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Abstract

In this paper, we introduce a new iterative method for system of split mixed equilibrium problems and infinite family
of demimetric mappings in a real Hilbert space. Then, we establish that the sequence generated by our proposed
algorithm converges strongly to a common element in the solutions set of a system of split mixed equilibrium problems
and the common fixed points set of infinite family of demimetric mappings. Our result improve and generalize some
well-known recent results in the literature.
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1 Introduction and Preliminaries
Let H be a real Hilbert space with inner product (.,.) and ||.|| induced norm on the inner product and C' a nonempty
closed and convex subset of H.

For any nonlinear mapping T from C into H, denote the set of fixed points of T' by F(T') := {x € C : Tz = z}.
Let 2, — x and z, — = denote respectively the strong and weak convergence of the sequence {z,} to . We shall
also use the symbols N and R for the set of natural and real numbers respectively.

Definition 1.1. Let U : C' — H be a mapping, then U is said to be

1. L—Lipschitz if there exists L > 0 such that ||Uz — Uyl|| < L||x — y||, for all z,y € C and T is nonexpansive if
L=1.
2. k—strictly pseudocontraction in the sense of Browder and Petryshyn [2] if there exists k € [0,1) such that
Uz = Uy|* < ||z —yl* + k|l = Uz — (y = Uy)|[>, forall =,y e C; (1.1)
3. k-strictly pseudononspreading in the sense of Osilike and Isiogugu [I1] if there exists k € [0, 1) such that
Uz —Uyl? < lz—yll* +kllz — Uz — (y = Uy)||?
+2{(x —Uz,y —Uy) Y z,yeC.
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4. a generalized hybrid if there exist a, 5 € R such that, for all z,y € C
allUz — Uyl|* + (1 — a)||lz - Uyl]> < 8l|Uz — y|* + (1 = B)[|« — y||*.

5. firmly nonexpansive if ||[Uz — Uy||> < (Uz — Uy,x —y), V z,y € C.
monotone if (Ux — Uy, z —y) >0, Vz,y € C.
7. a—inverse strongly monotone if there exists a > 0 such that

>

<T$—Ty,$—y> > (X||UJ)— UyH27 Vm)?;/ e C.

Recently, Takahashi [22] introduced a new class of nonlinear mapping known as k-demimetric mapping in Hilbert
space. A mappping U : C — H with F (U) # () is called k-demimetric, if there exists a k € (—oo, 1) such that

k
i

for any € C and ¢ € F(U). The study of nonexpansive mapping and its generalization plays an important role
in nonlinear analysis and optimization. Finding fixed points of such mapping can be applied to nonlinear problems
such zero solution of some monotone operators, equilibrium problem, split feasibility problems, convex minimization
problems and variational inequality problems (see [II, 12}, 2], 23] 15}, 18] 14} [16] for more details).

The classical equilibrium problem (EP for short) is defined as follows: Let g : C' x C'— R be a bi-function, then
find pe C such that g(p,y) >0, VyeC.
The set of solutions of problem (EP) is defined as

EP(g)={p€C:g(p,y) >0, VyecC}.

This problem was introduced by Blum and Oettli [I] in 1994. They studied existence theorems and variational
principle for equilibrium problems which had a great impact and influence in the development of several branches
of pure and applied sciences. It has been shown in [I] that the theory of equilibrium problem provides a natural,
novel and unified framework for solving several problems arising in pure and applied sciences. Later in 2012, He [6]
introduced split equilibrium problem (SEP) as follows:

Let C and @ be nonempty closed and conves subsets of real Hilbert spaces H; and Hs respectively, g1 : C xC — R
and go : @ X @ — R be nonlinear bi-functions and let A : H; — Hs be a bounded linear operator. Then, the split
equilibrium problem is to find p € C such that

g1(p,x) >0, Vo€ C and g = Ap € @ solves g2(q,y) >0, Vy € Q.

The set of solutions of this problem is denoted by SEP(g,¢). Recently, a lot of research effort are devoted to
finding a solution of split equilibrium problem and system of split equilibrium problems (see [7, [9, [8] [19] 24] and the
references therein). In this paper, we also consider the mixed equilibrium problem (MEP) which is to find p € C such
that

g(p,z) + ¢(r) —9(p) > 0,Vr e C.

In particular, if ¢ = 0, this problem reduces to the equilibrium problem. The set of solutions for problem is denoted
by MEP(g, ¢). In 2017, Onjai-uea and Phuengrattana [10] first studied split mixed equilibrium problems as follows:
find p € C such that

91(p, ) + ¢1(x) — p1(p) 20, Vo €C
and such that
q = Ap solves g2(q, y) + ¢2(y) — ¢2(q) 2 0, V'y € Q,
where ¢ : C — RU {400} and ¢3 : Q@ — RU {400} are proper lower semicontinuous and convex functions such that
CNdom(pr) # 0 and Q N dom(ps) # 0. Then the solution of split mixed equilibrium problems is defined as follows:

SMEP(g1,01,92,02) ={p€C:p€ MEP(g1,p1) and Ap € MEP(g2, p2)}-

In 2016, Ugwunnadi and Ali [24] introduced and studied the following algorithm for finding a common fixed point
of a finite family of continuous pseudocontractive mappings {7;}~_, which is a unique solution of some variational
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inequality problem and whose image under some bounded linear operator A with its adjoint A* is a common solution
of some system of equilibrium problems in a real Hilbert space as follows:
n=Po (xy + AB (TN — 1) Azy,)
Zn = BpYn + (1 - Bn) T[n]rnyn7 (12)
Tng1 = @Y f (2n) + Inzn + (1 = 0p) I — anpuG) 2, Vn € N,

where JM = T9m TIY=' ... T92 T9 and J0 =1 for all n € N and

SM,n S2.n" Si,n
T[n]rnilf:: {ZGC.<y*Z,TM >*i< (1+T7,)271‘><0Vy60} [n] := Thumodn, B € (0,1),
0 < liminf, o 0, < limsup, . 0, < 1, {r,} € (0,00) with liminf, o7, > 0, X\ € (O’W> and {sk,n}kle €
(0,00) with liminf, . sk, > 0, for every k € {1,2,3,..., M}, G is an n-strongly monotone and p-strictly pseudo-
contractive with n 4+ p > 1, f is a contraction with o € (0,1) with some condition on {a,} and {r,}. They proved

the sequence generated by (|1.2) converges strongly to a common solution of the system of equilibrium problem and
common fixed points of the family of continuous pseudocontractive mappings.

In 2018, Rizvi [I7], studied a modified Mann iterative and Halpern iterative method for find a common solution of
split mixed equilibrium problem and fixed point for a nonexpansive mapping and prove the following theorem:

Theorem 1.2. Let H; and H> be two real Hilbert spaces and K; C H; and Ky C Hs be nonempty closed and convex
subsets. Let B : Hy — Hs be a bounded linear operator. Assume that F' : K1 x Ko - Rand G : Ko x Ko - R
are the bifumctions satisfying some conditions and G is upper semicontinuous in first argument. Let f : K3 —
Ky and g : Ko — K5 be 0 and 6s-inverse strongly monotone mappings respectively and let .S : K1 — K5 be a
nonexpansive mapping such that Q : SMEP(F,G) N F(T) # (. For a given xy € K; arbitrary, let the iterative
sequences {z,}, {yn},{vn} and {z,} be generated by

Yn = TTI:L (xn —rnfan),
n =T (I = 709)Byn,
n = Pr, [yn + 0B*(v,, — Byy)],
Tnt1 = Bnn + (1 — Bn)Slanu + (1 — ay)zn], n> 1.

where {r,} C (0,20); 6 = min{6y, 60>} and {w,}, {0.} are sequences in (0, 1) satisfying the following conditions:

(i) limy, oo ap =0 and Y 07 |y, = 00;
(ii) liminf, oo 7y > 0, E;o:l |rnt1 — mn| = 0;

(iii) 0 < liminf, o By < limsup,,_, . Bn < 1.
Then the sequence {x,} converges strongly to z € Q, where z = Pqu.

Motivated and inspired by the results, in this paper we introduce and study a new iterative method for finding
an element of the set of system of split mixed equilibrium problem and common fixed points of infinite family of
demimetric mappings in a real Hilbert space. Our result improve and generalized some recent results in the literature.

2 Preliminaries

Let H be a real Hilbert space. Then, it is well known that following inequalities hold for all z,y € H and A € [0, 1]
2 2 2
e =ylI” = llz” = llyl” = 2(z = v, u),
2 2
lz +ylI” < llz]” +2(y,z +v),

and
Az + (1= X yl* = Ml2l* + (1= M) gl = A (1= ) [l =y
which can be extended to the more general situation: for all 1,29, ...,2, € H,\; € [0,1] and >_1 | \; = 1, we have

(DAY I SR T SRV EE

1<i<j<n
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The metric projection from a Hilbert space H onto a nonempty closed and convex subset C' of H is the mapping
Po : H — C for each x € H, there exists a unique point z = Pe(z) such that

—2|| = inf ||z — y|.
[l — 2| = inf[lo —y]]

Lemma 2.1. Let z € H and z € C be any point. Then we have

(i) z = Pe(x) if and only if the following relation holds

(x —2z,y—2) <0, VyeC. (2.1)

(ii) There holds the relation
(Pe(x) = Po(y),x —y) 2 ||Pe(z) — Po()|’, Va,y € H.

(iii) Forz € H and y € K
ly = Pe(@)|]” + [lo — Po()||* < [le —yI[*.

Lemma 2.2. [4]Let {ay,} be a sequence of real numbers such that there exists a subsequence {n;} of {n} such that
Qp, < o, for all i € N. Then there exists a nondecreasing sequence {m;} C N such that m; — oo and the following
properties are satisfied for all (sufficiently large) numbers k € N:

Oy, < Qyyy and ap < Q-
In fact, mp = max{j < k:a; < aji1}.

Lemma 2.3. [25]Let {z,} be a sequence of nonnegative numbers satisfying the property:
xn-&-l S (1 - an) Tn + bn + QpCp,
where {a,}, {b,} and {c,} satisfy the restrictions:

1. > o =00 and lim,, o0 a, = 0,
2. b, >0and Y " b, < o0,
3. limsup,, ,,, cn < 0.

Then, lim,, o x,, = 0.

Lemma 2.4. [B]Let C be a nonempty closed convex subset of a real Hilbert space H. Let k € (—o0,1) and T be a
k-demimetric mapping of C into H such that F (T) is nonempty. Let ¢ be a real number with ¢ € (0,00) and define
S = (1—1t)I+tT. Then there holds that

1. F(SY=F(T)ift#0,
2. S is a quasi-nonexpansive mapping for ¢t € (0,1 — k],
3. F(T) is a closed convex subset of H.

Lemma 2.5. [20] Let H be a Hilbert space and C' be nonempty convex subset of H. Assume that {1;}2, : C — H
be an infinite family of k; — demimetric mappings with sup{k; : i € N} < 1 such that (;2; F(T;) # 0. Assume that
{n:i}32, is a positive sequence such that Y ., n; = 1. Then > ;> nT; : C — H is a k-demimetric mapping with
k =sup{k; : i € N} and F(} oo, 0iT3) = ooy F(T3).

The demiclosedness principle for mappings plays an important role in our proof in the subsequent section.

Definition 2.6. [3] A self-mapping T on a Banach space is said to be demiclosed at y, if for any sequence {x,,} which
converges weakly to z, and if the sequence {T'z,,} converges strongly to y, then T'(z) = y. In particular, if y = 0, then
T is demiclosed at 0.
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Definition 2.7. Let H; and H> be Hilbert spaces. Let A : H;y — Hs be a bounded linear operator, then the Hilbert
adloint operator A* : Hy — H; of A is defined for all € Hy such that (Az,y) = (x, A*y) for all y € H,.

The Hilbert adjoint operators have the following well known properties. Let Hy, Hy be Hilbert spaces, A : Hy — Hy
and B : Hy — H> be bounded linear operators and a any scalar, then

a) (Ax,y) = (x, A*y) for all x € Hy and y € Ho;

(
(b) (A+ B)* = A* + B*;

(d) (A*) =4

(e
(f) [|A*All = [|AA*]] = [|A]]>.

)
)
(¢) (aA) = @A, where @ is the conjugate of «;
) (
) AA=0& A=0;

)

We need the following assumptions to solve a mixed equilibrium problem for a bifunction F': C'x C' — R and a
mapping ¢ : C — RU {+oc0}, then

(A1) F(z,z)=0,Vz € C,

(A2) F is monotone, i.e., F (z,y) + F (y,z) < 0,Vz,y € C,

(A3) limyo F(Az+ (1 =N a,y) < F(x,y) for all z,y,z € C

(Ad) Vx € C, y — F (z,y) is convex and lower semicontinuous,

(A5) For each z € C, X € (0,1] and r > 0, there exist a bounded subset D C C and a € C such that for any z € C\D,
F(z,a)—i—gp(a)—gp(z)—&—%(a—z,z—@ < 0.

(A6) C is a bounded set

Lemma 2.8. [I3] Let C' be a nonempty closed convex subset of a Hilbert space H; and ¢ : C' — RU {+0o0} a proper
lower semicontinuous and convex mapping such that C N domp = @. Suppose that bifunction F': C x C — R and a
mapping ¢ satisfy the conditions (A1)-(A6). For r > 0 and = € Hy, let T : H; — C be a mapping defined by

TF (2) = {z €eC:F(zy)+ey) —<p(z)+%<y—z,z—x) >0,Vye C}. (2.2)
Assume that either (A5) or (A6) holds. Then:

(i) For each z € Hy, TFx # 0,

(ii) TF is single valued,

(iii) TF is firmly nonexpansive,

(iv) F (TF) = MEP (F, ) and it is closed and convex.

Let ¢ : @ = RU{+0c0} be a proper lower semicontinuous and convex mapping such that @ N dom¢ = 0. Suppose
that bifunction G : @ x @ — R and a mapping ¢ satisfy the conditions (A1)-(A6). For s > 0 and v € Hs. Let
TE : Hy — Q be a mapping defined by

TSG(u):{veQ:G(uw)—i—é(w)—(b(v)—i—1(w—v,v—u>20,Vw€Q}. (2.3)

S

Then clearly T satisfies (i)-(iv) of Lemma and F (TY) = MEP(G,¢). We introduce the system of split
mixed equilibrium problem by the following way.
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Definition 2.9. Let C; and @; be nonempty closed convex subsets of real Hilbert spaces H; and Hs, respectively.
Let A : Hi — H, be a bounded linear operator, F; : C; x C; - R and G; : Q; X Q; — R,1 < i < N, nonlinear
bifunctions and let ¢, : C; — R U {+o0} and ¢; : Q; — R U {400} be proper lower semicontinuous and convex
functions such that C; N domy; # 0 and Q; N dome; # (). The system of split mixed equilibrium problem is to find
z* € C =N ,C; such that

F; (2%, 2) + @i () — @i () > 0, Vx € C;, (2.4)
and such that y* = Az* € Q = NI, Q; solves
Gi(y",y) + i (y) — i (y") 20, Vy € Q. (2.5)

The solution set of system of split mixed equilibrium problem (2.4]) and (2.5)) is denoted by
SSMEP(F;,;, Gy, i) = {x €C:a* €N, MEP (F, ;) and Az* € NY, MEP (G:, ¢;) }

where M EP (F;, ;) is the set of solutions of mixed equilibrium problem, i.e.,

MEP (Fy, ;) = {z" € C; : Fi (2%, 2) + @i (v) — s (2¥) > 0, Yz € Ci}.

3 Main Results

Theorem 3.1. Let C; and @;, 1 < ¢ < N, be nonempty closed convex subsets of real Hilbert spaces H; and Hs,
respectively, A : Hy — Hy be a bounded linear operator and {S,,} be an infinite family of k,,-demimetric and
demiclosed mappings from C' = Oi]\ilCi to Hy. Let F; : C; x C; > R and G; : Q; X @; — R be nonlinear bifunctions
satisfying assumptions (A1)-(A6), ¢; : C; = RU {+oo} and ¢; : Q; — R U {400} proper lower semicontinuous and
convex functions such that C; N domy; # 0 and Q; N dome; # 0 and let G; be upper semicontinuous in the first
argument. Assume that T' = N%S_, F (S,,) N SSMEP (F;, pi,Gi, ¢;) # 0 and u is a fixed vector in C. Let {z,} be a
sequence generated by x; € C' and

Tpae1 = apu+ (1 —ay) (1 —0) zy + (1 — ay) Sy,
Yn = ( Bn) Up + ﬂn Zm 1 nmSmunv

Uy = szl (I yA* (I TGl) A) U, 1,

Up,1 = Tgf (I yA* ( TG2) A) Up,2,

Up,N—2 = T5N71 I—’YA* I—TTCiN71 A) Up,N—1,
Up, N—1 = TTIZZN (I — vA* (I - TTGHN) A) Tn,Vn € N

where ay, B, m, 0 € (0,1), r, € (0,00) and v € (O, %) such that L is the spectral radius of A*A and A* is the adjoint
of A. Assume that the following conditions hold:
(i) Y07, o =00 and lim, 00 v, = 0;
(i) 0<a<pB, <b<1l-—kwhere k =sup{k; :i € N};
(i) > —1mm =13
)

(iv) 0 < liminf,, o 7p.
Then the sequence {z,} generated by (3.1) converges strongly to p = Pru.

Proof . We divide our proof into six steps.

Step 1. In first step, we show that A* (I TGZ) Ais a %—ibm for all ¢ = 1,2,...,N. Since Tfii is firmly

nonexpansive and I — TGZ is 1-ism, by using that A* is adjoint of A, we have

A% (I = TS") Aw — A* (I = TEY) Ay||? (A* (I =TS Az —y), A" (I =TS A(x — y))

= <(I—Tgi)A(x—y),AA* (I—Trcii)A(x—y»

< L{I-TP) Al —y), (I-T7) Az —y))
= L|-18) A -y’
< L{A(x—y),(I-TS) Az —y))

= L{z—y A" (I -T5") Az — A* (I - TS") Ay)



Solutions of system of split mixed equilibrium and fixed points problems 7

for all z,y € Hy. So, A* (I —T") A'is a £-ism for all i = 1,2,...,N. On the other hand, since 0 < v < , we get
I —~A* (I — TTC::) A is a nonexpansive mapping.

Step 2. In second step, we show that sequences {z,},{yn} and {u,} are bounded. Let ¢ € T". It means that ¢
is a fixed point of the mappings Sm,Tf:f and I —~vA* (I — TSLL) A. Let J; = Tf:j (I — yA* (I — TTGT;) A) . Since szi
and [ — yA* (I — Tr(ii) A are nonexpansive mappings, we have J; is nonexpansive mapping and ¢ € F (J;) for all
i=1,2,...,N. So, we get

[tn,n-1 = qll = [Inen — Ingll < [lzn — 4l (3-2)

and

| J1tn,1 — J1gl < [Jun,1 — 4l
< N Jatnz — Jaq|| < Junz —ql|
< e <Munn—1 — gl < lzn — ¢l (3.3)

[[un — 4l

Let V.= | nmSm and W,, = (1 — 8,,) I + $3,V. Then, it is easy to see by Lemma that W, is a quasi
nonexpansive mapping with F' (W,,) = F (V) =N%_, F (S,,) .Using (3.3)), we obtain

1yn = gll = [Waun — gl < [lun = gl] < llzn —qll- (3-4)

So, we have from (3.3)) and (3.4)) that

lanu+ (1 —an) (1 = 0) zn + (1 — an) 0yn — 4

an [lu—ql + (1 —an) (1 =6) lzn — qll + (1 = an) 6 |lyn — 4l

o [lu =gl + (1 —an) |2, — 4|

max {[lu—ql|, [[zn —ql[} . (3.5)

[€nt1 =gl

IAINCIA

Therefore, we have |z, — ¢|| < max{|lu—ql|,|z1 —q|} for all n € N. Hence, it follows from (3.5) that the
sequence {z,} is bounded, so are {y,} and {u,}.

Step 3. In this step, we show that ||u, — 2| — 0. Using algorithm (3.1]) we have

2 2
lun —ql” = [I1un,1 =4l

| TE (1 =7 A" (1 = TEY) A) iy — g

< luna =g =74 (1= TE) Auga
< lunn — gl + 72 [ A* (T = TE) Auna ||* = 29 (i — g, A* (I = TS) Auy,r)
= Juny —qlI> ++° (A" (I =TE") Aupg, A* (I = TE) Augp) + 27 {A(q — un1), (I = T) Aup)
= |lup1— q||2 + 72 <(I — Tgl) Aup 1, AA* (I — Tgl) Aun’1>

+2v <A (¢ —un1)+ (I — TTCil) Augp, 1, (I — Tﬁl) Aun’1> — 2'y<(I — Trcil) Aup 1, (I — Trcil) Aun)1>
< tma =l + L (= T8) A+ 25 (1 = 782) A~ 29~ 792) A

= —all® +7 (Ly = |1 = T5) Awaa["-
On the other hand, using , we have

lanu+ (1 —an) (1 —0)xn + (1 — an) 0yn — qH2
an [[un — q* + (1= o) (1= 8) lzn — gl + (1 — o) & [Jur — |
< anllun — gl + l2n — ql* + (1= an) 6y (Ly = 1) ||(I = T9) Au, 1|

| Zn+1 _qH2

IN

2
)

and so, we obtain

— (=) oy (Ly =) (1= TE) Aupa|* < el = al* + llzn = al* = llznss = all”. (3.6)
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Now, there exist two cases.

Case 1: First we assume that there exists an integer m > 0 such that {||z,, — ¢||} is a decreasing sequence for all n >
m. Since lim,_, @, = 0 and {u,} is a bounded sequence, if we take limit from both side of inequality , we have
H (I — Tr(il) AunJH — 0. Similarly, since Up = Jlun,l = Jngun,Q == J1J2 e JN,1Un7N,1 = J1J2 e JNflJNQTn,
we see that

Jim [|(1 = T5%) Augil| = 0 (3.7)
fori=1,2,...,N —1and
. G _
lim [|(7 = T;0%) Az || = 0. (3.8)

Also, since T~ is firmly nonexpansive, we get
n

|TEN (I — AT (I = TSY) A) 2, — T g|?

Tn

[

< (TN (T =y A (I =T5Y) A) g = TV g, (I =y A (I = T7) A) 2 — q)
= (upn_1—q (I —7A* (I =TS¥) A)z, — q)
= 5 (hnvor =gl 4 [[(T 4" (1= T5~) A) o — |
—[Junv1 = =y A" (= TEY) A )
< 5 (lunaves =l + i = I = Junv-s = 2l =92 4" (1 = TS¥) Azl

+27 <un7N_1 — Ty, A* (I — TanN) A:z:n>) .

So, it follows from Cauchy-Schwarz inequality that

IN

2 = qll* = lunn—1 — nll® + 29 (un,n—1 — T, A* (I = TE") Azy,)
2 = all” = lJun,n—1 = zal” + 2 [, n—1 — 2a]| [|A* (I = TS") Az,

[t v—1 — ql|”

A

Last inequality with (3.3) and (3.4) implies that

|zner =l < llanu+ (1= an) (1= 6) 2 + (1 = an) 5yn — gl
< anllu—ql® + (1= an) (1= 0) fon — al” + (1= an) 6 un — qf®
< aplu—q* + (1= an) (1= 68) lzn — all* + (1 = @) 8 [[un,y—1 = al”
< apfu—q* + (1= an) (1= 68) lzn — gl + (1 = an) (Hxn —qll* = llun,n-1 = @]

+29 [[tn, N1 — T || || A" (I = TZN) Az, ]|)
< anllu—gl? + llzn —ql? = (1= ) 8 [Jun,n—1 — zal|* + 27 (1 — @) M || A (I — TEN) Az, ||
where M = sup,,cy {||tn,n—1 — z5||}. Hence, we obtain

(1= an) 8 unv—1 —zal® < anlu—al®+ len —al” = loars =l +27(1 = an) SM[|A* (I = TIY) Az,

Therefore, it follows from (3.8]) that

nh_)rr;o |tn,N—1 — 24| = 0. (3.9)
Similarly, we have
lm ||un; — Uni+1]] =0 and  lim |lu, — up 1| = 0. (3.10)
n— oo n—oQ

Since
lun — znl| < flun — un,IH + ”un,l - Un,2|| +oeee ||un,N—2 - Un,N—1|| + Hun,N—l -z,

using (3.9) and (3.10]), we obtain
ILm |xn — un| = 0. (3.11)
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On the other hand, since

lznir —al® < anu+ (1= an) (1= 8) @ + (1 - an) by — gl
2 2 2 2 2
< anlu—ql"+ 0 —an) (1 =0)lzn —qll” + (1 —an) 0 lyn —ql” = (1 =)™ (1 = 6) 6 [[zn — |
2 2 2 2
< anlu—gl" +llen —ql” = (1= an)” (1= 0) 0 [lzn — ynl
we get

2 2 2 2 2
(1= an)” (1 =08)d[lzn = ynll” < llu = glI” + [lzn — glI” = 2nt1 —ql”-

By taking limit from both side we obtain

nhﬂngo |z — ynll = 0. (3.12)
Also, since
lyn — unll < ll2n = ynll + lun — zull,
we have
nh_}n;@ lyn — unl| = 0. (3.13)
Since
[Znt1 — 2ol = llonu+ (1 —an) (1 =0)zn + (1 — an) 6yn — o4
= |lan (u—2n) + (1 = an)d (yn — 2,) ||
< apllu—zpl|+ (1 —an)d ||z —yall s
from (3.12)), we get
lim ||@n+1 — 2n] = 0. (3.14)
n—oo
Step 4. Now, we show that lim,_, o ||un, — Smun| = 0. Since {z,} is bounded there exists a subsequence {z,} of
{zy} such that x,, = z € C. Without loss of generality, we can assume that
lim (u—p, z,, —p) = limsup (u — p,zn, —p). (3.15)
1—00 n— 00
So, it follows from (3.15)) that
limsup (v — p,z, —p) = lim (v —p,x,, —p) = (u — Pru,z — Pru) <O0. (3.16)

n— 00 i—00
Also, it is obvious that
<un — P, Up — yn> = ﬂn <un — P, Un — Vun>

ﬁn Z Tim <un — P, Un — Smun>
m=1

Y

> 11—k
ﬁnmz::lnnz 2 B Hun - SmunH

1k &
Z ﬂnTZ”?m”un*SmunH
m=1

From (3.13)) and condition (ii), we get

lim ||u, — Spun|| =0
n—o0

for all m € N. So, it follows from demiclosed principle of S,,, and (3.11) that z € NS°_, F' (S,y,).
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Step 5. Next, we show that z € NL, MEP (F},¢;). Since u, = T} (I —yA* (I = TF') A) up 1, we get

1
Fi (un,y) + 1 (y) — @1 (un) + — (y = tn,up — Un,1 + VA" (I =T) Aupp) >0

for all y € C7. So, we can write

1 1
Fl (un7y) +(P1 (y) — ¥1 (un) + 7 <y_un7un - un,1> + Ti <y_un77A* (I_Tgll) Aun,1> > 07Vy € Cv1~
n

n

Since F} is a monotone mapping, we have

1 1 .
¥1 (y)_sol (un)+7<y_un7un_un7l>+7<y_una’YA (I_Trcil)Aun,l> > Fl (y,un)NyGCl’

n

and hence

1 1 .
¥1 (y)_(Pl (un1)+r<y_un,7un, _uni,1>+7<y_unm7A (I—TEZ)AUTL“1> Z Fl (yauni,)avyecl'

uz Uz

It follows from weakly convergence of u,, to z, condition (iv), (3.7)), (3.10) and the proper lower semicontinuity of
®1 that
Fi(y,2) +¢1(2) — 91 (y) <0,Vy € Cr.

Let yy = Ay + (1 = A) z, for all A € (0,1] and y € Cy. Tt is clear that yy € C1. So, last inequality holds for y = y,,
that is,
Fi(yx, 2) + 1 (2) — 1 (yr) < 0.

From assumptions (A1)-(A6) and last inequality, we have

0 = Fi(ynyn)+ @1 () —e1(un)
< AR (yay) + (1= A) Fi(yas 2) + A1 (y) + (1= A) g1 (2) — Apr (ya) — (1= A) 1 (yn)
= AF1 (v y) + o1 (y) — o1 (ya) + (1= A) (F1 (yr, 2) + 91 (2) — 91 (yr))
< AFL(Wrny) + o1 (¥) — @1 (ua))

Therefore, we have
Fy(yay) +e1(y) — o1 (ya) =2 0,y € Cy.

By taking limit as A — 0, we get
Fl (Zvy) + 1 (y) —¥1 (Z) > O,Vy € Cla

that is, z € MEP (F1,<p1) Similarly, since uy; = Jigp1tn,it1 for 1 <i < N —2 and u,, y_1 = Jan, it follows from
., ., . and that z € MEP(Fl,ap,) for 1 <i < N. So, we obtain that z € N MEP(Fv,cpZ) for
Yy € C ﬂ *,C;. On the other hand, since A is a bounded linear operator, we get Az, — Az. Then from , (3.8)
and , we have TCT;L’: Az, — Az, for k=1,2,...,N. So, from definition of T(i’; Az, , we get

Gy (TTGnkAxn,y> + ok (y) — bk (Trci’“Axn) + i <y TG’“Axn ,T Amn Axni> > 0,Vy € Q.

T,
It follows from weakly convergence of T,,Ci *Az,, to Az and upper semicontinuity in the first argument of G, that
Gk (szy) + (bk (y) - ¢k (AZ) > 07vy € Qk‘

This implies that Az € MEP (Gi,¢;) and so Az € NY,MEP (G;,¢;) for y € Q = N¥;Q;. Hence, 2z €
SSMEP (F;,vi,G;,¢;) and so z € T
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Step 6. Finally, we show that z,, — p € I'. Since we assume that {||z,, — ¢||} is decreasing mapping for n > m,
we have

(apu+ (1 —an) (1 =0)z, + (1 — an) 0Yn — P, Tnt1 — D)

(an (u=p)+ (L —ay) (1 =6) (zn —p) + (1 — an) 6 (Yn — P) , Tnt1 — p)

n (U= p,2ns1 = p) + (L= an) (1 =6) lzn = pll |tn+1 = pll + (1 = an) 8 lyn — pll [[#n41 — P
(1 —an) [lzn = pll [|zn+1 — Pl + an (w = p, 2ny1 — p)

(1= an) [z, — p||2 +an (U —p, 21 —p).

2
[#n1 —p

ININ A

So, it follows from Lemma [2.3] and (3.16) that {z,,} converges strongly to p = Pru.

Case 2: Let assume that there exists a subsequence {x,,} of {z,} such that |z, —p| < ||zn.., —pH for all
i € N. Then, it follows from Lemmathat there exists a nondecreasing sequence {m;} in N such that ||xmj - pH <
meﬁl —p|| and Hmj —pH < ||:1cmj+1 —p|| . Now, we show that

lim sup <u — Dy Ty — p> <0.

j—o0

Without loss of generality, we can assume that there exists a subsequence {mmjk } of {xmj } such that x,,;, — s € C
and
lim <u —Ds Ty, — p> = lim sup <u — Dy Ty — p> .

k—o0 j—o0

So, we have

Jim <u — Dy Ty, — p> = lijnligp (u—p,Tm; —p)
= (u— Pru,s — Pru) <0. (3.17)

In a similar way as in the Case 1, we get

_ILm mei 7“’"7‘” = _lim Humj - Smumi” =0.
et . : el : .

Since Sy, is demiclosed, we have s € N%°_; F (S,,). Similarly, we can obtain s € SSMEP (F;, ¢;, Gi, ¢ ),

Hm ||@m,,, — @m,|| = 0. (3.18)

Jj—o00

On the other hand, since x,,;, = am,u + (1 — amj) (1-9) T, + (1 - amj) 0Ym,;, we have

<o¢mju + (1 - O‘mj) (1=0)zm, + (1 - O‘mj) 0Ym; — Dy Ty —p>
<O‘mj (u —p) + (1 o amj) (1 —9) (ﬂﬁmj —p) + (1 - O‘mj) 0 (ym]- —p) » Trmjg —p>

2
meﬁl —p”

< am, (U= D@m= p) (1= am,) (1= 0) [[em, —p|[[zm,, — 2]
+ (1 o amj) g Hymj B pH mej+1 o pH
S (1 - amj) ||$m]» —pH meﬂ—l —pH + am; <u TP Tmyp —p>
< (1 - amj) ||$mj+1 —pH2 + am; <u =P Tm, —p> + Qm; lu = pll mej+1 — Tmy ” :

Therefore, we get
2
mej+1 —pH < ||u —pH mejJrl - xij + <“ P Tmy —p>.

So, it follows from (3.17) and (3.18) that

]151010 mejJrl —pH =0.
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, we get that {x,} converges strongly to p = Pru.

Since we know from Lemma that [|z; — pl| < ||zm,., — p|
This completes the proof. O

Since the class of demimetric mappings contains the class of generalized hybrid mappings with nonempty fixed
point (see [22]), the following result follows from Theorem

Corollary 3.2. Let C; and Q;, 1 < i < N, be nonempty closed convex subsets of real Hilbert spaces H; and Ha,
respectively, A : H; — Hj be a bounded linear operator and {S,,} be an infinite family of generalized hybrid mappings
from C = NN, C; to Hy. Let F; : C; x C; — R and G, : Q; X Q; — R be nonlinear bifunctions satisfying assumptions
(A1)-(A6), i : C; = RU {400} and ¢; : Q; = R U {+oo} proper lower semicontinuous and convex functions such
that C; N domy; # ) and Q; N dome; # O and let G; be upper semicontinuous in the first argument. Assume that
A=nN2_F(Sn)NSSMEP (F;, i, Gi,¢;) # 0 and u is a fixed vector in C. Let {x,} be a sequence generated by
r1 € C' and

Tpt1 = apu+ (1 —ay) (1 —0) zy + (1 — ay) Sy,

Up = J1do...Inzy,Vn €N

where an, B, Nm, 0 € (0,1), r, € (0,00), v € (O7 %) such that L is the spectral radius of A*A and A* is the adjoint of
A and J; = TTE (I —yA* (I — TTGf) A) ;1 < i < N. Assume that the following conditions hold:

220:1 o, = oo and lim,,_, o o, = 0;

: 0<a§5n§b<1;

St =15

. 0 <liminf,, oo 7p.

Then, the sequence {x,} generated by (3.19)) converges strongly to p = Pau.

=W

Remark 3.3. In Theorem [3.1} if we take ¢; = ¢; = 0 for all i = 1,2,..., N, then the sequence {z,} generated by
our iterative algorithm (3.1)) converges strongly to common solution of system of split equilibrium problems and fixed
point problem of infinite family of demimetric mappings.

4 Applications

In this section, we give some applications of proposed method and problem to split variational inequality problems
and convex minimization problems.

4.1 Application to System of Split Variational Inequality Problems

Let F': C'xC — R be a bifunction. As stated in the first section, the classical equilibrium problem is understood to
be that of finding z* € C such that F (z*,y) > 0 for all y € C. On the other hand, the classical variational inequality
problem for a monotone mapping A : C' — H is to find a point 2* € C such that (A (z*),z —2*) > 0 for all z € C.
It is trivial that these two problems are equivalent if F' (x,y) = (A (z),y — ). So, we can give the following theorem
for the system of split variational inequality problems.

Theorem 4.1. Let C; and @;, 1 < i < N, be nonempty closed convex subsets of real Hilbert spaces H; and Hs,
respectively, A : H; — Hs be a bounded linear operator and {S,,} be an infinite family of k,,-demimetric and
demiclosed mappings from C' = ﬂij\ilci to Hy. Let F; : C; x C; — R and G; : @Q; X Q; — R be nonlinear bifunc-
tions satisfying assumptions (A3)-(A6) difened by F; (z,y) = (4; (2*),y —2*) and G, (u,v) = (B; (u*),v —u*),
respectively where A; : C; — H; and B; : QQ; — H> are monotone mappings and let G; be upper semicon-
tinuous in the first argument. Assume that IT = NX_, F (S,,) N SSVIP (A;,B;) # 0 where SSVIP (A;,B;) =
{z* € C: (A; (z*),z —2*) > 0,Vz € C; and (B; (Az*),y — Az*) > 0,Vy € Q;} and u is a fixed vector in C. Let {z,}
be a sequence generated by z; € C' and

Tpt1 = @pu+ (1 — ) (1 —0) 2y + (1 — @) dyn,
Yn = (1 - Bn) Up + Pn Z?nozl nmSmuru (41)
Up = 1o ... Inzy, VR €N

where ap, Bn, Nm, 0 € (0,1), r, € (0,00), v € (07 %) such that L is the spectral radius of A*A and A* is the adjoint of
A and J; = Tf;j (I —yA* (I — TTC":Z) A) ;1 < i < N. Assume that the following conditions hold:
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(1) Zn 1 @y = 00 and lim,, o o, = 0;
(ii) 0 <a < B, <b<1l—kwhere k =sup{k; :i € N};
(111) Z —1Mm =1
(iv) 0 < liminf, e 7p.
Then the sequence {z,} generated by (4.1]) converges strongly to p = Pru.

4.2 Application to System of Convex Minimization Problems

Let f be a convex and differentiable function. A convex minimization problem is to find a point x* such that

f (&) = min f (x) . (4.2)

zeC

A point z* is a solution of the problem (4.2)) if and only if it is a solution of the following variational inequality
problem:
Find z* € C such that (Vfz*,x —z*) > 0,Vx € C. (4.3)

where V f is the gradient of f. Also, it is well known that z* is a solution of if and only if z* is a fixed point of
Po (I — AV f). A mapping Pc (I — AA) is a nonexpansive mapping if the mapping A is a inverse strongly monotone
mapping. Since every Lipschitz continuous mapping is inverse strongly monotone and every demimetric mapping is
nonexpansive, we can give the following theorem for the solutions of convex minimization problems without proof.

Theorem 4.2. Let C; and @;, 1 < ¢ < N, be nonempty closed convex subsets of real Hilbert spaces H; and Ho,
respectively, A : Hy — H> be a bounded linear operator and f be a convex and differentiable function on an open set
D containing the set C = NI, C;. Assume that Vf is a x-Lipschitz continuous operator on D and minimizers of f
relative to the set C exist. Let F; : C; x C; — R and G; : @; X Q; — R be nonlinear bifunctions satisfying assumptions
(A1)-(A6), i : C; = RU {400} and ¢; : Q; — R U {+oo} proper lower semicontinuous and convex functions such
that C; N domey; # ) and Q; N dome; # O and let G; be upper semicontinuous in the first argument. Assume that
O =SSMEP (F;,0i,G;,¢;) # 0 and u is a fixed vector in C. Let {z,} be a sequence generated by z; € C' and

Tpt1 = apu+ (1 —ay) (1 —0) zy + (1 — ay) Sy,
= (1= Bn)tun+ BnPe (I —=AVS)u,, (4.4)
Up = 1o ... InTy, VN €N

where ay,, By m,d € (0,1), r, € (0,00), A € (0,2/k), v € (07 %) such that L is the spectral radius of A*A and A* is
the adjoint of A, and J; = TTF"'i (I —yA* (I - TTGT) A) ;1 < i < N. Assume that the following conditions hold:
(i)
(ii) 0 <a < B, <b< 11—k where k =sup{k; :i € N};
(ifl) ey =13
(iv) 0 < liminf, e 7p-
Then the sequence {z,} generated by (4.4) converges strongly to the minimizers of f and p = Pqu.

Yoo oy =00 and lim, o @y = 0;

Example4.3. Let HH = Hy =R,C; = [-i—2,0],Q; = [-5—¢,0],
iry —ix?, G, QZXQ1—>H2,G( y) = (5+z):cy—(5+2) 2?1
Hy, Ax = 5 where C' = ﬂZ 1Ci =1-3,0l and Q = ﬂ —,Q; =[-6,0]. It is clear that F; and G satisfy assumptions
(A1)-(A6), the mapping Sy, is 3-demimetric mapping with N3°_, F' (S,,,) = {0}, the adjoint operator A* of A is defined
by A*z = % from Hy to H; and the spectral radius of A*A is L = 5. It is clear that 2" = 0 satisfies the following
system of equilibrium problems:

)

wi(x) =0¢i () =0,F: C; xC; — Hy, Fi(z,y) =
<i<N,S,:C— H,Sp,r=-3x, A: H —

1
Fi(a*,2) = iz*z — (%)* >0,

for all x € [—i —2,0] and for 1 <4 < N. It is easy to see that the point y* = Az* = 0 solves the following system of
equilibrium problems:

Gy, y) = (G+i)y"y—(5+i)(y)* >0,
for all y € [-5 —4,0] and for 1 < i < N. So, this implies that z* = 0 is a solution for the system of split equilibrium

problems and fixed point problem, i.e., 0 € T'= N°_, F (S;,) NSSEP (F;, i, Gi, ¢;). Next, with a simple calculation,

we obtain that 3
Ak (T _ mGi L il
I I-T A= 5+ 556

T

TS Ax = —
e Y (R P
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T z1=-07, N=10 | z1 = —-04, N =8
T100 —200F — 03 —200F — 03
T200 —100F — 03 —99F — 04
2500 —79E — 05 —7T9E — 05
20000 —9F — 06 —9F — 06
Table 1:
and . .
TF (1 —~A* (I -TC) A)z = — or r
r (L= AT (I =T;T) A) 1+i7’n<9+9+9(5+i)7’n

for v = 1. Now, we show that the sequence {z,,} generated by (3.1) converges strongly to the common solution z* = 0.

Let oy, = ﬁ, Bn = 57,0 = i, rn = g7 and u = —0,1. It is clear that au,, B, Mn, Tn, 0 and vy satisfy the conditions

1
(i)-(iv) of Theorem Then, algorithm (3.1 becomes

_ —1 3n+3 n+1
Tn+1l = 20730 + Int6%n t 156Yn

yn = 3n+1 un7

L _4dnt1 |8 4 (4n+l) .
T (44+i)n+1 [9 + (81+9i)n+9} Un,i+1,

_ _4dnt1 [8 (4n+1)
Un,N-1 = GFNnT1 {5 + (81+9N)n+9} Tn,Vn € N

(4.5)

where 1 < i < N — 2. By using Mathematica software, we see that the sequence {x, } generated by alghorithm (4.5
converges strongly to common solution z* = 0. Below, we give some steps of alghorithm (4.5)) for some special initial
values z; and special N.

From the Table 1, it can be seen that there is only a small difference between the iteration values that starts from
the different initial values x; for different N.

5 Conclusion

In this paper, we studied a new system of split mixed equilibrium problem, which includes split and mixed
equilibrium as special cases. We established that the sequence generated by our proposed algorithm converges strongly
to a common element in the solutions set of a system of split mixed equilibrium problems and the common fixed points
set of infinite family of demimetric mappings. Our result unify, extend and generalize the results in [7, [6, @, & 10, 17,
19, 24].
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