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Abstract

Our work proposes a new numerical method for finding the solution of three-dimensional Volterra-Hammerstein integral
equations by using three-dimensional hybrid block-pulse functions and Legendre polynomials. Our integral equation
is converted to a system of nonlinear equations. An error bound for the suggested method is established. Eventually,
some numerical examples illustrate that our method is feasible and efficient.
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1 Introduction

An influential tool for modeling and solving engineering and science problems is multidimensional differential and
integral equations [2, [I3]. We consider three-dimensional hybrid block-pulse functions and Legendre polynomials for
solving Volterra-Hammerstein integral equation

T py oz
w(@,y,2) = v (2,9,2) + / / / k (2,9, 29, 0,7) ¥ (9, 4,7, w(p, ¢, 7)) drdadp, (1.1)
0 0 0

where w(z, y, z) is unknown and defined on A = [0,1) x [0,1) x [0, 1), functions v, k, and 9 are specified functions that
1 is defined on A x (—00,400). Valuable properties of hybrid functions is the main reason that are applied to solving
integral equations[5]. For instance, different choices for the number of subintervals and the degree of the polynomials
can lead to more accurate results. Volterra-Hammerstein integral equations are used in fields like electromagnetism,
communication theory, and potential theory [II, 12]. The existence conclusions for the solution of two-dimensional form
of have been considered in [3].

The authors in [I4] have solved system of Volterra-Hammerstein integral equations by the three-dimensional block-
pulse functions. Some Numerical techniques of finding approximate solution of Volterra-Hammerstein integral equa-
tions have been investigated in[I1] [10].
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In [8] nonlinear mixed Volterra-Fredholm integral equations have been solved by three-dimensional block-pulse
functions. In [6] Bernstein’s approximation has been used to solve three-dimensional integral equations. Nonlinear
mixed integral equations have been solved by triangular functions in [7].

2 Existence and uniqueness of solution

We want to find sufficient condition for uniqueness of the solution of the three dimensional volterra-Hammerstein
integral equation. Now, we suppose that

Uz, y,z,p,4,m,w(p,¢,7)) = k(z,9, 2,0, ¢, 7)Y (p, ¢, 7, 0 (P, ¢, 7))
Consider integral equation on the complete metric space of real-valued functions (C(0), d) where
d(wr,w2) = sup{lwi(p, ¢,7) = wa(p,q,7)|: (p,q,7) € O},
with @ =[0,1] x [0,1] x [0,1] .

Theorem 2.1. Assume that v and U are continuous functions on © and © x © x R |, respectively. Let B < 1 be a
nonnegative constant where

|U($a97Z7p7q77"7wl(p7%7“)) - U(x7yaZapaQ7T7w2(p7Q7r))| < B|W1(Paq77’) - wQ(pvan)la
Then (1.1) has a unique solution on ©.

Proof . Take the sequence

Wit (7,y,2) =v (2,9, 2 / / / (z,y,2,0,q4,7) ¢ (p, q, 7, wn(p, q,7)) drdgdp,

where n =1,2,.... We have

‘wn+1(3373/7 ) wn T, Y,z / / / |U .’17 Y, 20,4, T, Wn+1(p7Q7 )) - U(w7yazapaQ7Tawn(p7qﬂr))|drdqdp

/ / / |w7l+1 b,q,7 ) n(p7 q,'f')|d7’dqdp

d Wnawn 1)

Thus d(wn11,wy) < Bd(wn,wn_1) < B td(ws, w;). Weierstrass M-Test and 0 < B < 1 implies that the following

series
oo

D (W1 (pgr) = wa(p.q. 1)),

n=1
is uniformly and absolutely convergent on ©. We know that

n—1

wn(p,q,7) = wi(p,q.7) + Z(wi+1(p-q-7“) —wi(p.q,7)),

since (C(0),d) is a complete metric space, we have a unique solution w € C'(©) that
lim wy(p, q,7) = w(p,q,7),
n—oo

which gives

w(p,g;r) = lim wni1(p,g,r

n—

= nlgngo (z,9,2 / / (z,y,2,p,q,7, wn(p, q,7))drdqdp]
Yy
=v(2,9,2 +/ / / U(z,y,z,p,q,r, im w,(p,q,r))drdqdp
0 0 0 n— o0
Yy z
=v(2,9,2 +/ / / U(z,y,2,p,q,7m,w(p,q,7))drdgdp.
0 0 0
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Consequently, unique solution w is given by

w(z,y,2) =v(z,y,2 / / / U(z,y,2,p,q,7,w(p,q,r))drdgdp.

3 Properties of three-dimensional hybrid functions

Hybrid of block-pulse and Legendre polynomials on A are defined as follows:

Lg, 2Nz — 201 + 1) Lg, (2Ny — 202 + 1) Lg, 2Nz —2a3 + 1), (z,y,2) € I
¢041510L252,043B3 (ZE,y,Z) = 0

,elsewhere

where ay, a0, 03 =1,2,...,N , 51,P2,03 =0,1,..., M —1,M and N are positive integers, and the interval I is defined
by I = [0‘1]\71, %) X [”T_l7 %) X [a?}V L N) Here Lg,, Lg,, and Lg, are the Legendre Polynomials defined on [—1, 1]
and we have

Lo(z) =1, Li(z) ==, Lypii(z) =

2m +1
L., —7Lm m=1,2,3,....
m+1x (z) m+1 1(@), 3

Orthogonality of three-dimensional hybrid of block-pulse and Legendre polynomials can be detected by

1,1 opl
/ / / ¢a161a2ﬁ2a353 (3:7 Ys Z) ¢“/15w2527353 (m, Y Z) dzdydzx
o Jo Jo

= {N3<2ﬁ1+1>(2}32+1>(253+1) Y01 =, 02 = 2,08 =, f1 = 01, B2 = 02, 83 = 05

0 ,elsewhere

The set of all quadratically integrable and measurable functions is denoted by Y = L?(A). The norm is defined

by
lwly = (w,w) %: ///|wmy, |dzdydm)%

Now we consider

Yy m zsapn{¢101010, P1010115 - - - ¢10101(M—1)7 ®101020 P1010215 - - - » ¢10102(M—1)7 s
s ON(M—1)N(M—1)N0>s DN(M—1)N(M—1)N15 - - s ON(M—1)N(M—1)N(M—1) }

Yn ar is finite dimensional and a subspace of the Hilbert space Y, so if w € Y then there exists wy y € Y, such
that

lw = wxarlly = dnf =],
which yields
N M-1 M-1 N M-1
w(x,y,z) = wN,M('rv:%z) = Z Z Z walﬁlazﬂzasﬁs¢a1[31a2ﬁ’2(13[33 ($7yvz)
a1=1 p1=0 az=1 B2=0 az=1 B3=0
=Wle(z,y,2), (3.1)
where
W = [w101010, w1010115 - - - 5 W10101(M —1)> W1010205 W1010215 - - - , W10102(M —1)5 - - -5
WN(M—-1)N(M—-1)NOs WN(M—-1)N(M—1)N1;- -+ 7wN(M71)N(M71)N(M71)]T>

®(z,y,2) =[d101010(2,Y, 2), - - -, Pro101(m—1) (T, Y 2), P101020(@, Y, 2), - - -, Bro102(m—1) (2, 4, 2), - - -,

T
¢N(M71)N(M71)NO($7 Y, Z)7 sy ¢N(M71)N(M71)N(M71)(Iv Y, Z)] )
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and hybrid coefficients can be uniquely detected by

<’LU, ¢a1,31a2620¢3/33>
<¢01510425204353 ’ ¢041ﬁ1042520t353>

Waory BrazPfeazfs =

In the space L?(A x A), we define the norm

- //////Ikwy,znq, )|2d7"dqdpdzdydm)%

and we can expand the function k into three-dimensional hybrid functions

w\»—A

[Elly = Ck, k)

k(z,y,z,p,q,7) = " (z,y,2) K®(p, q.7),

where K is an N3M3-square matrix whose entries are given by

R fol fol fol fol fol fol k($7 Y,%,P: 4, ’I“)(I)(l) (Z’, Y, Z)q)(J) (pa q, T)dquddedydx
2V 1,1 p1 1,1 p1
(fO fO fO |<I>(1)(:r,y,z)\2dzdydx)(fo fo fo |@(])(pqur)|2drdqdp)

in which the i-th entry of the vector ®(z,y, 2) is shown by ®;(z,y, 2) .

4 Solving technique

Ghiasi, Nuraei

We apply three-dimensional hybrid functions to determine the solution of three-dimensional Volterra -Hammerstein

integral equations. We approximate the unknown function w(zx,y, z) by

M-1 N M-1

N M-1 N
wn, M (2, Y, 2 Z Z Z Z Z Z Wai, By aiz s Bs Py By o facrs B3 (z,y,2),

1 B2=0 az=1 3=0

where the coefficients wa, 8;as85a58; should be determined. Substituting (4.1)) in (1.1f) gives

Z Z Z Z Z Z walﬁlagﬁgag,ﬁg¢a151a252a3,ﬁ3 (l’,y,Z)

[ N M-1 N M-1 N M-1
a1=1 ;=0 az=1 By=0 az=1 f5=0

T Yy z
7/ / / k(x,y,z,p,q,r)w(p,q,'r,wN,M(p,q,r))drdqdpzv(ﬂs,y,z).
0 0 0

In the linear case, the above equation can be written as

N M-1 N M-1 N M-1

S X DY DY teneationts |Sarsiassass (00:)

a1=1 ;=0 az2=1 B2=0 az=1 3=0

T Yy z
_/ / / k(xayaZap7Q7r)¢a151a2B2a3ﬂ3 (p7Q77ﬁ):| 2U($,y72).
0 0 0

By introducing residual functionRy a(z, y, 2), we get

N M-1 M—-1 N M-1

T D3 3D 3 3 S SRR RREET I ]

a1=11=0 az=1 B2=0 ag=1 B3=0

Tz pry [z
- / / / k:(myy,zyp, q,r)l/)(p,q,r,wN,M(p,q,T))deqdp—v(x,y,z).
0 0 0

Now we collocate [£.2) in N?M? Newton-Cotes nodes as

21 2i-1 21
i Yj = ,172NM’

SN Y SN i,5,0l=1,2,...,NM.

(4.1)

(4.2)
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Thus Ry, m(xi,yj,21) =0 for 4,5,0 =1,2,..., NM which gives

N M-1 N M-1 N M-1

[Z Z Z Z Z Z w0151025203ﬁ3¢a1ﬁ1a2[32a3ﬂ3 (xivijzl)]

a1=1#1=0az=1B2=0a3z3=1B3=0
Ti Y 2]

*/ / / k(zi,yi, 21,0, ¢, 7)Y (P, ¢, 7, w21 (D, g, 7)) drdgdp
0 0 0

= v(xs,Yj,21)-

Obviously in the linear case we have a system of N3M? linear equations in N2M? variables, which can be solved by common
methods. In general, we have a nonlinear system of N3M? equations.

5 Error estimation

Here, we attention to the error involved in approximating w(z, y, z) by series expansion of three-dimensional hybrid functions
. . . 1 —
and find a bound for it. For this purpose, we consider A = J, ., Aoy agas Where Ao agas = [25F, L) x [227F,92) x
[a?’*l 43) and
N N

ag,a3<N

N N N
w(xvyvz) = Z Z Z Wayazas (xvy’z)’
a;=1

az=1az=1

where Wa, asas is the restriction of w to Aa;asas. We also consider

Zajasas = Salm{¢a10a20a30(m7 Yy 2); ¢a10a20a31(557 Ys2)sens ¢a10a20a3(1\471)(w7 Y, 2)
) ¢a10a21a30(x7 Y, Z)’ ¢o¢10a21a31(x7 Y, Z)’ R ¢a10a21a3(1\l—1)(‘r7 Y, Z)? s
7¢a1(]b171)a2(M71)a30(x7 Y 2), ¢a1(M71)a2(]\171)a31(x7 Yy 2) s ¢a1(Mfl)a2(h171)a3(M71)(xv Y, Z)}’
that a1, a2, a3 = 1,2,..., N. We assume that W, .0, Payasas (T, Y, 2) is the best approximation t0 wa, azas (%, Y, 2) in Zay asas,
where
Wa1a2a3 = [wa10a2004307 Wa1 0a0agly -« + sy Way0ag0az(M—1) Wa10aslaz0, Waidaglagly -« s Way0aglag(M—1)s -«
T
y Waqg (M —1)as(M—1)az0y Wag (M —1)ag(M—1)azls -« - wal(Mfl)ag(Mfl)ag(Mfl)} )
(P0610420t3 ('1", Y, Z) = [¢a10a20a30($, Y, Z)7 feey ¢a10a20a3(M71)($7 Y, Z): ¢a10a21a30(337 Y, Z)7 ey ¢a10a21a3(1¥171) ($7 Y, Z), s
T
a¢a1(M71)a2(A171)a30(:r: Y, Z) sy (;bocl(lwfl)ocg(Mfl)o@(I\lfl)(-r: Y, Z)] >
for a1, 2,3 =1,2,..., N. The above assumptions will be used for obtaining following theorem.

Theorem 5.1. Suppose that wy m(z,y,2) = WTqb(:B,y, z) be the series expansion of three-dimensional hybrid functions for
real-valued function w specified by (3.1). If w is sufficiently smooth on every subinterval Ao, asas (1, @2, 03 =1,2,..., N), then
there is a constant £ such that

§
llw —wnwlly < Sorr— g
Proof . Let
N N N
w=, 2. D Waasas
a;=1az=1az=1
and suppose that Pia/—1)a;asas be the interpolating polynomial for Wa, asas relative to the nodes z;,y;, 21,4, 5,0 = 0,1,..., M —1
where x;,y;, 21 are the zeros of shifted Chebyshev polynomials of degree M — 1 in the intervals [alelj %), [azN—l7 %), and
[28—l 93) | respectively. Now we have [4]
M—1 Mﬁl
y T — T y—y;
Mw(a,y, 2) il;lo ( i) Mw(z,T,2) j:()( )
Waaas (€,9,2) = Pr-narazas (€,9,2) = =5 M) R M!
M—1 M—1 Ml:ll( )Mﬂ
FTE T =T Y=Y z—z
+ Mw(z,y, p) ll;[O (e -=a) _Mw(o!, 7 ) il;IO ( 0 =0 ’ zl;[o (z = 2) (5.1)
9zM M! Oz M OyM §M M Vi A , .
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where 0,0’ € [, 21) 7 7' € [2221 92) and p, ) € [2371,93). Now we take 17 = max {1, 72,73, 74} at which
nl—max{( )51/1\p % al,ag,a3:1,2,...,N},
©,y,2) €A agag
2 = max{ Z)s1[1\p % aj, 2,3 =1,2,. ,N}
2,9,2)EAa; anas
max{ - z)sélﬁlazas % ay,az, 03 =1,2,. ,N}
74 = max {(z,y,z)selllleazas % ‘ al,az, a3 =1,2,. 7N}

Using (5.1) and taking estimation of Chebyshev interpolation nodes follows that

|wa1a2a3 - P(Mfl)alozgag (3:7 Y, Z)’
GGN) =t T RGR) " gt Y mGN) T gt TGN Jpasis
1
1 (3 + ) < : (5:2)

< 22M—1 N M pf 24M—2N2M(M!)2 22M—1 N M pf1°

<m

where & = 47). Since WL Doyasas (Z,Y,2) € Zajasas is the best approximation to wa; asas therefore (5.2) gives

1o2a3

2
< Hwalazas P(M Dajagzas H2

/ / / |w0410420<3 x,Y,z ) P(M—l)alagag(w7y7Z)|2d2dydx

a1 2 1 ¢ 2
/ / / <22M 1NMMI) dzdydx = N3 (22M71N1\4M!> :

w -wr LiiJ
alaa3 ajagag * 12,03

Consequently
2

T Z T
HU} — W CDH E E Hwalazcx;; - a1a2a3q>010¢2043 2

=1ag=1az=

2
qE——
= 22M—1 N M AfI :

We extract square root from each side and replace W¥® by wy u , we take

£

lw = wnnlly < Sorr— jarazr-

O

Now we try to obtain the error estimation of (1.1)). Assume that w be the approximate solution by the proposed method
and w(z,y, z) be the exact solution. Let

G:supogzyzpqr<1|k‘($,y,z,p,q,r)|<oo (5.3)

:::::

and ¢ fulfills a Lipschitz condition where

[ (2,y, 2, @(p, q,7)) — ¢ (z,y,z,w(p, q,7)) | < S|w(p,q,7) — w(p,q,7)| (5.4)
Suppose that r(z,y, z) be the error in approximating w(z,y, z) by w(z,y, z) so

W(x,y,2z) =v(z,y,2 / / / (z,y,2,0,¢,7) % (p,q, 7, W(p,q,7)) drdgdp + r (z,y, z) . (5.5)

Subtracting (5.5) from (1.1]) gives
r(z,y,2) = W(x,y,2) —w(z,y,2 / / / (z,9,2,p,¢,7) [¢ (p, ¢, 7, W(p, q,7)) — ¢ (p, ¢, w(p, q,7)) | drdgdp.
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Table 1: Absolute errors for Example [6.1]

(z,y,2) Exact solution N =1,M =2
(0.1,0.1,0.1) 0.3 1.le — 16
(0.3,0.3,0.3) 0.9 4.4e — 16
(0.5,0.5,0.5) 1.5 0
(0.7,0.7,0.7) 2.1 44e— 16
(0.9,0.9,0.9) 2.7 dde — 16

Therefore

1 1 1
\r(x,y,zn<|«z<x,y,z)—w(x,y,z>|+///yk(x,y,z,p,m||w<p,q,r,a(p,q,r>>—w<p,q,r,w<p,q,r)>|drdqdp,
0 (0] 0

from (5.3), (5.4) and using L? norm, we get

(14 GS)¢

Irlly < (1 +GS) lw = @ll; < Gay=iyarag-

6 Numerical illustration

Here, four examples have been used to investigate the proficiency and the usefulness of our method. In each examples, We
have supposed that (z,y,z) € A. Let en,m(x,,y, 2) be the error involved in the approximation, so

erM(‘T,,y7 Z) = |w(m,y, Z) - 'LUN,M(iE,y,Z)|-

Matlab programs and Maple have been used to obtain the numerical solutions.

w(x,y,2) = v(z,y, 2) /// w(p, g, 7)drdqdp,

:czyz + xyZZ + a[:yz2
2 )
and its exact solution is w(z,y,z) = x +y + 2. When N = 1 and M = 2, the proposed method by substituting collocation
points (4.3) gives
(14 zsyjzi)wioto10 + {(221 — 1) 4+ ziy; (Z12 - Zl)] wio01011 + [(Qyj -1+ itizl(y? - yj)] W101110
+ [y — D@2z —1) + 231( —y;) (2 — z1) ] wionnn + [(2zi — 1) + (7 — xi)yj 2] wiio10
+ [z — D)2z — 1) + (@F — 2a)y; (27 — 20)] winion + (220 — 1)(2y; — 1) + (@7 — ) (4] — y;)z1] winino
+ [z — D) (2y; — 122 — 1) + (&7 — ) (y7 — y5) (27 — 20)] winn
=(zit+y; + =) ( x”ng)

Example 6.1. Suppose that

where

v(z,y,2) =z +y+z+

)

where 4, 5,1 = 1,2. Computational results are displayed in Table

T Yy z
w(z,y,z) = v(z,y,2) — 24/ / / z*yw(p, ¢, r)drdqdp,
0 0 0

where v (2,9, 2) = 4a°y® 2 + 423y% 2% + 3219 2% + 2%y + y2® + xyz. Its exact solution is specified by w(z,y, z) = 2%y + y2° + zyz.
In Table [2] we have compared absolute errors of the proposed method with those in [9].From Table [2] can be understood that
the errors calculated by our technique are better than those in [9].

Example 6.2. Suppose that

Example 6.3. We consider the following Volterra-Hammerstein integral equation:

'U)(ZC,y, ) - U z,Y,z / / / p7Q7 drdqdp?

(zy2)°®
27

Its exact solution is w(z,y, z) = zyz. When N =1 and M = 3, the computational results are shown in Table 3| The graph
of e1,3(x,y,2) for z=10.1,0.7,0.9 is displayed in Figure[l] Our results are approximately consistent with those in [9].

where

v(z,y,2) = zyz —
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Table 2: Absolute errors for Example [6.2]

N =1,M =3 Method of [6] with m =8

0

0

0
3.6970e — 17
4.4070e — 17

3.63109e — 12
3.65291e — 10
4.05249¢ — 10
5.03878e — 10
5.63516e — 10

Table 3: Absolute errors for Example [6.3]

(z,y,2) Exact solution N =1,M =3
(0.1,0.1,0.1) 0.001 5.1le — 11
(0.3,0.3,0.3) 0.027 6.4e — 12
(0.5,0.5,0.5) 0.125 0
(0.7,0.7,0.7) 0.343 6.40e — 12
(0.9,0.9,0.9) 0.729 5.17¢ — 11

z=0.1

Figure 1: Plot of the error function for Example [6.3]

Table 4: Absolute errors for Example [6.4]

(z,y,2) Exact solution N =1,M =2
(0.1,0.1,0.1) 0.000998 0.000174
(0.3,0.3,0.3) 0.026597 0.002957
(0.5,0.5,0.5) 0.119856 0.003729
(0.7,0.7,0.7) 0.315667 0.002957
(0.9,0.9,0.9) 0.634495 0.023105

Example 6.4. We consider the following Volterra-Hammerstein integral equation:

where

T py pz
w(z,y,z) = v(z,y, 2)+/ / / w®(p, q,7)drdqdp,
0 0 0

24 48

1 1 1
v(z,y,2) =yzsinz — —y'z* + —y*z*sin® zcosz + —y*z* cosz.

48

Its analytical solution is w(x,y,z) = yzsinz. When N = 1 and M = 2, computational results are given in Table@
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7 Conclusions

We used hybrid of block-pulse functions and Legendre polynomials to find the solution of three-dimensional Volterra-
Hammerstein integral equations. With the aim of finding approximate solution, we collocated integral equation at N3M3
collocation points and obtained a system of nonlinear equations. Using the suggested method for some numerical examples
provides a very good approximation, although we used small values of M and N. The advantages of our method are simple
calculations and high accuracy.
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