≤ ∥y∗(ω)− x0(ω)∥.

From the above ,we get
∥y∗(ω)− x0(ω)∥ = ∥φ (t, θ−tω) y

∗(θ−tω)− x0(ω)∥. (2.11)

From 2.10, we have

∥y∗(ω)− x0(ω)∥ ≤ ∥(1− α) y∗(ω) + αφ (t, θ−tω) y
∗(θ−tω)− x0(ω)∥

≤ (1− α) ∥y∗(ω)− x0(ω)∥+ α∥φ (t, θ−tω) y
∗(θ−tω)− x0(ω)∥

= ∥y∗(ω)− x0(ω)∥.
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Therefore,

∥(1− α) y∗(ω) + αφ (t, θ−tω) y
∗(θ−tω)− x0(ω)∥ = (1− α) ∥y∗(ω)− x0(ω)∥

+ α∥φ (t, θ−tω) y
∗(θ−tω)− x0(ω)∥.

Since X is strictly convex, either φ (t, θ−tω) y
∗(θ−tω)−x0(ω) = c(y∗(ω)−x0(ω)), for some c > 0 or y∗(ω) = x0(ω)

from 2.11, we have c = 1,then,

φ (t, θ−tω) y
∗ (θ−tω) = y∗ (ω) therefore y∗ ∈ FXΩ.

Since limn→∞ ∥yn(ω)− x0(ω)∥ exists the sequence {ynk
(ω)} converges strongly almost surly to y∗(ω), {yn}

converges strongly almost surly to y∗ ∈ FXΩ.

□

3 Conclusions

In this paper we obtained, if (θ, φ) be a generalized contraction type-β then satisfies condition (RE), and if
(β = 1/2), then (θ, φ) is a generalized α-nonexpansive . we also showed if (θ, φ) condition (RE) and FXΩ ̸= ∅
and Ysubset convex compact and φ (t, θ−tω) is continuous then for any y0 ∈ Y , α ∈ (0, 1), the α-convex process
{φα (n, θ−nω) y0} converges to some y∗ ∈ FXΩ.
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