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Abstract

Finding a zero of a maximal monotone operator is known as one of the most impressive problems which are
associated with convex analysis and mathematical optimization. Akin to this is solving the fixed point problems
of the class of nonexpansive mappings, which constitutes an important part of nonlinear operators with fascinating
applications in several areas such as signal processing and image restoration. This study presents a monotone hybrid
algorithm for finding a common element of the zero point set of a maximal monotone operator and the fixed point set
of a family of a generalized nonexpansive mapping in a Banach space. Suitable conditions under which the algorithm
converges strongly are established.
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1 Introduction

Let E be a real Banach space with the dual space E∗ and let A ⊂ E × E∗ be a maximal monotone operator. If
0 ∈ Ax, then x is called a zero of A. The problem of finding such a point is known as one of the most impressive
problems which are associated with convex analysis and mathematical optimization (See, e.g., [11, 10, 15, 20]). Such
problems have applications in economics, science and engineering and indeed, they have connection with variational
inequality problems. The equivalence of variational inequalities to fixed point problems is well known (See, e.g.,
[16, 3, 24, 22]). Let K be a nonempty closed convex subset of E and T : K → K be a self mapping of K. The set of
fixed points of T will be denoted by F (T ) := {x : Tx = x} . A self mapping T : K → K is said to be nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ K,
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and a mapping T : K → E is said to be generalized nonexpansive provided F (T ) ̸= ∅ and

ϕ(p, Tx) ≤ ϕ(p, x) for all x ∈ K and p ∈ F (T ).

The class of nonexpansive mappings constitutes an important part of nonlinear operators. Signal processing and
image restoration are classical examples of where the iterative processes on the class of nonexpansive mappings have
been applied (see, e.g., [6, 4]). For a nonexpansive self-mapping T in a Hilbert space H, Qin and Su [18] presented a
monotone hybrid method: 

x1 = x ∈ K,K0 = Q0 = K,

un = βnxn + (1− βn)Txn,

Kn = {u ∈ Kn−1 ∩Qn−1 : ∥u− un∥ ≤ ∥u− xn∥}
Qn = {u ∈ Kn−1 ∩Qn−1 : ⟨xn − u, x− xn⟩ ≥ 0}
xn+1 = PKn∩Qn

x,

(1.1)

and established its strong convergence under appropriate control conditions. Klin-eam et al. [12], extended the above
result by considering a family of generalized nonexpansive mappings in a Banach space E and presented a monotone
hybrid iterative method as 

x1 = x ∈ K,K0 = Q0 = K,

un = βnxn + (1− βn)Tnxn,

Kn = {u ∈ Kn−1 ∩Qn−1 : ϕ(u, un) ≤ ϕ(u, xn)}
Qn = {u ∈ Kn−1 ∩Qn−1 : ⟨xn − u, Jx− Jxn⟩ ≥ 0}
xn+1 = RKn∩Qn

x,

(1.2)

where J denotes the duality mapping on E, RKn∩Qn
is the sunny nonexpansive retraction from K onto Kn∩Qn, {Tn}

is defined from T : K → E by
Tnx = αnx+ (1− αn)Tx (1.3)

and
Tnx = αnTx+ (1− αn)Gx, (1.4)

x ∈ K and {αn} ⊂ (0, 1), while T and G are generalized nonexpansive mappings.

Being motivated by the previous studies monotone hybrid algorithms and the class of generalized nonexpansive
mappings, this paper will present a new monotone hybrid algorithm. This study considers the family of generalized
nonexpansive mappings in a Banach space and finds a common element of their fixed point set and the zero point set
of a maximal monotone operator. The study demonstrates the proof of a strong convergence theorem for a proposed
monotone hybrid algorithm to a common element of the zero point set of a maximal monotone operator and the fixed
point set of a family of generalized nonexpansive mappings in a Banach space.

2 Preliminaries

Let E be a real Banach space with the dual space E∗ and S(E) := {x ∈ E : ∥x∥ = 1}. The norm ∥.∥ of E is said
to be Gâteaux differentiable provided the limit

lim
t→0

∥x+ ty∥ − ∥x∥
t

(2.1)

exists for all x, y ∈ S(E) with ∥x∥ = ∥y∥ = 1. In such a case, E is said to be smooth. In addition, E is said to
be uniformly smooth if it is smooth and the limit (2.1) is attained uniformly for each x, y ∈ S(E). The modulus of
convexity of a Banach space E, δE : (0, 2] → [0, 1] is defined by

δE(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ = ∥y∥ = 1, ∥x− y∥ > ϵ

}
.

E is uniformly convex if and only if δE(ϵ) > 0 for every ϵ ∈ (0, 2]. A Banach space E is said to be strictly convex if
∥x+ y∥ < 2 for all x, y ∈ E whenever ∥x∥ = ∥y∥ = 1 and x ̸= y. It is well known that a space E is uniformly smooth
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if and only if E∗ is uniformly convex. The sets of all positive integers and real numbers will be denoted by N and R,
respectively. The normalized duality mapping J from E to 2E

∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥∥x∗∥, ∥x∗∥ = ∥x∥} ∀ x ∈ E.

J is known to be uniformly norm-to-norm continuous on bounded sets of E if E is uniformly smooth. For a given
Banach space E, let A ⊂ E × E∗ be a multi-valued operator. A is said to be monotone if for all (x, x∗), (y, y∗) ∈ A,

⟨x− y, x∗ − y∗⟩ ≥ 0,

and it is said to be maximal monotone if it is monotone and its graph is not properly contained in the graph of any
other monotone mapping. For a maximal monotone operator A, the set A−1(0) := {x ∈ E : Ax = 0} is closed and
convex. According to a result of Rockafellar [21], in a given strictly convex, smooth and reflexive Banach space E, A
is said to be maximum monotone if it is monotone and the range of (J + rA) is all of E∗ for all r > 0.

Definition 2.1. For a given smooth Banach space E, define the function φ : E × E → R by

ϕ(x, y) = ∥x∥2 − 2 ⟨x, Jy⟩+ ∥y∥2,

for all x, y ∈ E. In a Hilbert space, it is expressed as ϕ(x, y) = ∥x− y∥2 ≥ 0. The following identity holds for all
x, y, z ∈ E :

(i) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2 ,

(ii) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2 ⟨x− z, Jz − Jy⟩ ,

(iii) ϕ(x, y) = ⟨x, Jx− Jy⟩+ ⟨x− y, Jy⟩ ≤ ∥x∥∥Jx− Jy∥+ ∥x− y∥∥y∥.

Definition 2.2. Resolvent: Let E be a strictly convex, smooth, and reflexive Banach space and A ⊂ E × E∗ a
maximal monotone mapping. Given r > 0 and x ∈ E, then there exists a unique xr ∈ D(A) such that Jx ∈ Jxr+rAxr.
Thus one can define a single-valued mapping Jr : E → D(A) by

Jrx = {z ∈ D(A) : Jx ∈ Jz + rAz} ,

which is called the resolvent of A. Jrx consists of one point and for all r > 0, A−1(0) = F (Jr), where F (Jr) is the set
of fixed points of Jr. Also, for all r > 0 and x ∈ E, the Yosida approximation Ar : C → E∗ is defined by

Arx =
1

r
(J − JJr)x.

For all r > 0 and x ∈ E, the following hold (See, for example, [13, 9])

(i) ϕ(p, Jrx) + ϕ(Jrx, x) ≤ ϕ(p, x) for all p ∈ A−1(0).

(ii) (Jrx,Arx) ∈ A.

Definition 2.3. Metric projection: Let K be a nonempty closed convex subset of a Hilbert space H. A mapping
PK : H → K of H onto K satisfying

∥x− PKx∥ = min
y∈K

∥x− y∥,

is called the metric projection. This set is known to be a singleton. The metric projection has the important property
that; for x ∈ H and x0 ∈ K,x0 = PKx if and only if

⟨x− x0, x0 − y⟩ ≥ 0 ∀ y ∈ K.

Definition 2.4. Retraction: Let K be nonempty subset of a Banach space E. A mapping R : E → K is called
sunny if

R(Rx+ α(x−Rx)) = Rx,

for all x ∈ E and all α ≥ 0. If Rx = x for all x ∈ K, it is also called a retraction. A retraction which is also sunny
and nonexpansive is called a sunny nonexpansive retraction. If E is a smooth Banach space, the sunny nonexpansive
retraction of E onto K is denoted by RK . K is said to be a sunny generalized nonexpansive retract of E provided
that there exists a sunny generalized nonexpansive retraction R from E onto K.
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The following results on sunny generalized nonexpansive retraction will be needed and for their proof, see [9, 14].

Lemma 2.5. Let K be a nonempty closed subset of a smooth and strictly convex Banach space E. Let RK be a
retraction of E onto K. Then RK is sunny and generalized nonexpansive if and only if

⟨x−RKx, JRKx− Jy⟩ ≥ 0

for each x ∈ E and y ∈ K.

Lemma 2.6. Let K be a nonempty closed subset of a smooth and strictly convex Banach space E such that there
exists a sunny generalized nonexpansive retraction R from E onto K and let (x, z) ∈ E ×K. Then the following hold:

(i) z = Rx if and only if ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ K;

(ii) ϕ(x,RKy) + ϕ(RKy, y) ≤ ϕ(x, y).

Lemma 2.7. Let E be a smooth, strictly convex and reflexive Banach space and let K be a nonempty closed subset
of E. Then the following are equivalent:

(i) K is a sunny generalized nonexpansive retract of E;

(ii) K is a generalized nonexpansive retract of E;

(iii) JK is closed and convex.

The following results are well known results and will be applied to establish the main results.

Lemma 2.8. Let E be a uniformly convex and smooth Banach space and let {un} and {vn} be two sequences in E
such that either {un} or {vn} is bounded. If lim

n→∞
φ(un, vn) = 0, then lim

n→∞
∥un − vn∥ = 0 (See [11]).

Lemma 2.9. Let E be a uniformly convex and smooth Banach space and let d > 0. Then there exists a strictly
increasing, continuous and convex function g : [0,∞) → [0,∞) such that g(0) = 0 and

g (∥x− y∥) ≤ ϕ(x, y)

for all x, y ∈ Bd(0), where Bd(0) = {z ∈ E : ∥z∥ ≤ d} (See, for example, [11]).

Lemma 2.10. Let E be a uniformly convex Banach space and let d > 0. Then there exists a strictly increasing,
continuous and convex function g : [0,∞) → [0,∞) such that g(0) = 0 and

∥αx+ (1− α)y∥2 ≤ α∥x∥2 + (1− α)∥y∥2 − α(1− α)g (∥x− y∥)

for all x, y ∈ Bd(0) and α ∈ [0, 1], where Bd(0) = {w ∈ E : ∥w∥ ≤ d} (See, for example, [26]).

Lemma 2.11. Let E be a smooth and strictly convex Banach space, let p ∈ E and let {αi}mi ⊂ (0, 1) with
∑m

i αi = 1.
If {αi}mi is a finite sequence in E such that

ϕ

(
p, J−1

(
m∑
i

αiJzi

))
= ϕ (p, zi) ,

then z1 = z2 = ... = zm(See, for example, [8]).

3 Main Results

Lemma 3.1. Let E be a strictly convex, smooth, and reflexive Banach space and let A ⊂ E × E∗ be a maximal
monotone mapping with A−1(0) ̸= ∅. For each λ > 0, let Jλ : E → E be the resolvent of A for λ. Then Jλ is a
generalized nonexpansive mapping.
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Proof . Let x ∈ E, y ∈ F (Jλ) and λ > 0. Since A is maximal monotone, recall that A−1(0) = F (Jλ). Apply Definition
2.2(i) to have

ϕ(y, Jλx) + ϕ(Jλx, x) ≤ ϕ(y, x) for all y ∈ A−1(0).

By Definition 2.1(i), ϕ(Jλx, x) ≥ 0. Consequently

ϕ(y, Jλx) ≤ ϕ(y, x).

□

Theorem 3.2. Let K be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach space
E and RK : E → K be a sunny and generalized nonexpansive retraction from E onto K. For all λ > 0, let Jλ : E → E
denote the resolvent which is associated with a maximal monotone mapping A ⊂ E × E∗. Let T and G be closed
generalized nonexpansive mappings from K to E with Γ = {T,G} such that F (Γ) ∩ A−1(0) ̸= ∅. For each n ∈ N,
define the sequence {xn} by 

x1 = x ∈ K, K0 = Q0 = K,

un = J−1 (βnJxn + (1− βn)JSnRK (Jλnxn)) ,

vn = J−1 (γnJun + (1− γn)JSnRK (Jλn
xn)) ,

Kn = {u ∈ Kn−1 ∩Qn−1 : ϕ(u, vn) ≤ ϕ(u, xn)}
Qn = {u ∈ Kn−1 ∩Qn−1 : ⟨xn − u, Jx− Jxn⟩ ≥ 0}
xn+1 = RKn∩Qn

x,

where J is the duality mapping on E and {Sn} is a countable family of generalized nonexpansive mappings such that
the mapping Sn from K into E is given by

Snx = J−1 (αnJTx+ (1− αn) JGx) , (3.1)

for all x ∈ K. Suppose that the real sequence {αn} , {βn} and {γn} are such that lim inf
n→∞

αn(1− αn) > 0, lim inf
n→∞

(1−
βn) > 0 and lim

n→∞
γ = 1, while {λn} ⊂ [a,∞) for some a > 0. Then the sequence {xn} converges strongly to

RF (Γ)∩A−1(0)x, where RF (Γ)∩A−1(0) is the sunny nonexpansive retraction from K onto F (Γ) ∩A−1(0).

Proof . Step 1: It can be easily shown that Sn is a generalized nonexpansive mapping for each n ∈ N and
∞⋂

n=1

F (Sn) = F (Γ). Indeed, observe that

F (Γ) = F (T ) ∩ F (G) ⊂
∞⋂

n=1

F (Sn). (3.2)

Therefore, for p ∈ F (Γ) and x ∈ K,

ϕ (p, Snx) = ϕ
(
p, J−1 (αnJTx+ (1− αn) JGx)

)
= ∥p∥2 − 2 ⟨p, αnJTx+ (1− αn) JGx⟩+ ∥αnJTx+ (1− αn) JGx∥2

≤ ∥p∥2 − 2αn ⟨p, JTx⟩ − 2(1− αn) ⟨p, JGx⟩+ αn∥Tx∥2 + (1− αn)∥Gx∥2

= αnϕ (p, Tx) + (1− αn)ϕ (p,Gx)

≤ αnϕ (p, x) + (1− αn)ϕ (p, x)

= ϕ (p, x) .

Therefore, Sn is a generalized nonexpansive. Moreover, for q ∈
∞⋂

n=1

F (Sn),

ϕ(p, q) = ϕ (p, Snq)

= ϕ
(
p, J−1 (αnJTq + (1− αn) JGq)

)
= ∥p∥2 − 2 ⟨p, αnJTq + (1− αn) JGq⟩+ ∥αnJTq + (1− αn) JGq∥2
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≤ ∥p∥2 − 2αn ⟨p, JTq⟩ − 2(1− αn) ⟨p, JGq⟩+ αn∥Tq∥2 + (1− αn)∥Gq∥2

= αnϕ (p, Tq) + (1− αn)ϕ (p,Gq)

≤ αnϕ (p, q) + (1− αn)ϕ (p, q)

= ϕ (p, q) ,

which shows clearly that

ϕ
(
p, J−1 (αnJTq + (1− αn) JGq)

)
= αnϕ (p, Tq) + (1− αn)ϕ (p,Gq) = ϕ (p, q) .

Apply Lemma 2.11 to get Tq = Gq, which implies that q = Snq = Tq = Gq. Therefore, F (Tn) ⊂ F (Γ) for all

n ∈ N. Consequently,
∞⋂

n=1

F (Sn) = F (Γ).

Step 2: To verify the closedness and convexity of Kn and Qn for all n ∈ N. It is known from their definitions that
Kn is closed and Qn is closed and convex for each n ∈ N. To show that Kn is convex, observe that

ϕ(u, vn) ≤ ϕ(u, xn)

implies that for all u ∈ Kn,
∥xn∥2 − ∥vn∥2 − 2 ⟨u, Jxn − Jvn⟩ ≥ 0,

which is affine in u, and thus Kn is convex. So for all n ∈ N, Kn ∩Qn ⊂ E is closed and convex.

Step 3: We are to demostrate that F (Γ)∩A−1(0) ⊂ Kn∩Qn. We set yn = RK (Jrnxn) and for p ∈ F (Γ)∩A−1(0),

ϕ (p, un) = ϕ
(
p, J−1 (βnJxn + (1− βn)JSnyn)

)
= ∥p∥2 − 2 ⟨p, βnJxn + (1− βn)JSnyn⟩+ ∥βnJxn + (1− βn)JSnyn∥2

≤ ∥p∥2 − 2βn ⟨p, Jxn⟩ − 2(1− βn) ⟨p, JSnyn⟩+ βn∥xn∥2 + (1− βn)∥Snyn∥2

= βnϕ (p, xn) + (1− βn)ϕ (p, Snyn)

≤ βnϕ (p, xn) + (1− βn)ϕ (p, yn) (by generalized nonexpansive property of Sn) (3.3)

= βnϕ (p, xn) + (1− βn)ϕ (p,RK (Jrnxn))

≤ βnϕ (p, xn) + (1− βn)ϕ (p, Jrnxn) (by the property of RK)

≤ βnϕ (p, xn) + (1− βn)ϕ (p, xn) (y gbeneralized nonexpansive property of Jrn)

= φ (p, xn) .

Accordingly,

ϕ (p, vn) = ϕ
(
p, J−1 (γnJun + (1− γn)JSnyn)

)
= ∥p∥2 − 2 ⟨p, γnJun + (1− γn)JSnyn⟩+ ∥γnJun + (1− γn)JSnyn∥2

≤ ∥p∥2 − 2γn ⟨p, Jun⟩ − 2(1− γn) ⟨p, JSnyn⟩+ γn∥un∥2 + (1− γn)∥Snyn∥2

= γnϕ (p, un) + (1− γn)φ (p, Snyn)

≤ γnϕ (p, un) + (1− γn)ϕ (p, yn)

= γnϕ (p, un) + (1− γn)ϕ (p,RK (Jrnun))

≤ γnϕ (p, un) + (1− γn)ϕ (p, Jrnun)

≤ γnϕ (p, un) + (1− γn)ϕ (p, un)

≤ γnϕ (p, xn) + (1− γn)ϕ (p, xn)

= φ (p, xn) .

This is a justification that p ∈ Kn for all n ∈ N, consequently F (Γ) ∩ A−1(0) ⊂ Kn. To use induction to show
that F (Γ) ∩ A−1(0) ⊂ Qn for all n ∈ N, observe that by definition, for n = 1, F (Γ) ∩ A−1(0) ⊂ K = K0 ∩ Q0. It is
known that J is one-to-one, therefore J (Kn ∩Qn) = JKn ∩ JQn, which is closed convex. By Lemma 2.7, Kn ∩ Qn
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is a sunny generalized nonexpansive retract of E. For some i ∈ N, assume that F (Γ) ∩ A−1(0) ⊂ Ki−1 ∩Qi−1. Since
xi = RKi−1∩Qi−1

z, applying Lemma 2.5 leads to

⟨x− xi, Jxi − Jz⟩ ≥ 0,

for all z ∈ Ki−1 ∩Qi−1. So, it can be stated that

⟨x− xi, Jxi − Jz⟩ ≥ 0, ∀ z ∈ F (Γ) ∩A−1(0) (3.4)

as it is known that F (Γ) ∩ A−1(0) ⊂ Ki−1 ∩ Qi−1. By the inequality (3.4) and from the definition of Qn, it can be
deduced that F (Γ) ∩ A−1(0) ⊂ Qi and thus F (Γ) ∩ A−1(0) ⊂ Qn for all n ∈ N. So, F (Γ) ∩ A−1(0) ⊂ Kn ∩Qn for all
n ∈ N, which justifies that {xn} is well defined.

Step 4: It is shown here that as n → ∞, xn → RF (Γ)∩A−1(0)x. By the definition of Qn, one can have xn = RQnx.
Therefore by Lemma 2.6(ii),

ϕ(x, xn) = ϕ(x,RQnx) ≤ ϕ(x, u)− ϕ(RQnx, u) ≤ ϕ(x, u),

for all F (Γ)∩A−1(0) ⊂ Qn. Therefore, {ϕ(x, xn)} is bounded. Furthermore, by the definition of ϕ, it can be deduced
that {xn} , {un} and {vn} are bounded. This shows that the limit of {φ(x, xn)} exists. Given a positive integer j, it
can be obtained from xn = RQnx for each n ∈ N such that

φ (xn, xn+j) = ϕ (RQnx, xn+j) ≤ ϕ (x, xn+j)− ϕ (x,RQnx) ≤ ϕ (x, xn+j)− ϕ (x, xn) ,

which results in

lim
n→∞

ϕ(xn, xn+j) = 0. (3.5)

According to Lemma 2.9, there exists a strictly increasing, convex and continuous function g : [0, 2r] → [0,∞),
such that for i, j ∈ N with j > i,

g (∥xj − xi∥) ≤ ϕ (xj , xi) ≤ ϕ (xj , x0)− ϕ (xi, x0) .

A deduction from the property of g is that {xn} is Cauchy. Therefore, there exists w ∈ K such that xn → w. Consider
xn+1 = RKn∩Qn

x ∈ Kn and also from the definition of Kn, we have

ϕ (xn+1, xn)− ϕ (xn+1, vn) ≥ 0, ∀ n ∈ N. (3.6)

According to (3.5) and (3.6), one has that lim
n→∞

ϕ(xn+1, xn) = lim
n→∞

ϕ (xn+1, vn) = 0. Since E is uniformly convex

and smooth, apply Lemma 2.8 to have

lim
n→∞

∥xn+1 − xn∥ = lim
n→∞

∥xn+1 − vn∥ = 0, (3.7)

therefore

lim
n→∞

∥xn − vn∥ = 0. (3.8)

Due to the norm-to-norm uniform continuity of the duality mapping J on bounded sets, one can have that

lim
n→∞

∥Jxn+1 − Jxn∥ = lim
n→∞

∥Jxn+1 − Jvn∥ = ∥Jxn − Jvn∥ = 0. (3.9)

From (3.3), we see that

ϕ (p, yn) ≥
1

(1− βn)
(ϕ (p, un)− βnϕ (p, xn)) .
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Recall that yn := RK (Jrnxn) , thus,

ϕ (yn, xn) = ϕ (RK (Jrnxn) , xn) ≤ ϕ (p, xn)− ϕ (p, yn) ( by Lemma 2.6 (ii),)

≤ ϕ (p, xn)−
1

(1− βn)
(ϕ (p, un)− βnϕ (p, xn))

=
1

(1− βn)
(ϕ (p, xn)− ϕ (p, un))

=
1

(1− βn)

(
∥xn∥2 − ∥un∥2 − 2 ⟨p, Jxn − Jun⟩

)
≤ 1

(1− βn)

(
|∥xn∥2 − ∥un∥2|+ 2| ⟨p, Jxn − Jun⟩ |

)
≤ 1

(1− βn)
(|∥xn∥ − ∥un∥| (∥xn∥+ ∥un∥) + 2∥p∥∥Jxn − Jun∥)

≤ 1

(1− βn)
(∥xn − un∥ (∥xn∥+ ∥un∥) + 2∥p∥∥Jxn − Jun∥) .

Using (3.8) and (3.9), lim
n→∞

ϕ (yn, xn) = 0. Then by Lemma 2.8,

lim
n→∞

∥yn − xn∥ = 0. (3.10)

Additionally, observe that

∥Jxn+1 − Jun∥ = ∥Jxn+1 − βnJxn − (1− βn)JSnyn∥
= ∥(1− βn) (Jxn+1 − JSnyn)− βn (Jxn − Jxn+1) ∥
≥ (1− βn)∥Jxn+1 − JSnyn∥ − βn∥Jxn − Jxn+1∥.

So

∥Jxn+1 − JSnyn∥ ≤ 1

(1− βn)
(∥Jxn+1 − Jun∥+ βn∥Jxn − Jxn+1∥) .

Since it is given that lim inf
n→∞

(1− βn) > 0 and by considering (3.8), one can have that

lim
n→∞

∥Jxn+1 − JSnyn∥ = 0.

Recall that J−1 is norm-to-norm uniformly continuous on bounded sets. Thus

lim
n→∞

∥xn+1 − Snyn∥ = 0. (3.11)

Notice that
∥xn − Snyn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 − Snyn∥,

which by (3.7) and (3.11), results in

lim
n→∞

∥xn − Snyn∥ = 0. (3.12)

Similarly, observe that
∥yn − Snyn∥ ≤ ∥yn − xn∥+ ∥xn − Snyn∥,

by using (3.10) and (3.12), we have

lim
n→∞

∥yn − Snyn∥ = 0. (3.13)

Due to norm-to-norm uniform continuity of the duality mapping J on bounded sets and by (3.13),

lim
n→∞

∥Jyn − JSnyn∥ = 0.
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Since {yn} is bounded, {Tyn} and {Gyn} are bounded. Let r = max {supn ∥yn∥, supn ∥Tyn∥, supn ∥Gyn∥} . There-
fore, there exists r > 0 with Br(0) = {z ∈ E : ∥z∥ ≤ r} and {yn} , {Tyn} , {Gyn} ⊂ Br(0). According to Lemma 2.10,
there exists a strictly increasing, continuous and convex function g : [0,∞) → [0,∞) with g(0) = 0 such that for

p ∈
∞⋂

n=1

F (Sn),

ϕ (p, Snyn) = ϕ
(
p, J−1 (αnJTyn + (1− αn) JGyn)

)
= ∥p∥2 − 2 ⟨p, αnJTyn + (1− αn) JGyn⟩+ ∥αnJTyn + (1− αn) JGyn∥2

≤ ∥p∥2 − 2αn ⟨p, JTyn⟩ − 2(1− αn) ⟨p, JGyn⟩+ αn∥Tyn∥2

+(1− αn)∥Gyn∥2 − αn(1− αn)g (∥Tyn −Gyn∥)
= αnϕ (p, Tyn) + (1− αn)ϕ (p,Gyn)− αn(1− αn)g (∥Tyn −Gyn∥)
≤ αnϕ (p, yn) + (1− αn)ϕ (p, yn)− αn(1− αn)g (∥Tyn −Gyn∥)
= ϕ (p, yn)− αn(1− αn)g (∥Tyn −Gyn∥) .

In view of this,

αn(1− αn)g (∥Tyn −Gyn∥) ≤ ϕ (p, yn)− ϕ (p, Snyn) . (3.14)

Let {∥Tyni −Gyni∥} be any subsequent set of {∥Tyn −Gyn∥} . Since {yni} is known to be bounded, there exists

a subsequent set
{
yn′

j

}
of {yni} such that

lim
j→∞

ϕ
(
p, yn′

j

)
= lim sup

i→∞
ϕ (p, yni

) = 0.

Using Definition 2.1 ((ii) and (iii)) leads to

ϕ
(
p, yn′

j

)
= ϕ

(
p, Sn′

j
yn′

j

)
+ ϕ

(
Sn′

j
yn′

j
, yn′

j

)
+ 2

〈
p− Sn′

j
yn′

j
, JSn′

j
yn′

j
− Jyn′

j

〉
≤ ϕ

(
p, Sn′

j
yn′

j

)
+ ∥Sn′

j
yn′

j
∥∥JSn′

j
yn′

j
− Jyn′

j
∥

+ ∥Sn′
j
yn′

j
− yn′

j
∥∥yn′

j
∥+ 2∥p− Sn′

j
yn′

j
∥∥JSn′

j
yn′

j
− Jyn′

j
∥.

(3.15)

Consequently,

c = lim inf
j→∞

ϕ
(
p, ynj

)
= lim inf

j→∞
ϕ
(
p, Sn′

j
yn′

j

)
.

On the other hand, φ (p, Snyn) ≤ φ (p, yn) results in

lim sup
j→∞

ϕ
(
p, Sn′

j
yn′

j

)
= lim sup

j→∞
ϕ
(
p, ynj

)
= c,

hence
lim
j→∞

ϕ
(
p, ynj

)
= lim

j→∞
ϕ
(
p, Sn′

j
yn′

j

)
= c.

Since it is already given that lim inf
n→∞

αn(1−αn) > 0, the deduction from (3.14) is that lim
j→∞

g
(
∥Tyn′

j
−Gyn′

j
∥
)
= 0.

The properties of the function g lead to the deduction that lim
j→∞

∥Tyn′
j
−Gyn′

j
∥ = 0, and for that reason

lim
n→∞

∥Tyn −Gyn∥ = 0.

Considering that

∥yn − Tyn∥ ≤ ∥yn − Snyn∥+ ∥Snyn − Tyn∥ = ∥yn − Snyn∥+ (1− αn)∥Gyn − Tyn∥,

leads to lim
n→∞

∥yn − Tyn∥ = 0. In a similar manner, lim
n→∞

∥yn −Gyn∥ = 0. Hence,
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lim
n→∞

∥yn − Syn∥ = 0 ∀ S ∈ Γ. (3.16)

By (3.10) and (3.16),
∥xn − Syn∥ ≤ ∥xn − yn∥+ ∥yn − Syn∥ → 0 as n → ∞.

Since xn → w and by (3.10), one can deduce that yn → w. It is known that S is closed since the elements of the
set Γ are closed, and moreover yn → w, thus w is a fixed point of S. The next task is to show that w ∈ A−1(0). Given
that E is uniformly smooth, from (3.10), one can have that

lim
n→∞

∥Jxn − Jyn∥ = 0.

For λn ≥ a, one can have that

lim
n→∞

1

λn
∥Jxn − Jyn∥ = 0.

As a consequence of this,

lim
n→∞

∥Aλn
xn∥ = lim

n→∞

1

λn
∥Jxn − Jyn∥ = 0.

For (z, z∗) ∈ A, the monotonicity of A gives that

⟨z − wn, z
∗ −Aλn

xn⟩ ≥ 0 for all n ∈ N.

As n → ∞, this results in
⟨z − w, z∗⟩ ≥ 0.

Given that A is maximal monotone confirms that w ∈ A−1(0). Lastly, it is required to show that w = RF (Γ)∩A−1(0)x.
Apply Lemma 2.6 to get

ϕ
(
w,RF (Γ)∩A−1(0)x

)
+ ϕ

(
RF (Γ)∩A−1(0)x, x

)
≤ ϕ (w, x) .

Since xn+1 = RKn∩Qnx and w ∈ F (Γ) ∩A−1(0) ⊂ Kn ∩Qn, by Lemma 2.6,

ϕ
(
RF (Γ)∩A−1(0)x, xn+1

)
+ ϕ (xn+1, x) ≤ ϕ

(
RF (Φ)∩A−1(0)x, x

)
.

From the definition of ϕ, one has that ϕ (w, x) ≤ ϕ
(
RF (Γ)∩A−1(0)x, x

)
and ϕ (w, x) ≥ φ

(
RF (Γ)∩A−1(0)x, x

)
, thus,

ϕ (w, x) = ϕ
(
RF (Γ)∩A−1(0)x, x

)
. Thus, since RF (T )∩A−1(0)x is unique, it can be concluded that w = RF (Γ)∩A−1(0)x. □

The proof of the following results can be deduced from the main result of this paper, which is Theorem 3.2.

Corollary 3.3. Let K be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach
space E and RK : E → K be a sunny and generalized nonexpansive retraction from E onto K. For all λ > 0, let
Jλ : E → E denote the resolvent which is associated with a maximal monotone mapping A ⊂ E × E∗. Let T and G
be closed generalized nonexpansive mappings from K to E with Γ = {T,G} such that F (Γ) ∩ A−1(0) ̸= ∅. For each
n ∈ N, define the sequence {xn} by

x1 = x ∈ K, K0 = Q0 = K,

un = J−1 (βnJxn + (1− βn)JSnRK (Jλn
xn)) ,

Kn = {u ∈ Kn−1 ∩Qn−1 : ϕ(u, vn) ≤ ϕ(u, xn)}
Qn = {u ∈ Kn−1 ∩Qn−1 : ⟨xn − u, Jx− Jxn⟩ ≥ 0}
xn+1 = RKn∩Qn

x,

where {Sn} is a countable family of generalized nonexpansive mappings such that the mapping Sn from K into E
is given by (3.1) and J is the duality mapping on E. Suppose that the real sequence {αn} and {βn} are such that
lim inf
n→∞

αn(1 − αn) > 0, lim inf
n→∞

(1 − βn) > 0 and {λn} ⊂ [a,∞) for some a > 0. Then the sequence {xn} converges

strongly to RF (Γ)∩A−1(0)x, where RF (Γ)∩A−1(0) is the sunny nonexpansive retraction from K onto F (Γ) ∩A−1(0).

Proof . By letting γn = 1 for all n ∈ N in Theorem 3.2, the desired result follows. □
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Corollary 3.4. Let K be a nonempty closed convex subset of a uniformly convex and uniformly smooth Banach
space E and RK : E → K be a sunny and generalized nonexpansive retraction from E onto K. For all λ > 0, let
Jλ : E → E denote the resolvent which is associated with a maximal monotone mapping A ⊂ E × E∗. Let T be a
closed generalized nonexpansive mapping from K to E and such that F (T ) ∩A−1(0) ̸= ∅. For each n ∈ N, define the
sequence {xn} by 

x1 = x ∈ K, K0 = Q0 = K,

un = J−1 (βnJxn + (1− βn)JTRK (Jλn
xn)) ,

vn = J−1 (γnJun + (1− γn)JTRK (Jλn
xn)) ,

Kn = {u ∈ Kn−1 ∩Qn−1 : ϕ(u, vn) ≤ ϕ(u, xn)}
Qn = {u ∈ Kn−1 ∩Qn−1 : ⟨xn − u, Jx− Jxn⟩ ≥ 0}
xn+1 = RKn∩Qn

x,

where J is the duality mapping on E. Suppose that the real sequence {βn} and {γn} are such that lim inf
n→∞

(1− βn) >

0, lim
n→∞

γ = 1, and {λn} ⊂ [a,∞) for some a > 0. Then the sequence {xn} converges strongly to RF (T )∩A−1(0)x, where

RF (T )∩A−1(0) is the sunny nonexpansive retraction from K onto F (T ) ∩A−1(0).

Proof . By letting αn = 1 for all n ∈ N in Theorem 3.2, it is obvious that {Sn} = {T} . Then the desired result
follows. □

The main result of this paper generalizes the result below which is in the framework of Hilbert spaces.

Corollary 3.5. LetK be a nonempty closed convex subset of Hilbert spaceH and PK : H → K be a metric projection
from H onto K. For all λ > 0, let Jλ : H → H denote the resolvent which is associated with a maximal monotone
mapping A ⊂ H ×H. Let T and G be closed generalized nonexpansive mappings from K to H with Γ = {T,G} such
that F (Γ) ∩A−1(0) ̸= ∅. For each n ∈ N, define the sequence {xn} by

x1 = x ∈ K, K0 = Q0 = K,

un = βnxn + (1− βn)SnRK (Jλnxn) ,

vn = γnun + (1− γn)SnRK (Jλn
xn) ,

Kn = {y ∈ Kn−1 ∩Qn−1 : ∥y − un∥ ≤ ∥y − xn∥}
Qn = {y ∈ Kn−1 ∩Qn−1 : ⟨xn − y, x− xn⟩ ≥ 0}
xn+1 = PKn∩Qn

x,

where {Sn} is a countable family of generalized nonexpansive mappings such that the mapping Sn from K into
H is given by (3.1). Suppose that the real sequence {αn} , {βn} and {γn} are such that lim inf

n→∞
αn(1 − αn) >

0, lim inf
n→∞

(1−βn) > 0 and lim
n→∞

γ = 1, while {λn} ⊂ [a,∞) for some a > 0. Then the sequence {xn} converges strongly

to PF (Γ)∩A−1(0)x, where PF (Γ)∩A−1(0) is the metric projection from K onto F (Γ) ∩A−1(0).

Proof . Recall that in a Hilbert space, ϕ(x, y) = ∥x− y∥2 for all x, y ∈ H and J is the identity mapping. Therefore,
the desired result readily follows from Theorem 3.2. □

Conclusion

Many problems in machine learning, signal processing and image recovery can be modeled as contructing zeros of
a maximal monotone operator and finding the fixed point problems of the class of nonexpansive mappings. Most of
the proposed algorithms in the literature are for either the class of nonexpansive mappings (See e.g., [2, 1, 17, 25, 19])
or monotone type mappings (See e.g., [5, 7, 23]). In this paper, a monotone hybrid algorithm is presented for finding
a common element of the zero point set of a maximal monotone operator and the fixed point set of a family of
generalized nonexpansive mappings in a Banach space. Moreover, a strong convergence result is established under
suitable conditions. The parameters in the main theorem which satisfy the stated conditions are {αn} =

{
1
2 + 1

5n

}
,

{βn} =
{

2
3 − 1

2n

}
and {βn} =

{
1− 1

5+n

}
.
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