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GENERALIZED ADDITIVE FUNCTIONAL INEQUALITIES IN
BANACH ALGEBRAS

C. PARK1∗ AND A. NAJATI2

Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approximate Homomorphisms

Abstract. Using the Hyers-Ulam-Rassias stability method, we investigate iso-
morphisms in Banach algebras and derivations on Banach algebras associated with
the following generalized additive functional inequality

‖af(x) + bf(y) + cf(z)‖ ≤ ‖f(αx+ βy + γz)‖. (0.1)

Moreover, we prove the Hyers-Ulam-Rassias stability of homomorphisms in Ba-
nach algebras and of derivations on Banach algebras associated with the general-
ized additive functional inequality (0.1).

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[38] concerning the stability of group homomorphisms. Hyers [9] gave a first affir-
mative partial answer to the question of Ulam for Banach spaces. Th.M. Rassias
[28] provided a generalization of Hyers’ Theorem which allows the Cauchy difference
to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E → E ′ be a mapping from a normed
vector space E into a Banach space E ′ subject to the inequality

‖f(x + y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where θ and p are positive real numbers with p < 1. Then there
exists an unique additive mapping L : E → E ′ satisfying

‖f(x)− L(x)‖ ≤ 2θ

2− 2p
‖x‖p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R,
then L is R-linear.

Th.M. Rassias [29] during the 27th International Symposium on Functional Equa-
tions asked the question whether such a theorem can also be proved for p ≥ 1.
Gajda [5] following the same approach as in Th.M. Rassias [28], gave an affirmative
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solution to this question for p > 1. It was shown by Gajda [5], as well as by Th.M.
Rassias and Šemrl [35] that one cannot prove a Th.M. Rassias’ type theorem when
p = 1. The counterexamples of Gajda [5], as well as of Th.M. Rassias and Šemrl [35]
have stimulated several mathematicians to invent new definitions of approximately
additive or approximately linear mappings, cf. P. Găvruta [6], who among others
studied the Hyers-Ulam stability of functional equations. The inequality (1.1) that
was introduced for the first time by Th.M. Rassias [28] provided a lot of influence in
the development of a generalization of the Hyers-Ulam stability concept. This new
concept is known as Hyers-Ulam-Rassias stability of functional equations (cf. the
books of P. Czerwik [2, 3], D.H. Hyers, G. Isac and Th.M. Rassias [10]).

P. Găvruta [6] provided a further generalization of Th.M. Rassias’ Theorem. G.
Isac and Th.M. Rassias [13] applied the Hyers–Ulam stability theory to prove fixed
point theorems and study some new applications in Nonlinear Analysis. In [11], D.H.
Hyers, G. Isac and Th.M. Rassias studied the asymptoticity aspect of Hyers-Ulam
stability of mappings.

Beginning around the year 1980, the topic of approximate homomorphisms and
their stability theory in the field of functional equations and inequalities was taken
up by several mathematicians (cf. D.H. Hyers and Th.M. Rassias [12], Th.M. Rassias
[32] and the references therein).

Theorem 1.2. [27] Let X be a real normed linear space and Y a real complete
normed linear space. Assume that f : X → Y is an approximately additive mapping
for which there exist constants θ ≥ 0 and p ∈ R −{1} such that f satisfies inequality

‖f(x + y)− f(x)− f(y)‖ ≤ θ · ||x||
p
2 · ||y||

p
2

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying

‖f(x)− L(x)‖ ≤ θ

|2p − 2|
||x||p

for all x ∈ X. If, in addition, f : X → Y is a mapping such that the transformation
t → f(tx) is continuous in t ∈ R for each fixed x ∈ X, then L is an R-linear
mapping.

Several papers have been published on various generalizations and applications
of Hyers-Ulam stability and Hyers-Ulam-Rassias stability to a number of functional
equations and mappings (see [16]–[26], [30]–[33], [37]).

Definition 1.3. Let A and B be real Banach algebras.
(i) An R-linear mapping H : A → B is called a algebra homomorphism if H(xy) =

H(x)H(y) for all x, y ∈ A.
(ii) An R-linear mapping δ : A → A is called a derivation if δ(xy) = δ(x)y +xδ(y)

for all x, y ∈ A.

Gilányi [7] showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(x− y)‖ ≤ ‖f(x + y)‖ (1.2)

then f satisfies the quadratic functional equation

2f(x) + 2f(y) = f(x + y) + f(x− y).
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See also [36]. Fechner [4] and Gilányi [8] proved the Hyers-Ulam-Rassias stability
of the functional inequality (1.2). C. Park et al. [22] investigated the Jordan-von
Neumann type Cauchy-Jensen additive mappings and prove their stability, and Cho
and Kim [1] proved the Hyers-Ulam-Rassias stability of the Jordan-von Neumann
type Cauchy-Jensen additive mappings.

This paper is organized as follows: In Sections 2 and 3, we investigate isomor-
phisms in Banach algebras and derivations on Banach algebras associated with the
generalized additive functional inequality (0.1).

In Sections 4 and 5, we prove the Hyers-Ulam-Rassias stability of homomorphisms
in Banach algebras and of derivations on Banach algebras associated with the gen-
eralized additive functional inequality (0.1).

Throughout this paper, we assume that A, B are real Banach algebras with norms
‖ · ‖A and ‖ · ‖B, respectively, and that a, b, c, α, β, γ are nonzero real numbers.

2. Isomorphisms in Banach algebras

Consider a mapping f : A → B satisfying the following functional inequality

‖af(x) + bf(y) + cf(z)‖B ≤ ‖f(αx + βy + γz)‖B (2.1)

for all x, y, z ∈ A.
In this section, we investigate isomorphisms in Banach algebras associated with

the functional inequality (2.1).

Theorem 2.1. Let p 6= 1 and θ be nonnegative real numbers, and let f : A → B be
a nonzero bijective mapping satisfying (2.1) and limt∈R,t→0 f(tx) = 0 for all x ∈ A
such that

‖f(xy)− f(x)f(y)‖B ≤ θ(‖x‖2p
A + ‖y‖2p

A ) (2.2)

for all x, y ∈ A. Then the bijective mapping f : A → B is an isomorphism in
Banach algebras.

Proof. By Theorem 2.7 of [15], the mapping f : A → B is R-linear.
(i) Assume that p < 1. By (2.2),

‖f(xy)− f(x)f(y)‖B = lim
n→∞

1

4n
‖f(4nxy)− f(2nx)f(2ny)‖B

≤ lim
n→∞

4np

4n
θ(‖x‖2p

A + ‖y‖2p
A ) = 0

for all x, y ∈ A. So

f(xy) = f(x)f(y)

for all x, y ∈ A.
(ii) Assume that p > 1. By a similar method to the proof of the case (i), one can

prove that the mapping f : A → B satisfies

f(xy) = f(x)f(y)

for all x, y ∈ A.
Therefore, the bijective mapping f : A → B is an isomorphism in Banach algebras,

as desired. �
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Theorem 2.2. Let p 6= 1 and θ be nonnegative real numbers, and let f : A → B be
a nonzero bijective mapping satisfying (2.1) and limt∈R,t→0 f(tx) = 0 for all x ∈ A
such that

‖f(xy)− f(x)f(y)‖B ≤ θ · ‖x‖p
A · ‖y‖

p
A (2.3)

for all x, y ∈ A. Then the bijective mapping f : A → B is an isomorphism in
Banach algebras.

Proof. By Theorem 2.7 of [15], the mapping f : A → B is R-linear.
(i) Assume that p < 1. By (2.3),

‖f(xy)− f(x)f(y)‖B = lim
n→∞

1

4n
‖f(4nxy)− f(2nx)f(2ny)‖B

≤ lim
n→∞

4np

4n
θ · ‖x‖p

A · ‖y‖
p
A = 0

for all x, y ∈ A. So
f(xy) = f(x)f(y)

for all x, y ∈ A.
(ii) Assume that p > 1. By a similar method to the proof of the case (i), one can

prove that the mapping f : A → B satisfies

f(xy) = f(x)f(y)

for all x, y ∈ A.
Therefore, the bijective mapping f : A → B is an isomorphism in Banach algebras,

as desired. �

3. Derivations on Banach algebras

In this section, we investigate derivations on Banach algebras associated with the
functional inequality (2.1).

Theorem 3.1. Let p 6= 1 and θ be nonnegative real numbers, and let f : A → A be
a nonzero mapping satisfying (2.1) and limt∈R,t→0 f(tx) = 0 for all x ∈ A such that

‖f(xy)− f(x)y − xf(y)‖A ≤ θ(‖x‖2p
A + ‖y‖2p

A ) (3.1)

for all x, y ∈ A. Then the mapping f : A → A is a derivation on a Banach algebra.

Proof. By Theorem 2.7 of [15], the mapping f : A → A is R-linear.
(i) Assume that p < 1. By (3.1),

‖f(xy)− f(x)y − xf(y)‖A = lim
n→∞

1

4n
‖f(4nxy)− f(2nx) · 2ny − 2nx · f(2ny)‖A

≤ lim
n→∞

4np

4n
θ(‖x‖2p

A + ‖y‖2p
A ) = 0

for all x, y ∈ A. So
f(xy) = f(x)y + xf(y)

for all x, y ∈ A.
(ii) Assume that p > 1. By a similar method to the proof of the case (i), one can

prove that the mapping f : A → A satisfies

f(xy) = f(x)y + xf(y)
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for all x, y ∈ A.
Therefore, the mapping f : A → A is a derivation on a Banach algebra. �

Theorem 3.2. Let p 6= 1 and θ be nonnegative real numbers, and let f : A → A be
a nonzero mapping satisfying (2.1) and limt∈R,t→0 f(tx) = 0 for all x ∈ A such that

‖f(xy)− f(x)y − xf(y)‖A ≤ θ · ‖x‖p
A · ‖y‖

p
A (3.2)

for all x, y ∈ A. Then the mapping f : A → A is a derivation on a Banach algebra.

Proof. By Theorem 2.7 of [15], the mapping f : A → A is R-linear.
(i) Assume that p < 1. By (3.2),

‖f(xy)− f(x)y − xf(y)‖A = lim
n→∞

1

4n
‖f(4nxy)− f(2nx) · 2ny − 2nx · f(2ny)‖A

≤ lim
n→∞

4np

4n
θ · ‖x‖p

A · ‖y‖
p
A = 0

for all x, y ∈ A. So

f(xy) = f(x)y + xf(y)

for all x, y ∈ A.
(ii) Assume that p > 1. By a similar method to the proof of the case (i), one can

prove that the mapping f : A → A satisfies

f(xy) = f(x)y + xf(y)

for all x, y ∈ A.
Therefore, the mapping f : A → A is a derivation on a Banach algebra. �

4. Stability of homomorphisms in Banach algebras

In [15], the authors introduced α-additivity of a mapping.

Definition 4.1. For a mapping f : A → B, we say that f is α-additive if

f(x + αy) = f(x) + αf(y)

for all x, y ∈ A.

In this section, we prove the Hyers-Ulam-Rassias stability of homomorphisms in
Banach algebras.

Theorem 4.2. Let ξ = −α
β

and f : A → B a mapping satisfying limt∈R,t→0 f(tx) = 0

for all x ∈ A. When |α| > |β| and 0 < p < 1, or |α| < |β| and p > 1, if there exists
a θ ≥ 0 satisfying (2.2) such that

‖αf(x) + βf(y) + γf(z)‖B ≤ ‖f(αx + βy + γz)‖B

+ θ(‖x‖p
A + ‖y‖p

A + ‖z‖p
A) (4.1)

for all x, y, z ∈ A, then there exists a unique algebra homomorphism and ξ-additive
mapping H : A → B satisfying

‖f(x)−H(x)‖B ≤ θ(|α|p + |β|p)
|α||β|(|β|p−1 − |α|p−1)

‖x‖p
A (4.2)

for all x ∈ A.
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Proof. By Theorem 3.6 and Corollary 3.7 of [15], there exists a unique R-linear and
ξ-additive mapping H : A → B satisfying (4.2). The mapping H : A → B is defined

by H(x) := limn→∞
f(ξnx)

ξn for all x ∈ A.

By (2.2),

‖H(xy)−H(x)H(y)‖B = lim
n→∞

1

ξ2n
‖f(ξ2nxy)− f(ξnx)f(ξny)‖B

≤ lim
n→∞

ξ2np

ξ2n
θ(‖x‖2p

A + ‖y‖2p
A ) = 0

for all x, y ∈ A. So

H(xy) = H(x)H(y)

for all x, y ∈ A.
Therefore, the mapping H : A → B is an algebra homomorphism and ξ-additive

mapping, as desired. �

Now we establish another stability of generalized additive functional inequalities.

Theorem 4.3. Let ξ = −α
β

and f : A → B a mapping satisfying limt∈R,t→0 f(tx) = 0

for all x ∈ A. When |α| > |β| and p > 1, or |α| < |β| and 0 < p < 1, if there exists
a θ ≥ 0 satisfying (2.2) and (4.1), then there exists a unique algebra homomorphism
and ξ-additive mapping H : A → B satisfying

‖f(x)−H(x)‖B ≤ θ(|α|p + |β|p)
|α||β|(|α|p−1 − |β|p−1)

‖x‖p
A (4.3)

for all x ∈ A.

Proof. By Theorem 3.9 and Corollary 3.10 of [15], there exists a unique R-linear
and ξ-additive mapping H : A → B satisfying (4.3). The mapping H : A → B is
defined by H(x) := limn→∞ ξnf( x

ξn ) for all x ∈ A.

By (2.2),

‖H(xy)−H(x)H(y)‖B = lim
n→∞

ξ2n‖f(
xy

ξ2n
)− f(

x

ξn
)f(

y

ξn
)‖B

≤ lim
n→∞

ξ2n

ξ2np
θ(‖x‖2p

A + ‖y‖2p
A ) = 0

for all x, y ∈ A. So

H(xy) = H(x)H(y)

for all x, y ∈ A.
Therefore, the mapping H : A → B is an algebra homomorphism and ξ-additive

mapping, as desired. �

5. Stability of derivations on Banach algebras

In this section, we prove the Hyers-Ulam-Rassias stability of derivations on Banach
algebras.
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Theorem 5.1. Let ξ = −α
β

and f : A → A a mapping satisfying limt∈R,t→0 f(tx) = 0

for all x ∈ A. When |α| > |β| and 0 < p < 1, or |α| < |β| and p > 1, if there exists
a θ ≥ 0 satisfying (3.1) such that

‖αf(x) + βf(y) + γf(z)‖A ≤ ‖f(αx + βy + γz)‖A

+ θ(‖x‖p
A + ‖y‖p

A + ‖z‖p
A) (5.1)

for all x, y, z ∈ A, then there exists a unique derivation and ξ-additive mapping
D : A → A satisfying

‖f(x)−D(x)‖A ≤ θ(|α|p + |β|p)
|α||β|(|β|p−1 − |α|p−1)

‖x‖p
A (5.2)

for all x ∈ A.

Proof. By Theorem 3.6 and Corollary 3.7 of [15], there exists a unique R-linear and
ξ-additive mapping D : A → A satisfying (5.2). The mapping D : A → A is defined

by D(x) := limn→∞
f(ξnx)

ξn for all x ∈ A.

By (3.1),

‖D(xy)−D(x)y − xD(y)‖A = lim
n→∞

1

ξ2n
‖f(ξ2nxy)− f(ξnx) · ξny − ξnx · f(ξny)‖A

≤ lim
n→∞

ξ2np

ξ2n
θ(‖x‖2p

A + ‖y‖2p
A ) = 0

for all x, y ∈ A. So
D(xy) = D(x)y + xD(y)

for all x, y ∈ A.
Therefore, the mapping D : A → A is a derivation and ξ-additive mapping, as

desired. �

Theorem 5.2. Let ξ = −α
β

and f : A → A a mapping satisfying limt∈R,t→0 f(tx) = 0

for all x ∈ A. When |α| > |β| and p > 1, or |α| < |β| and 0 < p < 1, if there
exists a θ ≥ 0 satisfying (3.1) and (5.1), then there exists a unique derivation and
ξ-additive mapping D : A → A satisfying

‖f(x)−D(x)‖A ≤ θ(|α|p + |β|p)
|α||β|(|α|p−1 − |β|p−1)

‖x‖p
A (5.3)

for all x ∈ A.

Proof. By Theorem 3.9 and Corollary 3.10 of [15], there exists a unique R-linear and
ξ-additive mapping D : A → A satisfying (5.3). The mapping D : A → A is defined
by D(x) := limn→∞ ξnf( x

ξn ) for all x ∈ A.

By (3.1),

‖D(xy)−D(x)y − xD(y)‖A = lim
n→∞

ξ2n‖f(
xy

ξ2n
)− f(

x

ξn
) · y

ξn
− x

ξn
· f(

y

ξn
)‖A

≤ lim
n→∞

ξ2n

ξ2np
θ(‖x‖2p

A + ‖y‖2p
A ) = 0

for all x, y ∈ A. So
D(xy) = D(x)y + xD(y)
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for all x, y ∈ A.
Therefore, the mapping D : A → A is a derivation and ξ-additive mapping, as

desired. �
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35. Th.M. Rassias and P. Šemrl, On the Hyers-Ulam stability of linear mappings, J. Math. Anal.
Appl. 173 (1993), 325–338.

36. J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequa-
tiones Math. 66 (2003), 191–200.
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