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Abstract

In this paper, we consider the q-analog of Kostant’s Partition Function of Lie algebras sl4(C) and sp6(C) and present
a closed formula for the values of these functions.
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1 Introduction

Let L be a finite dimensional semi-simple Lie algebra of rank ℓ with a Cartan subalgebra H. Suppose that Φ is a
root system corresponding to (L,H) with a simple roots Π = {R1, ..., Rℓ} and let Φ+ denote the positive roots respect
to Π [1]. If λ is an integral dominant weight of L and V (λ) is the corresponding irreducible L-module, then for any
integral dominant weight µ, the multiplicity of µ in λ denoted by m(λ, µ). To compute m(λ, µ), we use the Kostant’s
weight multiplicity formula [4]:

m(λ, µ) =
∑
σ∈W

ε(σ)P(σ(λ+ ρ)− (µ+ ρ)), (1.1)

where W is the Weyl group of L, ε(σ) is the sing of σ, ρ = 1
2

∑
β∈Φ+ β and P is the Kostant’s Partition Function.

The q-analog of Kostant’s weight multiplicity formula is a generalization of Kostant’s weight multiplicity formula that
defined by Luszting in [5] as follows:

mq(λ, µ) =
∑
σ∈W

ε(σ)Pq(σ(λ+ ρ)− (µ+ ρ)). (1.2)

In this formula, Pq denoting the q-analog of Kostant’s partition function defined on ξ ∈ H∗ by Pq(ξ) =
∑

ciq
i,

where ci is the number of ways to write the weight ξ as a sum of exactly i positive roots.

Note that, if we take q = 1 in (1.2), we recover the (1.1). In general, there is no known closed formula for the
Kostant’s partition function and q-analog of this function. However, various works have been done in this field (see
for instance [2, 3, 6, 7]). The aim of this paper is to find a closed formula for Pq in Lie algebras sl4(C) and sp6(C).
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2 Preliminaries

In this section, we introduce some notations of Lie algebras sl4(C) and sp6(C). Let

H = {h = diag(a1, a2, a3, a4) | ai ∈ C, a1 + a2 + a3 + a4 = 0}

be a Cartan subalgebra for sl4(C) and for all i = 1, ..., 4, define a functional µi : H −→ C by µi(h) = ai. Then the set

Φ = {µi − µj | 1 ≤ i ̸= j ≤ 4}

is the root system for sl4(C). We choose the set

Π = {R1 = µ1 − µ2, R2 = µ2 − µ3, R3 = µ3 − µ4}

as a basis for Φ. So the positive roots is the set

Φ+ = {µi − µj | 1 ≤ i < j ≤ 4}.

For abbreviation, we will denote the elements of Φ+ by β1, ..., β6. Therefor we can write

β1 = R1, β2 = R2, β3 = R3, β4 = R1 +R2, β5 = R2 +R3, β6 = R1 +R2 +R3.

Similarly, for the sp6(C), a Cartan subalgebra is

H = {h = diag(a1, a2, a3,−a1,−a2,−a3) | ai ∈ C}

and the functional µi defined by same manner. So we can write a root system, simply roots and positive roots as
follows:

Φ = {±µi ± µj | 1 ≤ i, j ≤ 3} − {0},

Π = {R1 = µ1 − µ2, R2 = µ2 − µ3, R3 = 2µ3},

Φ+ = {β1, β2, β3, β4, β5, β6, β7, β8, β9},

where
β1 = R1, β2 = R2, β3 = R3, β4 = R1 +R2, β5 = R2 +R3,

β6 = R1 +R2 +R3, β7 = R1 + 2R2 +R3, β8 = 2R1 + 2R2 +R3, β9 = 2R2 +R3.

3 Some elementary results

To obtain an exact formula for values of q-analog of Kostant’s partition function, we will need to some special
results of systems of linear equalities and inequalities. In this section we introduce several systems and their solutions.

Lemma 3.1. If F (m) is the number of non-negative integer solutions of the equality x+ y + 2z = m, then

F (m) =


1
4 (m+ 2)2; if m is even

1
4 (m+ 1)(m+ 3); if m is odd

Proof . If z = i is a part of a solution of this equality, then we must have 0 ≤ i ≤ [ 12z] and x + y = m − 2i, ( [
]=integral part function). Let [ 12z] = k. It is easy to check that

F (m) =

k∑
i=0

(m− 2i+ 1).

Applying these sums, the lemma follows. □
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Corollary 3.2. If F (m,n) is the number of non-negative integer solutions of the system{
x+ y + 2z = m,
x+ y + z ≤ n,

then

F (m,n) =


0 ; m > 2n

F (m) ; m ≤ n

F (2n−m) ; n ≤ m ≤ 2n

Lemma 3.3. If H(m) is the number of non-negative integer solutions of the equality x+ 2y = m, then

H(m) =


1
2 (m+ 2) ; if m is even

1
2 (m+ 1) ; if m is odd

Proof . Similar to the proof of Lemma 3.1, the proof is straightforward. □

Corollary 3.4. If H(m,n) is the number of non-negative integer solutions of the system{
x+ 2y ≤ m,
y ≤ n,

then

H(m,n) =

 H(m) ; m < 2n

n+ 1 ; m ≥ 2n

Lemma 3.5.
m∑
i=1

H(i) =


1
4m(m+ 4) ; if m is even

1
4 (m+ 1)(m+ 3)− 1 ; if m is odd

Proof . If m = 2k then we have

2k∑
i=1

H(i) = 1 + 2 + 2 + ...+ k + k + (k + 1)

=
(k + 1)(k + 2)

2
+

k(k + 1)

2
− 1

= (k + 1)2 − 1

=
1

4
m(m+ 4).

The same reasoning applies to the case m = 2k + 1. □

Corollary 3.6.
m∑

i=k+1

H(i) =

m∑
i=1

H(i)−
k∑

i=1

H(i).

Lemma 3.7. Let G(m,n) be the number of non-negative integer solutions of the system{
x+ y + 2z = m,
x+ z ≤ n,

(3.1)
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if m is even then

G(m,n) =


1
4 (m+ 2)2; m ≤ n

1
4m(m+ 4)− 1

2 (m− n+ 1)(m− n− 2); n < m < 2n

1
2 (n+ 1)(n+ 2); m ≥ 2n

and if m is odd then

G(m,n) =


1
4 (m+ 1)(m+ 3); m ≤ n

1
4 (m+ 1)(m+ 3)− 1

2 (m− n+ 1)(m− n− 2)− 1; n < m < 2n

1
2 (n+ 1)(n+ 2); m ≥ 2n

Proof . We give the proof in the two cases:

Case 1. m ≤ n. In this case, by Lemma 3.1, we have G(m,n) = F (m) as claimed.

Case 2. n < m. If x = i is a part of a solution of the system (3.1), then we must have 0 ≤ i ≤ n and{
y + 2z = m− i,
z ≤ n− i.

(3.2)

Hence, the number of non-negative integer solutions of system (3.1) is equal to the number of non-negative integer
solutions of the system (3.2) for i = 0, 1, ..., n. This follows

G(m,n) =

n∑
i=0

H(m− i, n− i).

Now if m < 2n, then we have

G(m,n) =

n∑
i=0

H(m− i, n− i)

=

2n−m−1∑
i=0

H(m− i, n− i) +

n∑
i=2n−m

H(m− i, n− i)

=

2n−m−1∑
i=0

H(m− i) +

n∑
i=2n−m

(n− i+ 1)

=

m∑
i=2m−2n+1

H(i) +
1

2
(m− n+ 1)(m− n+ 2)

=

m∑
i=1

H(i)−
2m−2n∑
i=1

H(i) +
1

2
(m− n+ 1)(m− n+ 2)

=

m∑
i=1

H(i)− 1

2
(m− n+ 1)(m− n− 2),

and if m ≥ 2n, then we have

G(m,n) =

n∑
i=0

H(m− i, n− i)

=

n∑
i=0

(n− i+ 1)

=
1

2
(n+ 1)(n+ 2).

□
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4 The q-analog of Kostant’s partition function for sl4(C) and sp6(C)
In this section, our maim results are stated and proved. To make different notations for q-analog of Kostant’s

partition function in Lie algebras sl4(C) and sp6(C), we use the notations Psl
q and Psp

q respectively.

Theorem 4.1. Let γ = aR1 + bR2 + cR3 be a weight of the Lie algebra sl4(C) where a, b and c are non-negative
integers and Psl

q (γ) =
∑

ciq
i. Let mi = a+ b+ c− i.

(i) If b ≤ a and b ≤ c, then
ci = F (mi, b).

(ii) If a ≤ c ≤ b, then

ci =



F (mi); mi ≤ a

G(mi, a); a < mi ≤ c

([mi

2 ] + 1)(a+ c−mi + 1); mi

2 ≤ a, c < mi ≤ b

(a+ 1)(a+ c−mi + 1); a < mi

2 ≤ c, c < mi ≤ b

0; c < mi

2 ≤ b, c < mi ≤ b

([mi

2 ]−mi + b+ 1)(a+ c−mi + 1); mi

2 ≤ a, mi > b

(a+ b−mi + 1)(a+ c−mi + 1); a < mi

2 ≤ c, mi > b

(a+ b−mi + 1); c < mi

2 ≤ b, mi > b

(iii) If c ≤ a ≤ b, then

ci =



F (mi); mi ≤ c

G(mi, c); c < mi ≤ a

([mi

2 ] + 1)(a+ c−mi + 1); mi

2 ≤ c, a < mi ≤ b

(c+ 1)(a+ c−mi + 1); c < mi

2 ≤ a, a < mi ≤ b

0; a < mi

2 ≤ b, a < mi ≤ b

([mi

2 ]−mi + b+ 1)(a+ c−mi + 1); mi

2 ≤ c, mi > b

(c+ b−mi + 1)(a+ c−mi + 1); c < mi

2 ≤ a, mi > b

(c+ b−mi + 1); a < mi

2 ≤ b, mi > b

(iv) If a ≤ b ≤ c, then

ci =



F (mi); mi ≤ a

G(mi, a); a < mi ≤ b

1
8 (2b−mi + 2)(4a+ 2b− 3mi + 4);mi is even and mi

2 ≤ a,mi > b

1
8 (2b−mi + 1)(4a+ 2b− 3mi + 5);mi is odd and mi

2 ≤ a,mi > b

1
2 (a+ b−mi + 1)(a+ b−mi + 2); mi

2 > a,mi > b
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(v) If c ≤ b ≤ a, then

ci =



F (mi); mi ≤ c

G(mi, c); c < mi ≤ b

1
8 (2b−mi + 2)(4c+ 2b− 3mi + 4);mi is even and mi

2 ≤ c,mi > b

1
8 (2b−mi + 1)(4c+ 2b− 3mi + 5);mi is odd and mi

2 ≤ c,mi > b

1
2 (c+ b−mi + 1)(c+ b−mi + 2); mi

2 > c,mi > b

Proof . Let γ = aR1 + bR2 + cR3 be a weight of the Lie algebra sl4(C). If we can write γ as a linear combination of
positive roots with non-negative integer coefficients, then we will have

aR1 + bR2 + cR3 = r1β1 + ...+ r6β6

= (r1 + r4 + r6)R1 + (r2 + r4 + r5 + r6)R2 + (r3 + r5 + r6)R3.

Hence, we must have  r1 + r4 + r6 = a,
r2 + r4 + r5 + r6 = b,
r3 + r5 + r6 = c.

(4.1)

By the definition of q-analog of Kostant partition function, if Psl
q (γ) =

∑
ciq

i, then we can write

ci = |{(r1, r2, ..., r6) : rj ∈ Z, rj ≥ 0, γ =

6∑
j=1

rjβj ,

6∑
j=1

rj = i}|.

Equivalently, ci is the number of ordered 6-tuples of non-negative integer (r1, ..., r6) such that (r1, ..., r6) is a
solution of (4.1) and satisfies in the equality r1 + ... + r6 = i. Therefore, ci is the number of non-negative integer
solutions of the following system. 

r1 + r2 + ...+ r6 = i,
r1 + r4 + r6 = a,
r2 + r4 + r5 + r6 = b,
r3 + r5 + r6 = c.

(4.2)

According to the system (4.1), if the three non-negative integer r4, r5 and r6 are part of a solution of (4.1), then
r1, r2 and r3 are obtained uniquely from the following formula:

r1 = a− r4 − r6, r2 = b− r4 − r5 − r6, r3 = c− r5 − r6.

On the other hand, if r4, r5 and r6 are part of a solution of (4.1), then we must have r4 + r5 + r6 ≤ b,
r4 + r6 ≤ min{a, b},
r5 + r6 ≤ min{b, c}.

(4.3)

This shows that the number of non-negative integer solutions of (4.1) is equal to the number of non-negative integer
solutions of (4.3). For simplicity of notation, let r4 = x, r5 = y and r6 = z. Now if (r1, ..., r6) is a solution of (4.1)
which obtained by the above method, then according to the system (4.2), we must have r1 + ...+ r6 = i and this give
x+ y + 2z = a+ b+ c− i. Summarizing, we conclude that ci is equal to the number of non-negative integer solutions
of the following system. 

x+ y + 2z = a+ b+ c− i,
x+ y + z ≤ b,
x+ z ≤ min{a, b},
y + z ≤ min{b, c}.

(4.4)

Taking mi = a+ b+ c− i, we consider all possible cases.
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(i) If b ≤ a and b ≤ c, then the system (4.4) becomes the following system{
x+ y + 2z = mi,
x+ y + z ≤ b.

This shows that ci = F (mi, b), by Corollary 3.2.

(ii) If a ≤ c ≤ b, then the system (4.4) becomes the following system
x+ y + 2z = mi,
x+ y + z ≤ b,
x+ z ≤ a,
y + z ≤ c.

(4.5)

According to the values of mi, we have divided the proof of this case into several part:

(M1) If mi ≤ a, then it is easy to check that the number of non-negative integer solutions of (4.5) is equal to the
number of non-negative integer solutions of the equality x+ y + 2z = mi, which establishes the formula.

(M2) If a < mi ≤ c, then the system (4.5) becomes the following system{
x+ y + 2z = mi,
x+ z ≤ a.

This finishes the proof, by Lemma 3.7.

(M3) If c < mi ≤ b, then the number of non-negative integer solutions of (4.5) is equal to the number of non-negative
integer solutions of the following system.  x+ y + 2z = mi,

x+ z ≤ a,
y + z ≤ c.

(4.6)

Now, we compute the number of non-negative integer solutions of (4.6) in 3 cases:

(M3.1) mi

2 ≤ a. For any solution (x, y, z) of system (4.6), if we take z = k, (0 ≤ k ≤ mi

2 ), then (x, y) obtain from the
following system  x+ y = mi − 2k,

x ≤ a− k,
y ≤ c− k.

(4.7)

Clearly, this system has a solution if a+ c ≥ mi. If this condition holds, then the number of non-negative integer
solutions of (4.7) is equal to a+ c−mi + 1. Therefore, in this case we have

ci =

[
mi
2 ]∑

k=0

(a+ c−mi + 1) = ([
mi

2
] + 1)(a+ c−mi + 1).

(M3.2) a < mi

2 ≤ c. Similarly, we apply (M3.1) for 0 ≤ k ≤ a.

(M3.3) c < mi

2 ≤ b. As was described in (M3.1), ci = 0 because a+ c < mi.

(M4) If mi > b then ci is equal to the number of non-negative integer solutions of the system (4.5). If z = k, (0 ≤
k ≤ mi

2 ) is a part of a solution of (4.5), then the solution remaining obtain from the following system.
x+ y = mi − 2k,
x+ y ≤ b− k,
x ≤ a− k,
y ≤ c− k.

(4.8)
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Clearly, the system (4.8) has a solution if and only if mi − b ≤ k and mi ≤ a + c. If these conditions hold, the
system (4.8) becomes the following system  x+ y = mi − 2k,

x ≤ a− k,
y ≤ c− k.

It is easy to check that the number of non-negative integer solutions of this system is equal to a + c −mi + 1.
Now, we give the proof in three cases:

(M4.1) mi

2 ≤ a. In this case we have mi − b ≤ k ≤ mi

2 , so

ci =

[
mi
2 ]∑

i=mi−b

(a+ c−mi + 1) = ([
mi

2
]−mi + b+ 1)(a+ c−mi + 1).

(M4.2) a < mi

2 ≤ c. In this case we have mi − b ≤ k ≤ a. Hence

ci =

a∑
i=mi−b

(a+ c−mi + 1) = (a−mi + b+ 1)(a+ c−mi + 1).

(M4.3) c < mi

2 ≤ b. In this case we have again mi − b ≤ k ≤ a and the conditions for the existence of solution imply
that mi = a+ c. Therefore

ci =

a∑
i=mi−b

1 = a−mi + b+ 1

(iii) The proof of this case is similar to (ii).

(iv) If a ≤ b ≤ c, then the system (4.4) becomes the following system x+ y + 2z = mi,
x+ y + z ≤ b,
x+ z ≤ a.

(4.9)

We compute the number of non-negative integer solutions of (4.9) in three cases:

(N1) If mi ≤ a, then ci is equal to the number of non-negative integer solutions of equation x+ y + 2z = mi. Thus
ci = F (mi), by Lemma 3.1.

(N2) If a < mi ≤ b, then the system (4.9) becomes the following system{
x+ y + 2z = mi,
x+ z ≤ a.

Therefore ci = G(mi, a), by lemma 3.7.

(N3) If mi > b, then by taking z = k, (0 ≤ k ≤ mi

2 ), as a part of solution of system (4.9), we conclude that the
solution remaining obtain from the following system. x+ y = mi − 2k,

x+ y ≤ b− k,
x ≤ a− k.

(4.10)

Clearly, the condition for having a solution is that mi− b ≤ k. We have divided the proof of this case into several
parts:
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(N3.1) mi

2 ≤ a. In this case we have mi − b ≤ k ≤ [mi

2 ] and the system (4.10) becomes the following system{
x+ y = mi − 2k,
x ≤ a− k.

This shows that

ci =

[
mi
2 ]∑

i=mi−b

(a− k + 1).

Applying these sums in two cases mi = 2ℓ and mi = 2ℓ+ 1, the desired conclusion follows.

(N3.2) mi

2 > a. In this case we have mi − b ≤ k ≤ a. Hence

ci =

a∑
k=mi−b

(a− k + 1)

=
1

2
(a+ b−mi + 1)(a+ b−mi + 2).

(v) The proof of this case is similar to (iv).

□

Theorem 4.2. Let γ = aR1 + bR2 + cR3 be a weight of the Lie algebra sp6(C). Let

m̂ = min{a, [ 1
2
b], c}, ([ ] = integral part function)

n̂ = min{[ 1
2
(a−m)], [

1

2
b]−m, c−m},

k̂ = min{[ 1
2
b]−m− n, c−m− n},

γ(m,n, k) = (a−m− 2n)R1 + (b− 2m− 2n− 2k)R2 + (c−m− n− k)R3,

and suppose that Psl
q (γ(m,n, k)) =

∑
ciq

i. If Psp
q (γ) =

∑
diq

i, then

di =

m̂∑
m=0

n̂∑
n=0

k̂∑
k=0

ĉ(m,n, k)i,

where
ĉ(m,n, k)i = cî, î = i−m− n− k.

Proof . If β1, ..., β9 are positive roots of sp6(C) and γ =
∑9

i=1 riβi, then we must have r1 + r4 + r6 + r7 + 2r8 = a,
r2 + r4 + r5 + r6 + 2r7 + 2r8 + 2r9 = b,
r3 + r5 + r6 + r7 + r8 + r9 = c.

By definition, di is equal to the number of 9-tuples (r1, ..., r9) of non-negative integers such that (r1, ..., r9) is a
solution of the following system. 

r1 + r2 + ...+ r9 = i,
r1 + r4 + r6 + r7 + 2r8 = a,
r2 + r4 + r5 + r6 + 2r7 + 2r8 + 2r9 = b,
r3 + r5 + r6 + r7 + r8 + r9 = c.

(4.11)
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By comparing the positive roots of sl4(C) and sp6(C), we see that the positive roots β1, ..., β6 of sp6(C) are
similar to positive roots of sl4(C). Suppose that (m,n, k) be a triple of non-negative integer such that the 9-tuple
(r1, ..., r6,m, n, k) is a non-negative integer solution of (4.11). then we have

r1 + r2 + ...+ r6 = i−m− n− k,
r1 + r4 + r6 = a−m− 2n,
r2 + r4 + r5 + r6 = b− 2m− 2n− 2k,
r3 + r5 + r6 = c−m− n− k.

(4.12)

Clearly, for each triple (m,n, k), the number of non-negative integer solution of (4.11) in the form (r1, ..., r6,m, n, k)
is equal to the number of non-negative integer solution of (4.12). On the other hand, we have

γ =

6∑
i=1

riβi +mβ7 + nβ8 + kβ9.

Since
mβ7 + nβ8 + kβ9 = (m+ 2n)R1 + (2m+ 2n+ 2k)R2 + (m+ n+ k)R3,

we have
6∑

i=1

riβi = (a−m− 2n)R1 + (b− 2m− 2n− 2k)R2 + (c−m− n− k)R3.

According to the system (4.12), we take î = i−m− n− k and

γ(m,n, k) = (a−m− 2n)R1 + (b− 2m− 2n− 2k)R2 + (c−m− n− k)R3.

If Psl
q (γ(m,n, k)) =

∑
ciq

i, then the number of non-negative integer solution of (4.12) is equal to cî. To complete
the proof, we need to determine what the triple (m,n, k) is the part of a solution of (4.11). It is easy to check that,
we must have

0 ≤ m ≤ min{a, [ 1
2
b], c},

0 ≤ n ≤ min{[ 1
2
(a−m)], [

1

2
b]−m, c−m},

0 ≤ k ≤ min{[ 1
2
b]−m− n, c−m− n},

and the proof is complete. □
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