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Abstract

In this paper, the existence of the solutions of a class of weakly singular integral equations in Banach algebra is
investigated. The basic tool used in investigations is the technique of the measure of non-compactness and Petryshyn’s
fixed point theorem. Also, for the applicability of the obtained results, some examples are given.
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1 Introduction

Kuratowski [13] introduced the concept of a measure of noncompactness (MNC). Then it is used by Darbo [3], Furi
and Vignoli [8], Nussbaum [20], Petryshyn [22], and others. For details on measures of noncompactness see [2, 14].
Recently, there have been several successful attempts to apply the concept of (MNC) in the study of the existence of
solutions of nonlinear integral equations and integro-differential equations [21, 28, 4, 11, 10, 9, 18, 5, 7, 24, 25, 26, 12, 27].
Ordinary integral equations with weakly singular kernels arise in many problems of science and engineering. This study
deals with the existence of solution of the following weakly singular integral equations of the form

u(s) = q

(
s, g(s, u(β(s))),

∫ s

0

ln |ν − s|k
(
s, ν, u(γ(ν))

)
dν

)
, (1.1)

for all s ∈ Ia = [0, a]. For the existence of solutions of the integral equation (1.1), we use a fixed point theorem
due to Petryshyn [22] that has been analyzed as a generalization of Darbo fixed point theorem [2]. Many authors
have successful efforts to solve many functional integral equations by powerful tools of Darbo condition [23, 19, 15,
1, 16, 17, 6]. The advantage of Petryshyn’s fixed point theorem among the others (Darbo and Schauder fixed point
theorems) lie in that in applying the theorem, one does not need to verify the involved operator maps a closed convex
subset onto itself. The article is organized into 4 sections including the introduction. In Section 2, we recall some
preliminaries and specify the concept of MNC. Section 3 is applied to state and prove an existence theorem for Eq.
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(1.1) including densifying operators by Petryshyn’s fixed point theorem. In Section 4, we provide some examples that
verify the applications of these kinds of weakly singular integral equations in nonlinear analysis. Finally, conclusions
of the work are given in Section 5.

2 Preliminaries

In this article, we have some notations:
• E : Real Banach space;
• Bρ(z): Open ball with center z and radius ρ.

Definition 2.1. [2] Let S ∈ E and

α(S) = inf

{
ε > 0 : S =

n⋃
i=1

Si with diam Si ≤ ε, i = 1, 2, ..., n

}
,

is called the Kuratowski MNC.

Definition 2.2. [2] The Hausdroff MNC

ψ(S) = inf {ε > 0 : ∃ a finite ε- net for S in E } , (2.1)

where, by a finite ε net for S in E it involves, as a set {z1, z2, ..., zn} ⊂ S such that the ballBε(E, z1), Bε(E, z2), ..., Bε(E, zn)
over S. Those MNC are commonly related that is ψ(S) ≤ α(S) ≤ 2ψ(S), for any bounded set S ⊂ E.

Theorem 2.3. Let S, S̄ ∈ E and λ ∈ R. Then

(i) ψ(S) = 0 if and only if S is pre-compact;

(ii) S ⊆ S̄ =⇒ ψ(S) ≤ ψ(S̄);

(iii) ψ(ConvS) = ψ(S);

(iv) ψ(S ∪ S̄) = max{ψ(S), ψ(S̄)};

(v) ψ(λS) = |λ|ψ(S), where λS = {λz : z ∈ S};

(vi) ψ(S + S̄) ≤ ψ(S) + ψ(S̄).

Let, C[0, a] be the space of all real valued continuous function defined on Ia = [0, a] with the usual norm ∥z∥ =
sup{|z(s)| : s ∈ [0, a]}. The space C[0, a] is also the structure of Banach algebra. The modulus of continuity of
z ∈ C[0, a] is defined as

ω(z, ε) = sup{|z(s)− z(s̄)| : s, s̄ ∈ [0, a], |s− s̄| ≤ ε}.
and,

ω(S, ε) = sup{ω(z, ε) : z ∈ S}, ω0(S) = lim
ε→0

ω(S, ε).

Theorem 2.4. [11] On the space C[0, a], the Hausdorff MNC is equivalent to

ψ(S) = lim
ε→0

sup ω(z, ε) (2.2)

for all bounded sets S ⊂ C[0, a].

Definition 2.5. [20] Assume T : E → E be a continuous mapping of E. T is called a k-set contraction if for all
S ⊂ E with S bounded, T (S) is bounded and

α(TS) ≤ kα(S), for k ∈ (0, 1).

Moreover, if α(TS) < α(S), for allα(S) > 0, then T is called densifying or condensing map.

Theorem 2.6. [22] Let T : Bρ → E be a condensing mapping which satisfying the boundary condition, if T (z) = kz,
for some z ∈ ∂Bρ implies k ≤ 1, then the set of fixed points in Bρ is non-empty.

This is called Petryshyn’s fixed point theorem.



Existence results for some weakly singular integral equations via measures of non-compactness 303

3 Main results

Now, we investigate the existence of the Eq.(1.1) under the following assumptions;

(1) q ∈ C(Ia × R2,R), g ∈ C(Ia × R,R) k ∈ C(I2a × R,R), and β, γ : Ia → Ia, are continuous.

(2) there are non-negative constants c1, k1, k2, with k1c1 < 1 such that

|q(s, u1, u2)− q(s, ū1, ū2| ≤ k1|u1 − ū1|+ k2|u2 − ū2|; and |g(s, u)− g(s, ū)| ≤ c1|u− ū|.

(3) there exists ρ > 0 such that q fulfill the inequality

sup{|q(s, u1, u2)| : s ∈ Ia, u1 ∈ [−ρ, ρ], u2 ∈ [−H|a(ln a− 1)|, H|a(ln a− 1)|]} ≤ ρ,

where H = sup{|k(s, ν, u)| : ∀s, ν ∈ Ia and u ∈ [−ρ, ρ]}.

Theorem 3.1. Under the assumptions (1)− (3) the Eq. (1.1) has at least one solution in E = C(Ia).

Proof . Define the operator T : Bρ → E, where Bρ = {u ∈ C(Ia) : ∥u∥ ≤ ρ} in the following form

(Tu)(s) = q

(
s, g(s, u(β(s))),

∫ s

0

ln |ν − s|k
(
s, ν, u(γ(ν))

)
dν

)
.

Now, we show that T is continuous on Bρ. Choose ε > 0 and any u, x ∈ Bρ such that ∥u− x∥ < ε. Then

|(Tu)(s)− (Tx)(s)| =

∣∣∣∣∣q
(
s, g(s, u(β(s))),

∫ s

0

ln |ν − s|k
(
s, ν, u(γ(ν))

)
dν

)

− q

(
s, g(s, x(γ(s))),

∫ s

0

ln |ν − s|k
(
s, ν, x(γ(ν))

)
dν

)∣∣∣∣∣
≤

∣∣∣∣∣q
(
s, g(s, u(β(s))),

∫ s

0

ln |ν − s|k
(
s, ν, u(γ(ν))

)
dν

)

− q

(
s, g(s, x(β(s))),

∫ s

0

ln |ν − s|k
(
s, ν, u(γ(ν))

)
dν

)∣∣∣∣∣
+

∣∣∣∣∣q
(
s, g(s, x(β(s))),

∫ s

0

ln |ν − s|k
(
s, ν, u(γ(ν))

)
dν

)

− q

(
s, g(s, x(β(s))),

∫ s

0

ln |ν − s|k
(
s, ν, x(γ(ν))

)
dν

)∣∣∣∣∣
≤ k1|g(s, u(β(s)))− g(s, x(β(s)))|

+ k2

∫ s

0

ln |ν − s||k
(
s, ν, u(γ(ν))

)
− k
(
s, ν, x(γ(ν))

)
|dν

≤ k1c1|u(β(s))− x(β(s))|+ k2ω(k, ε)

∫ s

0

ln |ν − s|dν,

≤ k1c1∥u− x∥+ k2ω(k, ε)|s ln s− s|,
≤ k1c1∥u− x∥+ k2ω(k, ε),

where
ω(k, ε) = sup{|k(s, ν, u)− k(s, ν, x)| : s, ν ∈ Ia, u, x ∈ [−ρ, ρ], |u− x| ≤ ε}.

From the uniform continuity of k(s, ν, u) on the subset Ia × Ia × [−ρ, ρ], we judge that ω(k, ε) → 0 as ε→ 0. Thus,
the above fact prove that the operator T is continuous on Bρ. Next, we prove that T fulfils the condensing map. For
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arbitrary ε > 0 and u ∈ S, where S is bounded subset of E, s1, s2 ∈ Ia with |s2 − s1| ≤ ε, we have

|(Tu)(s2)− (Tu)(s1)| =

∣∣∣∣∣q
(
s2, g(s2, u(β(s2))),

∫ s2

0

(
ln |ν − s2|k

(
s2, ν, u(γ(ν))

)
dν

)

− q

(
s1, g(s1, u(β(s1))),

∫ s1

0

ln |ν − s1|k
(
s1, ν, u(γ(ν))

)
dν

)∣∣∣∣∣
≤

∣∣∣∣∣q
(
s2, g(s, u(β(s2))),

∫ s2

0

ln |ν − s2|k
(
s2, ν, u(γ(ν))

)
dν

)

− q

(
s2, g(s2, u(β(s2))),

∫ s1

0

ln |ν − s1|k
(
s1, ν, u(γ(ν))

)
dν

)∣∣∣∣∣
+

∣∣∣∣∣q
(
s2, g(s2, u(β(s2))),

∫ s1

0

ln |ν − s1|k
(
s1, ν, u(γ(ν))

)
dν

)

− q

(
s2, g(s1, u(β(s1))),

∫ s1

0

ln |ν − s1|k
(
s1, ν, u(γ(ν))

)
dν

)∣∣∣∣∣
+

∣∣∣∣∣q
(
s2, g(s1, u(β(s1))),

∫ s1

0

ln |ν − s1|k
(
s1, ν, u(γ(ν))

)
dν

)

− q

(
s1, g(s1, u(β(s1))),

∫ s1

0

ln |ν − s1|k
(
s1, ν, u(γ(ν))

)
dν

)∣∣∣∣∣
≤ k1|g(s2, u(β(s2))− g(s2, u(β(s1))|+ k1|g(s2, u(β(s1))− g(s1, u(β(s1))|+ ωq(Ia, ε),

+ k2

∣∣∣∣∣
∫ s2

0

ln |ν − s2|k
(
s2, ν, u(γ(ν))

)
dν −

∫ s1

0

ln |ν − s1|k
(
s1, ν, u(γ(ν))

)
dν

∣∣∣∣∣
≤ k1c1|u(β(s2)− u(β(s1)|+ k1ωg(Ia, ε) + ωq(Ia, ε),

+ k2

[∣∣∣∣∣
∫ s2

0

ln |ν − s2|k
(
s2, ν, u(γ(ν))

)
dν −

∫ s2

0

ln |ν − s2|k
(
s1, ν, u(γ(ν))

)
dν

∣∣∣∣∣
+

∣∣∣∣∣
∫ s2

0

ln |ν − s2|k
(
s1, ν, u(γ(ν))

)
dν −

∫ s1

0

ln |ν − s1|k
(
s1, ν, u(γ(ν))

)
dν

∣∣∣∣∣
]

≤ k1c1|u(β(s2)− u(β(s1)|+ k1ωg(Ia, ε)

+ k2
[ ∫ s2

0

ln |ν − s2||k
(
s2, ν, u(γ(ν))− k

(
s1, ν, u(γ(ν))

)
|dν

+ |k
(
s1, ν, u(γ(ν))|[

∫ s2

0

ln |ν − s2|dν −
∫ s1

0

ln |ν − s1|dν] + ωq(Ia, ε),

where
ωg(Ia, ε) = sup{|g(s, u)− g(s̄, u)| : |s− s̄| ≤ ε, s, s̄ ∈ Ia, u ∈ [−ρ, ρ]},

ωq(Ia, ε) = sup{|q(s, u1, u2)q(s̄, u1, u2)| : |s− s̄| ≤ ε, s, s̄ ∈ Ia, u1 ∈ [−ρ, ρ], u2 ∈ [−H|a(ln a− 1)|,
H|a(ln a− 1)|]},

ωk(Ia, ε) = sup{|k(s, ν, u)− k(s̄, ν, u)| : |s− s̄| ≤ ε, s, s̄, ν ∈ Ia, u ∈ [−ρ, ρ]}.

From above relations, we have

|(Tu)(s2)− (Tu)(s1)| ≤ k1ωg(Ia, ε) + k1c1|u(β(s2)− u(β(s1)|+ k2ωk(Ia, ε)|a(ln a− 1)|
+k2H|s2 − s1|+ ωq(Ia, ε).

So,

ω(Tu, ε) ≤ k1ωg(Ia, ε) + k1c1ω(u, ω(β, ε)) + k2ωk(Ia, ε) + k2Hε+ ωq(Ia, ε).
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This yields the following estimate:
ω(Tu, ε) ≤ (k1c1)ω(u, ε).

Taking limit as ε→ 0, we get
ψ(TS) ≤ (k1c1)ψ(S).

Hence T is a condensing map. Now, let u ∈ ∂Bρ and if Tu = ku then ∥Tu∥ = k∥u∥ = kρ and by assumptions (3),
then

|Tu(s)| =
∣∣∣q(s, g(s, u(β(s))),∫ s

0

ln |ν − s|k
(
s, ν, u(γ(ν))

)
dν

)∣∣∣ ≤ ρ

for all s ∈ Ia, hence ∥Tu∥ ≤ ρ i.e k ≤ 1. This completes the proof. □

Corollary 3.2. Let

(1) f, F ∈ C(Ia × R,R), k ∈ C(I2a × R,R), and α, γ : Ia → Ia, are continuous.

(2) there are non-negative constants c1, k1 with c1 < 1 such that

|F (s, u2)− F (s, ū2| ≤ k1|u2 − ū2|

|f(s, u1)− f(s, ū1)| ≤ c1|u1 − ū1|.

(3) there exists ρ > 0 such that the following bounded condition is satisfied

sup{|D + F |} ≤ ρ,

where,
supD = sup{|f(s, u)| : for all s ∈ Ia and u ∈ [−ρ, ρ]},

supF = sup{|F (s, u)| : for all s ∈ Ia u ∈ [−Ha(ln a− 1), Ha(ln a− 1)]},

H = sup{|k(s, ν, u)| : for all s, ν ∈ Ia and u ∈ [−ρ, ρ]}.

Then

u(s) = f(s, u(α(s))) + F

(
s,

∫ s

0

ln |ν − s|k
(
s, ν, u(γ(ν))

)
dν

)
(3.1)

has at least one solution in C(Ia).

Proof . The proof is relevant to Theorem 3.1 and we can leave the proof parts. □

4 Examples

In this section, we present some examples of functional integral equations to illustrate the usefulness of our results.

Example 4.1. Consider the following weakly singular integral equation

u(s) =
1

2 +
√
s
es−1 +

u(s3)s2

3(1 + s2)

+
cos(s)

4(es2 + 3 sin(
√
s))

∫ s

0

ln |ν − s|1 + cos
√
ν + |u(

√
ν)|

1 + νs2 + ln(s)
dν, s ∈ [0, 1]. (4.1)

Eq. (4.1) is particular form of Eq. (1.1) with

γ(s) =
√
s, β(s) = s3,∀ s ∈ [0, 1],

and
q(s, u1, u2) = q1(s, u1) + q2(s, u2),
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where

q1(s, u1) =
1

2 +
√
s
es−1 +

1

3
u1, u1 =

u(s3)s2

(1 + s2)
,

q2(s, u2) =
cos(s)

4(es2 + 3 sin(
√
s))

u2,

u2 =

∫ s

0

ln |ν − s|1 + cos
√
ν + |u(

√
ν)|

1 + νs2 + ln(s)
dν, k(s, ν, u) =

1 + cos
√
ν + |u(

√
ν)|

1 + νs2 + ln(s)
.

It is obvious that assumptions (1) and (2) of Theorem 3.1 are satisfied. We need to check that assumption (3)
holds true. Suppose that ∥u∥ ≤ ρ, ρ > 0, then

|u(s)| = | 1

2 +
√
s
es−1 +

u(s3)s2

3(1 + s2)

+
cos(s)

4(es2 + 3 sin(
√
s))

∫ s

0

ln |ν − s|1 + cos
√
ν + |u(

√
ν)|

1 + νs2 + ln(s)
dν| ≤ ρ,

for all s ∈ Ia. Hence (3) holds if,

1

2
+

1

3
ρ+

1

4
(2 + ρ) ≤ ρ.

It can be check that ρ = 2.4 satisfies in the last inequality. Hence, all conditions of Theorem 3.1 are fulfill, then
Eq. (4.1) has at least one solution in C[0, 1].

Example 4.2. Consider the following weakly singular integral equation

u(s) =
s4u(

√
s)

3(1 + s4)

+
e−2s2

5(1 + s)

∫ s

0

ln |ν − s|(es + ν sin(
√
s) + ln(1 + u(s)))dν, s ∈ [0, 1]. (4.2)

Now, we can see that assumptions (1) and (2) of Theorem 3.1 are satisfied. We check that (3) also holds. Suppose
that ∥u∥ ≤ ρ, ρ > 0, then

|u(s)| = | s4

3(1 + s4
u(
√
s) +

e−2s2

5(1 + s)

∫ s

0

ln |ν − s|(es + ν sin(
√
s) + ln(1 + u(s)))dν| ≤ ρ,

for all s ∈ Ia. Hence (3) holds if,

1

3
ρ+

1

5
(e+ 1 + ρ) ≤ ρ.

It can be check that ρ ≥ 3
7 (e + 1) satisfies in the last inequality. Hence, Eq. (4.2) has at least one solution in

C[0, 1].

5 Conclusion

In the current study, we examined the existence of solutions for non-linear weakly singular integral equations by
Petryshyn’s fixed point theorem and the concept of a measure of noncompactness. We gave some examples to confirm
the efficiency of our results.
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