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Abstract

In this paper, a special system of non-linear Abel integral equations (SNAIEs) is studied, which arises in astrophysics.
Here, the well-known collocation method is extended to obtain an approximate solution of the SNAIEs. The existence
and uniqueness conditions of the solution are investigated. Finally, some examples are solved to illustrate the accuracy
and efficiency of the proposed method.
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1 Introduction

Integral equations arise in many applied sciences such as physics, astrophysics and engineering [19], [20]. One of
the most important integral equations is Abel integral equation. This equation, which has a weakly singular kernel,
has many important applications in physics and mechanics. Many problems in heat transfer, non-linear diffusion, the
propagation of non-linear waves, astrophysics, solid, plasma physics, scattering theory and elasticity theory can be
formulated as Abel integral equation [6], [7], [8], [10], [13]. The existence and uniqueness of the solution for different
kinds of Abel integral equations were investigated in [4] and [8]. Also, differential properties of the solution of these
equations were examined in [17], [22]. Up to now, many different methods have been used to obtain approximate
solution of the Abel integral equation. For example, two numerical schemes such as linear scheme and quadratic
scheme were proposed in [11]. Also, Barycentric rational interpolation method in [2], operational method based on
Jacobi polynomials in [16] and Euler-Maclaurin formula in [21] were investigated.

Mandal et al. in [12] used the fractional operators and their application to obtain a closed form solution of the
system of generalized Abel integral equations. A numerical method based on the Laguerre polynomials was proposed
in [18]. Sing et al. suggested an approach for non-linear system of generalized integral equations by using Legendre
scaling functions with convergence analysis in [19]. In [14], a numerical method based on the Bernstein polynomials
wavelet was proposed to solve the system of linear Abel integral equations.
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As mentioned above, in this paper, we study the system of generalized Abel integral equations as following
a11(x)

∫ x

0
F1(u1(t),u2(t))

(x−t)b
dt+ a12(x)

∫ 1

x
F2(u1(t),u2(t))

(t−x)b
dt = f1(x)

a21(x)
∫ x

0
F3(u1(t),u2(t))

(t−x)b
dt+ a22(x)

∫ 1

x
F4(u1(t),u2(t))

(x−t)b
dt = f2(x)

x ∈ [0, 1], (1.1)

where Fi, i = 1, ..., 4 are known continuous functions. Also ai,j i = j = 1, 2 are known continuous functions such
that the determinant of coefficients of the above system, is not vanishing. The rest of this paper is organized as
follows. In section 2, an approach for solving the system (1.1) by the collocation method is constructed. In section 3,
the existence and uniqueness conditions of the solution are investigated. In Section 4, some numerical examples are
given to illustrate the accuracy of the method. Results obtained by the proposed method and results obtained by the
Legendre method in [19] are also compared. Finally, in Section 5, the conclusion of this paper is given.

2 Description of the method

In this section, we describe the method of this paper based on the collocation method. To this end, consider a
uniform mesh

Ih := {xi : 0 ≤ x0 < ... < xN ≤ 1}

on the interval [0, 1] with xi := ih, i = 0, ..., N and h := 1
N where N ∈ N. We want to approximate the solution of

the system (1.1) in the piecewise polynomial space

S
(−1)
m−1(Ih) := {v : v|σi

∈ Πm−1, i = 0, ..., N − 1},

where σ0 := [x0, x1], σi := (xi, xi+1] and Πm−1 denotes the space of polynomials of degree not exceeding m− 1.
Also, consider the set of collocation points as

Xh := {xi + cah : 0 ≤ c1 < ... < cm ≤ 1, i = 0, ..., N − 1},

in which c1, ..., cm are collocation parameters and assume that uh and uh are collocation approximations of solutions
u1 and u2 of the system (1.1), respectively. By using the Lagrange polynomial interpolation, we have [3]

uh(xi + νh) :=

m∑
α=1

Lα(ν)Uiα, ν ∈ (0, 1], (2.1)

uh(xi + νh) :=

m∑
α=1

Lα(ν)U iα, ν ∈ (0, 1], (2.2)

where

Lα(ν) =

m∏
k=1
k ̸=α

ν − ck
cα − ck

, α = 1, ...,m,

and Uiα and U iα are unknown coefficients. The collocation solution for (1.1) is defined by the collocation equations
[3] 

a11(x)
∫ x

0
F1(u1(t),u2(t))

(x−t)b
dt+ a12(x)

∫ 1

x
F2(u1(t),u2(t))

(t−x)b
dt = f1(x),

a21(x)
∫ x

0
F3(u1(t),u2(t))

(t−x)b
dt+ a22(x)

∫ 1

x
F4(u1(t),u2(t))

(x−t)b
dt = f2(x),

x ∈ Xh, (2.3)

and setting x = xia := xi + cah in (2.3) implies
a11(xia)

∫ xia

0
F1(uh(t),uh(t))

(xia−t)b
dt+ a12(xia)

∫ 1

xia

F2(uh(t),uh(t))
(t−xia)b

dt = f1(xia),

a21(xia)
∫ xia

0
F3(uh(t),uh(t))

(t−xia)b
dt+ a22(xia)

∫ 1

xia

F4(uh(t),uh(t))
(xia−t)b

dt = f2(xia),

(2.4)



Collocation methods for system of NAIEs 95

for i = 0, ..., N − 1 and a = 1, ...,m. The integrals in (2.4) can be written as

a11(xia)
∑i−1

l=0

∫ xl+1

xl

F1(uh(t),uh(t))
(xia−t)b

dt+ a11(xia)
∫ xia

xi

F1(uh(t),uh(t))
(xia−t)b

dt

+a12(xia)
∫ xi+1

xia

F2(uh(t),uh(t))
(t−xia)b

dt+ a12(xia)
∑N−1

p=i+1

∫ xp+1

xp

F2(uh(t),uh(t))
(t−xia)b

dt

= f1(xia),

a21(xia)
∑i−1

l=0

∫ xl+1

xl

F3(uh(t),uh(t))
(t−xia)b

dt+ a21(xia)
∫ xia

xi

F3(uh(t),uh(t))
(t−xia)b

dt

+a22(xia)
∫ xi+1

xia

F4(uh(t),uh(t))
(xia−t)b

dt+ a22(xia)
∑N−1

p=i+1

∫ xp+1

xp

F4(uh(t),uh(t))
(xia−t)b

dt

= f2(xia),

(2.5)

by changing of variables in (2.5) and using (2.1) and (2.2), we have

ha11(xia)
∑i−1

l=0

∫ 1

0

F1(
∑m

α=1 Lα(t)Ulα,
∑m

α=1 Lα(t)U lα)

(xia−xl−th)b
dt+ h1−ba11(xia)

∫ ca
0

F1(
∑m

α=1 Lα(t)Uiα,
∑m

α=1 Lα(t)Uiα)

(ca−t)b
dt

+h1−ba12(xia)
∫ 1

ca

F2(
∑m

α=1 Lα(t)Uiα,
∑m

α=1 Lα(t)Uiα)

(t−ca)b
dt+ ha12(xia)

∑N−1
p=i+1

∫ 1

0

F2(
∑m

α=1 Lα(t)Upα,
∑m

α=1 Lα(t)Upα)

(xp+th−xia)b
dt

= f1(xia),

ha21(xia)
∑i−1

l=0

∫ 1

0

F3(
∑m

α=1 Lα(t)Ulα,
∑m

α=1 Lα(t)U lα)

(xl+th−xia)b
dt+ h1−ba21(xia)

∫ ca
0

F3(
∑m

α=1 Lα(t)Uiα,
∑m

α=1 Lα(t)Uiα)

(t−ca)b
dt

+h1−ba22(xia)
∫ 1

ca

F4(
∑m

α=1 Lα(t)Uiα,
∑m

α=1 Lα(t)Uiα)

(ca−t)b
dt+ ha22(xia)

∑N−1
p=i+1

∫ 1

0

F4(
∑m

α=1 Lα(t)Upα,
∑m

α=1 Lα(t)Upα)

(xia−xp−th)b
dt

= f2(xia),
(2.6)

for i = 0, ..., N − 1, a = 1, ...,m, which is a system of 2Nm non-linear equations with 2Nm unknowns Uiα and U iα.
By solving the system (2.6) and substituting values Uiα and U iα in (2.1) and (2.2), the approximations uh and uh for
x ∈ σi, i = 0, ..., N − 1 can be obtained.

3 Existence and Uniqueness of the Solution

In this section, the existence and uniqueness of the solution of the system (1.1) with constant coefficients are
investigated, which has recently been studied numerically in literature such as [19]

α
∫ x

0
F1(u1(t),u2(t))

(x−t)b
dt+ β

∫ 1

x
F2(u1(t),u2(t))

(t−x)b
dt = f1(x)

γ
∫ x

0
F1(u1(t),u2(t))

(t−x)b
dt+ δ

∫ 1

x
F2(u1(t),u2(t))

(x−t)b
dt = f2(x)

(3.1)

where ∣∣∣∣ α β
γ δ

∣∣∣∣ ̸= 0,

and
F1 ̸= F2.

First consider the Abel integral equation

1

Γ(ν)

∫ x

0

(x− t)ν−1u(t)dt = g(x), x ∈ [0, 1], 0 < ν < 1, (3.2)

and adjoint Abel integral equation

1

Γ(ν)

∫ 1

x

(t− x)ν−1u(t)dt = g(x), x ∈ [0, 1], 0 < ν < 1. (3.3)

In [4], it is investigated that for g ∈ C1[0, 1], equation (3.2) has the solution u ∈ C(0, 1] as

u(x) =
1

Γ(1− ν)

(
g(0)x−ν +

∫ x

0

(x− t)−νg
′
(t)dt

)
, 0 < t ≤ 1,
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and if g(0) = 0 then u ∈ C[0, 1]. Also for g ∈ C1[0, 1], the equation (3.3) possess a unique solution u ∈ C[0, 1) and the
solution has the form as [4]

u(x) =
1

Γ(1− ν)

(
g(1)(1− x)−ν −

∫ 1

x

(t− x)−νg
′
(t)dt

)
, 0 ≤ t < 1

if g(1) = 0 then u ∈ C[0, 1]. Now, in the following theorem, we present the conditions under which the system (3.1)
has a unique solution.

Theorem 3.1. Let in the system (3.1)

(a) −γf1(x) +
α

(−1)b
f2(x) = (1− x)1−bg(x), x ∈ [0, 1), g ∈ Cm[0, 1], m ≥ 1,

(b) δf1(x)− β

(−1)b
f2(x) = x1−bh(x), x ∈ (0, 1], h ∈ Cn[0, 1], n ≥ 1,

(c) F : R2 → R2 is continuous and satisfies

((F (u)− F (y)), (u− y)) > 0, u, y ∈ R2, u ̸= y,

(d)

lim
∥u∥2→∞

(F (u), u)

∥u∥2
→ ∞

where
F := (F1(u), F2(u))

T , u := (u1, u2)
T ,

(., .) and ∥u∥2 denote the inner product and Euclidian norm in R2, respectively. Then the system (3.1) has a unique
solution u ∈ C[0, 1].

Proof . By setting z1(t) := F1(u1(t), u2(t)) and z2(t) := F2(u1(t), u2(t)), the equation (3.1) can be considered as
α
∫ x

0
z1(t)
(x−t)b

dt+ β
∫ 1

x
z2(t)
(t−x)b

dt = f1(x)

γ
∫ x

0
z1(t)
(t−x)b

dt+ δ
∫ 1

x
z2(t)
(x−t)b

dt = f2(x).

(3.4)

Without loss of generality, we assume α ̸= 0 (since for α = 0 the first equation of (3.4) turns to Abel integral
equation and the system can be solved for z1 and z2). So the first equation of (3.4) can be written as∫ x

0

(x− t)−bz1(t)dt = −β

α

∫ 1

x

(t− x)−bz2(t)dt+
f1(x)

α
. (3.5)

On the other hand
1

(t− x)b
=

1

(−(x− t))b
=

1

(i2(x− t))b
=

(−1)b

(x− t)b
, t < x,

where i is imaginary unit and (−1)b denotes complex conjugate of (−1)b. So the second equation of (3.4) can be
written as

γ(−1)b
∫ x

0

(x− t)−bz1(t)dt+ δ(−1)b
∫ 1

x

(t− x)−bz2(t)dt = f2(x). (3.6)

Now, substituting from (3.5) into (3.6), yields

(−1)b
(
δ − γβ

α

)∫ 1

x

(t− x)−bz2(t)dt = f2(x)−
γ(−1)b

α
f1(x), (3.7)

and since
(
δ − γβ

α

)
̸= 0, (3.7) can be simplifed as

∫ 1

x

(t− x)−bz2(t)dt =
α

(δα− γβ)(−1)b
f2(x)−

γ

(δα− γβ)
f1(x). (3.8)
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As stated in [1], multiply the equation (3.8) by (t− x)b−1 and integrate from x to 1, implies∫ 1

x

z2(t)dt =
1

(δα− γβ)Γ(b)Γ(1− b)

∫ 1

x

(t− x)b−1(1− t)1−bg(t)dt, (3.9)

differentiating of (3.9) with respect to x, reveal that (3.8) has a unique solution z2 ∈ Cm[0, 1] and it can be written as

z2(x) =
(
a+ (1− x)ĝ(x)

)
, ĝ ∈ Cm−1[0, 1],

where

a :=
(1− b)

(δα− γβ)
g(1),

ĝ(x) :=
−1

(δα− γβ)Γ(b)Γ(1− b)

∫ 1

0

ωb−1(1− ω)2−b
(
g

′
(x+ (1− x)ω) +

g(1)− g(x+ (1− x)ω)

(1− x)(1− ω)

)
dω.

Finally, by substituting from (3.8) into the first equation of the system (3.4), we get∫ x

0

(x− t)−bz1(t)dt =
( δ

(δα− γβ)

)
f1(x)−

( β

(δα− γβ)(−1)b

)
f2(x), (3.10)

by using the hypotheses and lemma in [1], it can be concluded that the unique solution of (3.10) has the form as

z1(x) =
(
c+ xĥ(x)

)
, ĥ ∈ Cn−1[0, 1].

where

c :=
(1− b)

(δα− γβ)
h(0),

ĥ(x) :=
1

(δα− γβ)Γ(b)Γ(1− b)

∫ 1

0

(1− ω)b−1ω2−b
(
h

′
(xω) +

h(xω)− h(0)

xω

)
dω,

in the end, the assumptions (c) and (d) guarantee that the system F (u) = z with z := (z1, z2)
T has a unique solution

u ∈ C[0, 1] (see theorem 6.1.16 in [3]). Moreover, the value of u at x = 0 and x = 1 is given implicitly by{
F1(u1(0), u2(0)) =

(1−b)
(δα−γβ) limx→0 h(x)

F2(u1(0), u2(0)) = limx→0

(
a+ (1− x)ĝ(x)

)
and {

F1(u1(1), u2(1)) = limx→1

(
c+ xĥ(x)

)
F2(u1(1), u2(1)) =

(1−b)
(δα−γβ) limx→1 g(x)

So the proof is completed. □

4 Numerical Results

In this section, we test the proposed method by solving two problems and compare obtained results with the results
of other methods. Numerical results show the efficiency and superiority of the proposed method. All computations
have been done by programming in Maple 2016, with Digits=20. Here, we take the uniform mesh xi :=

i
N , i = 0, ..., N

and approximate solution in the space S
(−1)
m−1(Ih). We also consider the collocation parameters as (a) for the space

S
(−1)
1 (Ih)

c1 =
1

3
, c2 =

2

3
,

(b) for the space S
(−1)
2 (Ih)

c1 =
3−

√
3

6
, c2 =

1

2
, c3 =

3 +
√
3

6
,
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(c) for the space S
(−1)
3 (Ih)

c1 = 0 c2 =
1

3
, c3 =

2

3
, c4 = 1.

The maximum absolute error is obtained as

||eh||∞ := max
0≤i≤N

|u1(xi)− uh(xi)|,

||eh||∞ := max
0≤i≤N

|u2(xi)− uh(xi)|,

Example 4.1. Consider the following system of generalized Abel integral equations [19]:
∫ x

0
u2
1(t)dt

(x−t)
1
3
+ 3

∫ 1

x
u3
2(t)dt

(t−x)
1
3
= f1(x),

2
∫ x

0
u2
1(t)dt

(t−x)
1
3
+

∫ 1

x
u3
2(t)dt

(x−t)
1
3
= f2(x),

(4.1)

with

f1(x) =
729

1540
x

14
3 +

9

440
(1− x)

2
3 (40 + 9x(5 + 6x+ 9x2)),

f2(x) = −729

770
(−x)

14
3 − 3

440
(−1 + x)

2
3 (40 + 9x(5 + 6x+ 9x2)).

The exact solution of this system is u1(x) = x2, u2(x) = x. The solution of (4.1) is approximated in the space

S
(−1)
1 (Ih). The maximum absolute errors for different values of h are reported in table 1 and compared with results

obtained by the Legendre method of [19].

Table 1: Numerical results for Example 4.1.

N ||eh||∞ ||eh||∞
2 9.6066e-2 6.2954e-5

The proposed method 4 2.7982e-2 2.6206e-9
8 7.4606e-3 1.8861e-9

The Legendre method 1.2575e-3 7.1092e-3

Also, the collocation approximations of solutions of the equation (4.1) in the collocation space S
(−1)
2 (Ih) are

u1(x) = x2 − 3.5830× 10−10x− 5.8497× 10−12

u2(x) = x− 1.8219× 10−10

which are approximately the exact solutions.

Example 4.2. As second example, consider the following system of generalized Abel integral equations:
1
4

∫ x

0
u1(t)u2(t)dt

(x−t)
1
7

+ 1
3

∫ 1

x
u2(t)dt

(t−x)
1
7
= f1(x),

1
7

∫ x

0
u1(t)u2(t)dt

(t−x)
1
7

+ 1
2

∫ 1

x
u2(t)dt

(x−t)
1
7
= f2(x),

(4.2)

with

f1(x) =
823543

15657408
x

48
7 +

1

234861120
(1− x)

6
7 × (26775952x3 + 22950816x2 + 21311472x+ 20296640),

f2(x) = − 117646

3914352
(−x)

48
7 − 1

19571760
(x− 1)

6
7 × (3346994x3 + 2868852x2 + 2663934x+ 2537080).
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Table 2: Numerical results for Example 4.2 for u1(x), u2(x).

||eh||∞ ||eh||∞
N m = 2 m = 3 m = 2 m = 3
2 5.9964e-1 2.7865e-2 1.7832e-1 9.7969e-3
4 1.4285e-1 3.2885e-3 5.1856e-2 1.5737e-3
8 6.1796e-2 4.0207e-4 1.0667e-2 2.1803e-4

and the exact solution u1(x) = u2(x) = x3. we approximate the solution of (4.2) in spaces S
(−1)
1 (Ih) and S

(−1)
2 (Ih).

The maximum absolute errors are reported in table 2. The results show that the error improves when h → 0 or m
increases.

Also approximate solution of (4.2) in S
(−1)
3 is

u1(x) = u2(x) = 1.000000000000003500x3 − 4.5× 10−15x2 + 1.0× 10−15x.

which are again approximately the exact solutions.

5 Conclusion

In this paper, a numerical scheme was constructed to solve the non-linear system of Abel integral equations

by collocation method. The solution was approximated in piecewise polynomial space S
(−1)
m−1. The existence and

uniqueness of the solution were discussed. Two examples were solved by the proposed method. Numerical results
show that approximation by the proposed method is more accurate than the results of the method of [19]. It seems
that the following items can be done as future works.

1. The proposed method of this paper can be extended to solve the non-linear system of Volterra integral equations
with weakly singular kernel.

2. The spline collocation method [5], Chebyshev collocation and LDE methods [9] and Haar wavelet collocation
method [15] can be applied to solve the equations of the form (1.1).

3. The system (1.1) can be studied on Sobolev spaces.

4. The singularity of solution can be overcome by appropriate changing of variables. This increases the accuracy
of the collocation method for approximating the solution.
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