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Abstract

In this paper, we mainly investigate the finite order transcendental meromorphic solutions of Fermat-type equations
and also we consider here linear difference operator of meromorphic function. In addition, we extend some recent
result obtained in [1]. The example is exhibited to validate certain claims of the main result.
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1 Introduction

For a meromorphic function f in the complex plane C, we shall use the standard notations, definitions and basic
results of Nevalinna theory of meromorphic functions (see [6],[9]. The notation S(r, f), is defined to be any quantity
logarithmic measure. The order of f is defined by

ρ(f) = lim sup
r→∞

log T (r, f)

log r
.

In this article, we define shift and difference operators of f(z) by f(z+c) and ∆cf(z) = f(z+c)−f(z), respectively.
Note that ∆n

c f(z) = ∆n−1
c ∆cf(z), where c is a non-zero complex number and n ≥ 2 is a positive integer.

For further generalization of ∆cf(z), we now define the linear difference operator of an entire(meromorphic) function
f as Lc(f) = f(z+ c)+ c0f(z), where c0 is a finite complex constant. Clearly, for the particular choice of the constant
c0 = −1, we get Lc(f) = ∆cf .

2 Preliminaries and Main result

For the existence of solutions of non-linear q-shift equation, in 2011, Qi [11] obtained the following theorems:
Theorem A. Let q(z), p(z) be polynomials and let n,m be distinct positive integers. Then the equation

fm(z) + q(z)f(z + c)n = p(z) (2.1)
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has no transcendental entire solutions of finite order.

In 2015, Qi-Liu-Yang [10] obtained the meromorphic variant of Theorem A and improved this as follows:
Theorem B. [10] Let f(z) be a transcendental meromorphic function with finite order, m and n be two positive

integers such that m ≥ n + 4, p(z) be a meromorphic function satisfying N

(
r, 1

p(z)

)
= S(r, f) and q(z) be nonzero

meromorphic function satisfying that T (r, q(z)) = S(r, f). Then, f(z) is not a solution of equation

fm(z) + q(z)f(z + c)n = p(z) (2.2)

Theorem C. [10] Let f(z) be a transcendental meromorphic function with finite order, m and n be two positive

integers such that m ≥ n + 2, p(z) be a meromorphic function satisfying N

(
r, 1

p(z)

)
= S(r, f) and q(z) be nonzero

meromorphic function satisfying that T (r, q(z)) = S(r, f). Then, f(z) is not a solution of equation 2.2.

In 2021, A. Banerjee and T. Biswas [1] investigated the following result.
Theorem D. [1] Let f(z) be a transcendental meromorphic function with finite order, m and n be two positive

integers such that m ≥ (τ + 1)(n + 2) + 2, p(z) be a meromorphic function satisfying N

(
r, 1

p(z)

)
= S(r, f) and q(z)

be nonzero meromorphic function satisfying that T (r, q(z)) = S(r, f). Then, f(z) is not a solution of the non-linear
c-shift equation

fm(z) + q(z)(Lc(z, f))
n = p(z). (2.3)

In this article we extend Theorem-D at the expense of replacing (Lc(z, f))
n by [fn(f − 1)sLc(f)]

(k).

Theorem 2.1. Let f(z) be a transcendental meromorphic function with finite order, m,n, s and k be a positive

integers such that m ≥ (s+ 1)(nk + k + sk + 4) + 2, p(z) be a meromorphic function satisfying N

(
r, 1

p(z)

)
= S(r, f)

and q(z) be nonzero meromorphic function satisfying that T (r, q(z)) = S(r, f). Then, f(z) is not a solution of the
linear difference operator

fm(z) + q(z)[fn(f − 1)sLc(f)]
(k) = p(z). (2.4)

Corollary 2.2. Let f(z) be a transcendental meromorphic function with finite order, m and n be two positive integers

such that m ≥ n+2, p(z) be a meromorphic function satisfying N

(
r, 1

p(z)

)
= S(r, f) and q(z) be nonzero meromorphic

function satisfying that T (r, q(z)) = S(r, f). Then, f(z) is not a solution of equation (2.4).

The next example show that if the conditionm ≥ n+2 is omitted then the equation (2.4) can admit a transcendental
entire solution. Considering n = 1, k = 1 and m = 1 we have the following example.

Example 2.3. The function f(z) = ze
πiz
c satisfies the equation f(z)+ 1

z+1 [Lc(f)] =
z(z+2)
z+1 e

πiz
c , where the coefficients

of Lc(f) is chosen such that they satisfy simultaneously the equations{
a0 − a1 + a2 − ...+ (−1)kak = 1,

−a1 + 2a2 − 3a3 − ...+ k(−1)kak = 0.

To proceed further we require the following lemmas:

Lemma 2.4. [4] Let f(z) be a finite order meromorphic function and ε > 0, then T (r, f(z + c)) = T (r, f(z)) +
o(rσ−1+ε) + O(log r) and σ(f(z + c)) = σ(f(z)). Thus, if f(z) is a transcendental meromorphic function with finite
order, then we know T (r, f(z + c)) = T (r, f) + S(r, f).

Lemma 2.5. [5] Let f(z) be a meromorphic function with finite order, and let c ∈ C and δ ∈ (0, 1). Then

m

(
r, f(z+c)

f(z)

)
+m

(
r, f(z)

f(z+c)

)
= o

(
T (r,f)

rδ

)
= S(r, f).
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Lemma 2.6. [7] Let f be a non-constant meromorphic function with finite order and c ∈ C. Then

N(r,∞; f(z + c)) ≤ N(r,∞; f(z)) + S(r, f),

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f).

Proof of Theorem 2.1. Suppose by contradiction that f(z) is a transcendental meromorphic function with finite
order satisfying equation (2.4). If T (r, p(z)) = S(r, f), then applying Lemma 2.4 to equation (2.4), we have

m.T (r, f) = T (r, fm)

= T (r, p(z)− q(z)[fn(f − 1)sLc(f)]
(k))

= T (r, [fn(f − 1)sLc(f)]
(k)) + S(r, f)

≤ (nk + sk + (s+ 1)k)T (r, f) + S(r, f),

which contradicts the assumption that m ≥ (s+1)(nk+k+sk+4)+2. If T (r, p(z)) = S(r, f), differentiating equation
(2.4), we get

(fm)′ + (q(z)[fn(f − 1)sLc(f)]
(k))′ = p′(z). (2.5)

Next dividing (2.5) by (2.4) we have

p′(z)[fm(z) + q(z)[fn(f − 1)sLc(f)]
(k)] = p(z)[(fm)′ + (q(z)[fn(f − 1)sLc(f)]

(k))′]

fm(z) =

p′(z)
p(z) q(z)[f

n(f − 1)sLc(f)]
(k) − (q(z)[fn(f − 1)sLc(f)]

(k))′

(fm(z))′

fm(z) − p′(z)
p(z)

. (2.6)

First observe that (fm(z))′

fm(z) − p′(z)
p(z) cannot vanish identically. Indeed, if (fm(z))′

fm(z) − p′(z)
p(z) ≡ 0, then we get p(z) =

βfm(z), where β is a non-zero constant. Substituting the above equality to equation (2.4), we have q(z)[fn(f −
1)sLc(f)]

(k) = (β − 2)fm(z). From Lemma 2.4 and above equation, we immediately see as above that mT (r, f) ≤
(nk + sk + (s + 1)k)T (r, f) + S(r, f), which is a contradiction to m ≥ (s + 1)(nk + k + sk + 4) + 2. From equation
(2.6), we know

mT (r, f) =T (r, fm)

≤m(r, q(z)[fn(f − 1)sLc(f)]
(k)) +m

(
r,
p′(z)

p(z)
− ([fn(f − 1)sLc(f)]

(k))′

[fn(f − 1)sLc(f)](k)

)
+N

(
r,
p′(z)

p(z)
q(z)[fn(f − 1)sLc(f)]

(k) − (q(z)([fn(f − 1)sLc(f)]
(k)))′

)
+m

(
r,
(fm(z))′

fm(z)
− p′(z)

p(z)

)
+N

(
r,
(fm(z))′

fm(z)
− p′(z)

p(z)

)
+ S(r, f). (2.7)

As Lemma 2.4 together with equation (2.6) implies that

(m− nk − sk − (s+ 1)k)T (r, f) + S(r, f) ≤T (r, p(z)) ≤ (m+ nk + sk + (s+ 1)k)T (r, f) + S(r, f),

we conclude that

S(r, p(z)) = S(r, f). (2.8)

Applying Lemmas 2.4, 2.5 and (2.8) to equation (2.7), we obtain that

mT (r, f) ≤k(s+ n+ 2)m(r, f) +N

(
r,
p′(z)

p(z)
q(z)[fn(f − 1)sLc(f)]

(k) − (q(z)([fn(f − 1)sLc(f)]
(k)))′

)
+N

(
r,
(fm(z))′

fm(z)
− p′(z)

p(z)

)
+ S(r, f). (2.9)
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Let

α(z) =
p′(z)

p(z)
q(z)[fn(f − 1)sLc(f)]

(k) − (q(z)([fn(f − 1)sLc(f)]
(k)))′ (2.10)

and

β(z) =
(fm(z))′

fm(z)
− p′(z)

p(z)
. (2.11)

First of all, we deal with N(r, α(z)). From (2.4) and (2.10), we know the poles of α(z) are at the zeros of p(z) and
at the poles of f(z), f(z + jc), (j = 1, 2, ..., s) and q(z). Poles of p(z) will not contribute towards the poles of α(z) as
from the equation (2.4) we know that the poles of p(z) should be at the poles of f(z), f(z + jc), (j = 1, 2, ..., s) and
q(z). We note that T (r, q(z)) = S(r, f).

If z0 is a zero of p(z) then by (2.10), z0 is at most a simple pole of α(z). If z0 is a pole of f(z) of multiplicity t but
not a pole of f(z + jc), (j = 1, 2, ..., s), then z0 will be a pole of α(z) of multiplicity at most tnk+ 1. Next suppose z1
be any pole of f(z) of multiplicity t0 and a pole of at least one f(z + jc), (j = 1, 2, ..., s), of multiplicity ti ≥ 0. Then
z1 may or may not be a pole of [fn(f − 1)sLc(f)]. From the above arguments and our assumption, we conclude that

N(r, α) ≤ N

(
r,

1

p(z)

)
+ kN(r, fn) + kN(r, (f − 1)s) + kN(r,Lc(f)) +N(r, f) +N(r,Lc(f)) + S(r, f)

N(r, α) ≤ nkN(r, f) + skN(r, (f − 1)) + kN(r,Lc(f)) + ((s+ 1) + 1)N(r, f) + S(r, f). (2.12)

Next, we turn our attention towards the poles of β(z) are at the zeros of p(z) and f(z) and at the poles of
f(z), f(z+jc), (j = 1, 2, ..., s). If z0 is a zero of p(z), zero of f(z), or pole of f(z), f(z+jc), (j = 1, 2, ..., s), then by (2.11)
we know z0 will be at most a simple pole of β(z). If z0 is a pole of f(z) but not a pole of f(z), f(z+jc), (j = 1, 2, ..., s),
then by the Laurent expansion of β(z) at z0, we obtain that β(z) is analytic at z0. Therefore, from our assumption
and the discussions above, we know

N(r, β) ≤ N

(
r,

1

p(z)

)
+N(r, f) +N(r, (f − 1)) +N(r,Lc(f)) +N(r,

1

f
) + S(r, f)

N(r, β) ≤ N(r, f) +N(r, (f − 1)) +N(r,Lc(f)) +N(r,
1

f
) + S(r, f). (2.13)

Using Lemma 2.6, from equations (2.9), (2.12) and (2.13) we have

mT (r, f) ≤ (nk + k)m(r, f) + nkN(r, f) + skN(r, f) + kN(r,Lc(f)) + ((s+ 1) + 1)N(r, f)

+N(r, f) +N(r, (f − 1)) +N(r,Lc(f)) +N(r,
1

f
) + S(r, f)

≤ (nk + k)m(r, f) + nkN(r, f) + skN(r, f) + k(s+ 1)N(r, f) + ((s+ 1) + 1)N(r, f)

+N(r, f) + (2s+ 1)N(r, f) +N(r,
1

f
) + S(r, f)

≤ (nk + k)m(r, f) + ((s+ 1)k + nk + sk)N(r, f) + ((s+ 1) + 1)N(r, f)

+ 2(s+ 1)N(r, f) +N(r,
1

f
) + S(r, f)

≤ {(s+ 1)(nk + k + sk + 4) + 1}T (r, f) + S(r, f),

which contradicts the assumption that m ≥ (s+ 1)(nk + k + sk + 4) + 2. This completes the proof of the theorem.
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