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LIE ∗−DOUBLE DERIVATIONS ON LIE C∗−ALGEBRAS

N. GHOBADIPOUR

Dedicated to the 70th Anniversary of S.M.Ulam’s Problem for Approximate Homomorphisms

Abstract. A unital C∗ – algebra A, endowed with the Lie product [x, y] = xy−
yx on A, is called a Lie C∗ – algebra. Let A be a Lie C∗ – algebra and g, h : A → A
be C – linear mappings. A C – linear mapping f : A → A is called a Lie (g, h) –
double derivation if f([a, b]) = [f(a), b] + [a, f(b)]+ [g(a), h(b)]+ [h(a), g(b)] for all
a, b ∈ A. In this paper, our main purpose is to prove the generalized Hyers - Ulam
- Rassias stability of Lie ∗ - double derivations on Lie C∗ - algebras associated
with the following additive mapping:

n∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...

n∑
in−k+1=in−k+1

)f(
n∑

i=1,i 6=i1,..,in−k+1

xi −
n−k+1∑

r=1

xir ) + f(
n∑

i=1

xi)

= 2n−1f(x1)

for a fixed positive integer n with n ≥ 2.

1. Introduction and preliminaries

It seems that the stability problem was first studied by D.H. Hyers [11], which was
raised by S.M. Ulam [31] For what metric groups G is it true that an ε–automorphism
of G is necessarily near to a strict automorphism? An answer has been given in the
following way. Let E1, E2 be two real Banach spaces and f : E1 → E2 be a mapping.
In 1941, Hyers [11] gave an answer to the problem above as follows: if there exists
an ε ≥ 0 such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε

for all x, y ∈ E1, then there exists a unique additive mapping T : E1 → E2 such that
‖f(x)− T (x)‖ ≤ ε for every x ∈ E1. This result is called the Hyers – Ulam stability
of the additive Cauchy equation g(x+ y) = g(x)+ g(y). In 1978, Th.M. Rassias [26]
introduced a new functional inequality that we call Cauchy – Rassias inequality and
succeeded to extend the result of Hyers by weakening the condition for the Cauchy
difference to be unbounded: if there exist an ε ≥ 0 and 0 ≤ p < 1 such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)
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for all x, y ∈ E1, then there exists a unique additive mapping T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ 2ε

|2− 2p|
‖x‖p

for every x ∈ E1 (see [12, 13, 27, 28, 29]). This stability phenomenon of this kind
is called the Hyers – Ulam – Rassias stability. In 1991, Z. Gajda [9] solved the
problem for 1 < p, which was raised by Rassias. In fact, the result of Rassias is
valid for 1 < p; moreover, Gajda gave an example that a similar stability result does
not hold for p = 1. Another example was given by Th.M. Rassias and P. Šemrl [30].
J.M. Rassias [23] followed the innovative approach of Rassias’ theorem [26] in which
he replaced the factor ‖x‖p + ‖y‖q by ‖x‖p.‖y‖q for p, q ∈ R with p + q 6= 1.
In 1994, a generalization of the Rassias’ theorem was obtained by Gǎvruta as follows
[10].
Suppose (G,+) is an abelian group, E is a Banach space, and that the so-called
admissible control function ϕ : G×G → R satisfies

ϕ̃(x, y) := 2−1

∞∑
n=0

2−nϕ(2nx, 2ny) < ∞

for all x, y ∈ G. If f : G → E is a mapping with

‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G, then there exists a unique mapping T : G → E such that T (x+y) =
T (x) + T (y) and ‖f(x)− T (x)‖ ≤ ϕ̃(x, x) for all x, y ∈ G.
Let A be a subalgebra of an algebra B,X and be a B – module σ : A → B be a
linear mapping. A linear mapping f : A → B is called σ – derivation (see [17, 18])
if

f(ab) = f(a)σ(b) + σ(a)f(b) (1.1)

for all a, b ∈ A.
Clearly, if σ = id, the identity mapping on A, then a σ – derivation an ordinary
derivation. On the other hand, each homomorphism f is a f

2
– derivation. Thus, the

theory of σ – derivations combines the theory of derivations and homomorphisms.
If g : A → A is an ordinary derivation and σ : A → A is a homomorphism, then
f = gσ is a σ – derivation. Although, a σ – derivation is not necessarily of the form
gσ, but it seems that the generalized Leibniz rule, f(ab) = f(a)σ(b) + σ(a)f(b),
comes from this observation.
M. Mirzavaziri and E. Omidvar Tehrani [16] took ideas from above fact, and con-
sidered two derivations g, h to find a similar rule, for f = gh. In this case, they saw
that f satisfies

f(ab) = f(a)b + af(b) + g(a)h(b) + h(a)g(b) (1.2)

for all a, b ∈ A. They said that a linear mapping f : A → A is a (g, h) – double
derivation if satisfies (1.2). Moreovre, by a f – double derivation they called a (f, f)
– derivaion and proved that if A is a C∗ – algebra, f : A → A is a ∗ - linear mapping
and g : A → A is a continuous f – double derivation then f is continuous.
A unital C∗ – algebra A, endowed with the Lie product [x, y] = xy − yx on A, is
called a Lie C∗ – algebra. Let A be a Lie C∗ – algebra and g, h : A → A be C –
linear mappings. A C – linear mapping f : A → A is called a Lie (g, h) – double
derivation if f([a, b]) = [f(a), b] + [a, f(b)]+ [g(a), h(b)]+ [h(a), g(b)] for all a, b ∈ A.
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M. Eshaghi Gordji, H. Khodaei, R. Saadati and Gh. Sadeghi [8] finded the general
n – dimensional additive functional equation as follows:

n∑
k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...

n∑
in−k+1=in−k+1

)f(
n∑

i=1,i6=i1,..,in−k+1

xi

−
n−k+1∑

r=1

xir) + f(
n∑

i=1

xi) = 2n−1f(x1) (1.3)

for a fixed positive integer n with n ≥ 2, and investigated stability of functional
equation (1.3) in random normed spaces via fixed point method.
In this paper, our main purpose is to prove the generalized Hyers – Ulam – Rassias
stability of Lie ∗ – double derivations on Lie C∗ – algebras associated with the
functional equation (1.3).
Throughout this paper, assume that A is a Lie C∗ – algebra and U(A) = {u ∈
A |uu∗ = u∗u = e}.

2. Main results

For given mappings f, g, h : A → A, we define the difference operators Dµf :
An → A and Cf,g,h : A2 → A by

Dµf(x1, ..., xn) :=
n∑

k=2

(
k∑

i1=2

k+1∑
i2=i1+1

...
n∑

in−k+1=in−k+1

)f(
n∑

i=1,i6=i1,..,in−k+1

µxi

−
n−k+1∑

r=1

µxir) + f(
n∑

i=1

µxi) = 2n−1f(µx1)

and

Cf,g,h(a, b) := f([a, b])− [f(a), b]− [a, f(b)]− [g(a), h(b)]− [h(a), g(b)]

for all µ ∈ T1 := {λ : |λ| = 1} and all a, b, xi ∈ A (i = 1, 2, ..., n).
Throughout this section, assume that f(0) = g(0) = h(0) = 0.
We are going to investigate the generalized Hyers – Ulam – Rassias stability of Lie
∗ – double derivations on Lie C∗ – algebras for functional equation (1.3).

Definition 2.1. Let A be a Lie C∗ – algebra and g, h : A → A be C – linear
mappings. A C – linear mapping f : A → A is called a Lie (g, h) – double derivation
if f([a, b]) = [f(a), b] + [a, f(b)] + [g(a), h(b)] + [h(a), g(b)] for all a, b ∈ A.

We will use the following lemma in this paper.

Lemma 2.2. [8] A function f : A → A with f(0) = 0 satisfies the functional
equation (1.3) if and only if f : A → A is additive.

Theorem 2.3. If f, g, h : A → A are mappings for which there exists function
ϕ : An+2 → [0,∞) such that

ϕ̃(x) :=
∞∑

j=0

1

2j
ϕ(2jx, 2jx, ..., 0, 0, 0) < ∞, (2.1)
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lim
j→∞

1

2j
ϕ(2jx1, 2

jx2, ..., 2
jxn, 2

ja, 2jb) = 0, (2.2)

max{‖Dµf(x1, x2, ..., xn)− Cf,g,h(u, b), Dµg(x1, x2, ..., xn)

− Cf,g,h(u, b), Dµh(x1, x2, ..., xn)− Cf,g,h(u, b)‖}
≤ ϕ(x1, x2, ..., xn, u, b), (2.3)

max{f(2mu∗)− f(2mu)∗, g(2mu∗)− g(2mu)∗, h(2mu∗)− h(2mu)∗}
≤ ϕ(2mu, 2mu, ..., 2mu, 2mu, 2mu) (2.4)

for all µ ∈ T1 := {λ ∈ C; |λ| = 1}, all u ∈ U(A), m = 0, 1, ..., and all a, b, xi ∈
A (i = 1, 2, ..., n). Then there exist unique C – linear ∗ – mappings d, δ, ε : A → A
such that

max{‖f(x)− d(x)‖, ‖g(x)− δ(x)‖, ‖h(x)− ε(x)‖} ≤ 1

2n−1
ϕ̃(x) (2.5)

for all x ∈ A. Moreover, d : A → A is a Lie ∗ – (δ, ε) – double derivation on A.

Proof. It follows from the inequality (2.3) that

‖Dµf(x1, x2, ..., xn)− Cf,g,h(u, b)‖ ≤ ϕ(x1, x2, ..., xn, u, b), (2.6)

‖Dµg(x1, x2, ..., xn)− Cf,g,h(u, b)‖ ≤ ϕ(x1, x2, ..., xn, u, b), (2.7)

‖Dµh(x1, x2, ..., xn)− Cf,g,h(u, b)‖ ≤ ϕ(x1, x2, ..., xn, u, b) (2.8)

for all a, xi ∈ A (i = 1, 2, ..., n), all u ∈ U(A) and all µ ∈ T1. Let µ = 1. We use the
relation

1 +
n−k∑
k=1

(
n− k

k

)
=

n−k∑
k=0

(
n− k

k

)
= 2n−k (2.9)

for all n > k and put x1 = x2 = x and b = u = xi = 0 (i = 3, ..., n) in (2.6). Then
we obtain

‖2n−2f(2x)− 2n−1f(x)‖ ≤ ϕ(x, x, ..., 0, 0, 0) (2.10)

for all x ∈ A. So

‖f(2x)

2
− f(x)‖ ≤ 1

2n−1
ϕ(x, x, ..., 0, 0, 0) (2.11)

for all x ∈ A. By induction on m, we shall show that

‖f(2mx)

2m
− f(x)‖ ≤ 1

2n−1

m−1∑
j=0

1

2j
ϕ(2jx, 2jx, 0, ..., 0, 0, 0) (2.12)

for all x ∈ A. It follows from (2.1) and (2.12) that the sequence {f(2mx)
2m } is a

Cauchy sequence for all x ∈ A. Since A is complete, the sequence {f(2mx)
2m } converges.

Therefore, one can define the function d : A → A by

d(x) := lim
m→∞

f(2mx)

2m
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for all x ∈ A. In the inequality (2.6), assume that b = u = 0 and µ = 1. Then By
(2.2),

‖D1d(x1, ..., xn)‖ = lim
m→∞

1

2m
‖D1f(2mx1, ..., 2

mxn)‖

≤ lim
m→∞

1

2m
ϕ(2mx1, ..., 2

mxn, 0, 0) = 0

for all x1, ..., xn ∈ A. So D1d(x1, ..., xn) = 0. By Lemma 2.2, the function d : A → A
is additive. Moreover, passing the limit m →∞ in (2.12), we get the inequality (2.5).
Now, let d′ : A → A be another additive function satisfying (1.3) and (2.5). So

‖d(x)− d′(x)‖ =
1

2m
‖d(2mx)− d′(2mx)‖

≤ 1

2m
(‖d(2mx)− f(2mx)‖+ ‖d′(2mx)− f(2mx)‖)

≤ 2

2m2n−1
ϕ̃(2mx)

which tends to zero as m →∞ for all x ∈ A. So we can conclude that d(x) = d′(x)
for all x ∈ A. This proves the uniqueness of d.
A similar argument shows that there exist unique additive mappings δ, ε : A → A
satisfying (2.5). The additive mappings δ, ε : A → A are by

δ(x) := lim
m→∞

g(2mx)

2m
(2.13)

and

ε(x) := lim
m→∞

h(2mx)

2m
(2.14)

for all x ∈ A.
Let µ ∈ T1. Set x1 = x and u = b = xi = 0 (i = 2, ..., n) in (2.6). Then by the
relation (2.9), we get

‖2n−1f(µx)− 2n−1µf(x)‖ ≤ ϕ(x, 0, ..., 0, 0, 0) (2.15)

for all x ∈ A. So that

‖2−m(f(2mµx)− µf(2mx))‖ ≤ 2−m

2n−1
ϕ(2mx, 0, ..., 0, 0, 0)

for all x ∈ A. Since the right hand side tends to zero as m →∞, we have

d(µx) = lim
m→∞

f(2mµx)

2m
= lim

m→∞

µf(2mx)

2m
= µd(x)

for all µ ∈ T1 and all x ∈ A. Obviously, d(0x) = 0 = 0d(x).
Now, let γ ∈ C (γ 6= 0) and L an integer greater than 4|γ|. Then | γ

L
| < 1

4
< 1

3
.

By Theorem 1 of [14], there exist three elements µ1, µ2, µ3 ∈ T1 such that 3 γ
L

=
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µ1 + µ2 + µ3. Thus

d(γx) = d(
L

3
.3

γ

L
x) = L.d(

1

3
.3

γ

L
x) =

L

3
d(3

γ

L
x)

=
L

3
d(µ1x + µ2x + µ3x) =

L

3
(d(µ1x) + d(µ2x) + d(µ3x))

=
L

3
(µ1 + µ2 + µ3)d(x) =

L

3
.3

γ

L
d(x)

= γd(x)

for all x ∈ A. Hence d : A → A is a C – linear mapping. A similar argument shows
that δ, ε are C – linear.
By (2.2) and (2.4), we get

d(u∗) = lim
m→∞

f(2mu∗)

2m
= lim

m→∞

f(2mu)∗

2m
= ( lim

m→∞

f(2mu)

2m
)∗ = d(u)∗,

δ(u∗) = lim
m→∞

g(2mu∗)

2m
= lim

m→∞

g(2mu)∗

2m
= ( lim

m→∞

g(2mu)

2m
)∗ = δ(u)∗,

ε(u∗) = lim
m→∞

h(2mu∗)

2m
= lim

m→∞

h(2mu)∗

2m
= ( lim

m→∞

h(2mu)

2m
)∗ = ε(u)∗

for all u ∈ U(A). Since d : A → A is C – linear and each x ∈ A is a finite linear

combination of unitary elements (see Theorem 4.17 of [15]), i.e., x =
∑l

j=1 λjuj (λj ∈
C, uj ∈ U(A)),

d(x∗) = d(
l∑

j=1

λ̄ju
∗
j) =

l∑
j=1

λ̄jd(u∗j) =
l∑

j=1

λ̄jd(uj)
∗

= (
l∑

j=1

λjd(uj))
∗ = d(

l∑
j=1

λjuj)
∗ = d(x)∗

for all x ∈ A. By the same method, one can obtain that δ(x∗) = δ(x)∗ and ε(x∗) =
ε(x)∗ for all x ∈ A. Setting x1 = x2 = ... = xn = 0 in the inequality (2.6), we get

‖Cf,g,h(u, b)‖ ≤ ϕ(0, 0, ..., 0, u, b),

that is,

1

22m
‖f([2mu, 2mb]− [f(2mu), 2mb]− [2mu, f(2mb)]− [δ(2mu), ε(2mb)]

− [ε(2mu), δ(2mb)])‖ ≤ 1

22m
ϕ(0, 0, ..., 0, 2mu, 2mb)

≤ 1

2m
ϕ(0, 0, ..., 0, 2mu, 2mb)

for all b ∈ A and all u ∈ U(A). Since the right hand side tends to zero as m →∞,
we have

d([u, b]) = [d(u, b)] + [u, d(b)] + [δ(u), ε(b)] + [ε(u), δ(b)]
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for all b ∈ A and all u ∈ U(A). Since d : A → A is C – linear and each a ∈ A is

a =
∑l

j=1 λjuj (λj ∈ C, uj ∈ U(A)),

d([a, b]) = d(
l∑

j=1

[λjuj, b]) =
l∑

j=1

λjd([uj, b])

=
l∑

j=1

λj([d(uj), b] + [uj, d(b)] + [δ(uj), ε(b)] + [ε(uj), δ(b)])

= [d(
l∑

j=1

λjuj), b] + [(
l∑

j=1

λjuj), d(b)] + [δ(
l∑

j=1

λjuj), ε(b)]) + [ε(
l∑

j=1

λjuj), δ(b)])

= [d(a), b] + [a, d(b)] + [δ(a), ε(b)] + [ε(a), δ(b)]

for all a, b ∈ A. Hence the C – linear mapping d : A → A is a Lie ∗ – (δ, ε) – double
derivation, as desired. �

Corollary 2.4. If f, g, h : A → A are mappings for which exist constants θ ≥ 0
and p ∈ [0, 1) such that

max{‖Dµf(x1, x2, ..., xn)− Cf,g,h(u, b), Dµg(x1, x2, ..., xn)

− Cf,g,h(u, b), Dµh(x1, x2, ..., xn)− Cf,g,h(u, b)‖}

≤ θ(1 + ‖b‖p +
n∑

i=1

‖xi‖p), (2.16)

max{f(2mu∗)− f(2mu)∗, g(2mu∗)− g(2mu)∗, h(2mu∗)− h(2mu)∗}
≤ θ(n + 2)2mp (2.17)

for all µ ∈ T1, all u ∈ U(A), m = 0, 1, ..., and all a, b ∈ A, then there exist unique
C – linear ∗ – mappings d, δ, ε : A → A such that

max{‖f(x)−d(x)‖, ‖g(x)−δ(x)‖, ‖h(x)−ε(x)‖} ≤ 2θ

2n−1
+

2θ

2n−1(1− 2p−1)
‖x‖p (2.18)

for all x ∈ A. Moreover, d : A → A is a Lie ∗ – (δ, ε) – double derivation on A.

Proof. Define ϕ(x1, x2, ..., xn, u, b) := θ(1 + ‖b‖p +
∑n

i=1 ‖xi‖p) for all u ∈ U(A) and
b, xi ∈ A (i = 1, ..., n), and apply Theorem 2.3. �

Corollary 2.5. Suppose that f, g, h : A → A are mappings satisfying (2.3) and
(2.4). If there exists a function ϕn+2 : A → [0,∞) such that

ϕ̃(x) :=
∞∑

j=1

2jϕ(
x

2j
,

x

2j
, 0, ..., 0, 0, 0) < ∞,

lim
j→∞

2jϕ(
x1

2j
,
x2

2j
, ...,

a

2j
,

b

2j
) = 0

for all a, b, xi ∈ A (i = 1, ..., n), then there exist unique C – linear ∗ – mappings
d, δ, ε : A → A such that

max{‖f(x)− d(x)‖, ‖g(x)− δ(x)‖, ‖h(x)− ε(x)‖} ≤ 1

2n
ϕ̃(x)
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for all x ∈ A. Moreover, d : A → A is a Lie ∗ – (δ, ε) – double derivation on A.

Proof. By the same method as in the proof of Theorem 2.3, one can obtain that

d(x) = lim
m→∞

2mf(
x

2m
),

δ(x) = lim
m→∞

2mg(
x

2m
),

ε(x) = lim
m→∞

2mh(
x

2m
)

for all x ∈ A. The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.6. If f, g, h : A → A are mappings for which exist constants θ ≥ 0 and
p > 1 satisfying (2.16) and (2.17). Then there exist unique C – linear ∗ – mappings
d, δ, ε : A → A such that

max{‖f(x)− d(x)‖, ‖g(x)− δ(x)‖, ‖h(x)− ε(x)‖} ≤ 2θ

2n−1
+

2θ

2n−1(21−p − 1)
‖x‖p

for all x ∈ A. Moreover, d : A → A is a Lie ∗ – (δ, ε) – double derivation on A.
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