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Abstract
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1 Introduction

Throughout the paper, we denote by D the open unit disk D := {z ∈ C : |z| < 1}. Denote also D := {z ∈ C : |z| ≤
1}. The family of all analytic and normalized functions in D will be denoted by A. It is well-known that each function
f in the class A has the form

f(z) = z +

∞∑
n=2

anz
n, (z ∈ D). (1.1)

Let g(z) = z +
∑∞
n=2 bnz

n, and f be defined by (1.1). Then, their Hadamard product is defined by (f ∗ g)(z) =
z +

∑∞
n=2 anbnz

n, where z ∈ D. A function f ∈ A is said to be univalent in D, if f(z1) ̸= f(z2) for all z1, z2 ∈ D
with z1 ̸= z2. We denote by S the class of all univalent functions in D. For two functions f and g belong to A,
we say that f is subordinate to g, denoted by f ≺ g or f(z) ≺ g(z), if there exists a Schwarz function w : D → D,
w(z) = w1z + w2z

2 + · · · such that f(z) = g(w(z)) for all z ∈ D. If g is univalent in D, then we have the following
equivalence:

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(D) ⊆ g(D).

A function f ∈ A is starlike in D, if and only if

ℜ
{
zf ′(z)

f(z)

}
> 0, (z ∈ D).
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We denote by S∗ the class of all starlike functions in D. Also, a function f ∈ A is convex in the unit disk D, if and
only if

ℜ
{

1 +
zf ′′(z)

f ′(z)

}
> 0, (z ∈ D).

The class of all convex functions in D is denoted by K. It is well-known that K ⊂ S∗ ⊂ S ⊂ A, see [3]. There is
an other way to define the class of starlike and convex functions. Indeed, applying the subordination relation gives

f ∈ S∗ ⇔ zf ′(z)

f(z)
≺ 1 + z

1 − z
, (z ∈ D),

and

f ∈ K ⇔ 1 +
zf ′′(z)

f ′(z)
≺ 1 + z

1 − z
, (z ∈ D).

It is easy to see that (1+z)/(1−z) is a univalent function in D and maps D onto the right-half plane. Also, it is clear
that it maps 0 to 1. During the past few years, several researchers have defined new subclasses of analytic functions
by replacing some special functions instead of (1+z)/(1−z), see for instance [4, 5, 6, 7, 8, 9, 11, 16, 18, 19, 20]. These
kinds of classes are known as Ma-Minda type classes. Motivated by mentioned works, we are aiming to introduce a
new subclass of analytic functions. It should be noted that our new class is related to binomial distribution. At first,
we introduce a special function as follows:

Definition 1.1. For α ∈ (0, 1], let ψα be defined as

ψα(z) =
eαz − 1

α(1 − αz)
, (z ∈ D). (1.2)

It easy to check that ψα has the following expansion

ψα(z) = z +
3α

2
z2 +

5α2

3
z3 +

41α3

24
z4 + · · · , (z ∈ D). (1.3)

In order to obtain our results, it is important to obtain the radius of convexity of the function ψα. In the next
lemma, we find it.

Lemma 1.2. The function ψα is convex univalent in the unit disk D for all α ∈ (0, 0.32].

Proof . Suppose that α ∈ (0, 1]. It follows from (1.2), after some calculations that

1 +
zψ′′

α(z)

ψ′
α(z)

= 1 +
αz (eαz − αzeαz)

2eαz − αzeαz − 1
+

2αz

1 − αz
, (z ∈ D). (1.4)

Applying the triangle inequality and since e−α|z| ≤ |eαz| ≤ eα|z| for all z ∈ D, the last equality (1.4) implies that

ℜ
{

1 +
zψ′′

α(z)

ψ′
α(z)

}
= ℜ

{
1 +

αzeαz (1 − αz)

2eαz − αzeαz − 1
+

2αz

1 − αz

}
≥ 1 −

∣∣∣∣ αzeαz (1 − αz)

2eαz − αzeαz − 1
+

2αz

1 − αz

∣∣∣∣
≥ 1 − αreαr (1 + αr)

2e−αr − αreαr − 1
− 2αr

1 − αr
, (|z| = r)

=
2e−αr(1 − 3αr) +

(
α3r3 + 3α2r2 − 2αr

)
eαr + 3αr − 1

(2e−αr − αreαr − 1) (1 − αr)
=: h(r, α),

where r = |z| < 1. It is easy to check that h(r, α) > 0 if and only if g(r, α) := 2e−αr − αreαr − 1 > 0. Computer
experiment (Mathematica) shows that g(r, α) > 0 for all r ∈ (0, 1) and α ∈ (0, 0.32], see Figure 1 for more details.
The proof is now complete. □

Figure 2 shows the image of the unit disk D under the function ψα(z), where α = 0.32 and α = 0.5. In 2014,
Porwal [14] introduced a Poisson distribution series and obtained necessary and sufficient conditions for this series
belonging to some certain subclasses of analytic functions. Following, we introduce a power series whose coefficients
are probabilities of the binomial distribution. Before, we recall the binomial distribution.
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Figure 1: The 3D plot of g(r, α) for r ∈ (0, 1) and α ∈ (0, 0.32].
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Figure 2: (a): The image of D under ψ0.32(z) (convex) (b): The image of D under ψ0.5(z) (non-convex).

1.1 Binomial Distribution

A binomial distribution is used when a trial has exactly two mutually exclusive outcomes. A successful outcome
will be tagged ”success” and a failure will be tagged ”failure”. With a binomial distribution, x successes are calculated
in m trials, with p representing the probability of success on a single trial. For all trials, p is assumed to be fixed in a
binomial distribution. A binomial probability mass function can be expressed as follows:

P (x; p, n) =

(
m

x

)
pxqm−x, (m ≥ 1, x = 0, 1, 2, . . . ,m), (1.5)

where q = 1 − p, and
(
m
x

)
= m!/x!(m − x)!. Therefore, binomial cumulative probability can be calculated using the

following formula:

F (x; p,m) =

x∑
i=0

(
m

i

)
piqm−i. (1.6)

By using (1.5) we define a new analytic and normalized function whose coefficients are binomial distribution
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probabilities as follows:

K(m, p, q; z) := z +

∞∑
n=2

(
m

n− 2

)
pn−2qm−n+2zn (1.7)

= z + qmz2 +mpqm−1z3 + · · · .

It is easy to see that by ratio test, the radius of convergence of the above series K(m, p, q; z) is infinity. Applying
the Hadamard product for K(m, p, q; z) and f ∈ A, we define a new analytic function as follows:

F (z) := F (m, p, q; z) = K(m, p, q; z) ∗ f(z) (1.8)

=

(
z +

∞∑
n=2

(
m

n− 2

)
pn−2qm−n+2zn

)
∗

(
z +

∞∑
n=2

anz
n

)

= z +

∞∑
n=2

C(m,n)zn,

where

Cn := C(m,n, p, q) =

(
m

n− 2

)
pn−2qm−n+2an. (1.9)

In particular,

C2 = qma2, C3 = mpqm−1a3, and C4 =

(
m

2

)
p2qm−2a4. (1.10)

In this paper by F (z), ψα(z), and the subordination relation we are going to introduce a new Ma-Minda type class.

Definition 1.3. Let ψα(z) be defined by (1.2), α ∈ (0, 1], 0 ≤ p ≤ 1, q = 1 − p, and m ≥ 1. We say that a function
f(z) ∈ A belongs to the class Bψ(α,m, p, q), if it satisfies the following subordination relation:(

z(K(m, p, q; z) ∗ f(z))′(z)

(K(m, p, q; z) ∗ f(z))(z)
− 1

)
≺ ψα(z), (z ∈ D), (1.11)

where K(z) is defined as in (1.7).

In order to estimate the coefficients of the function f ∈ Bψ(α,m, p, q), the following lemmas will be useful.

Lemma 1.4. [12, p. 172] Assume that w is a Schwarz function, so that w(z) =
∑∞
n=1 wnz

n. Then

|w1| ≤ 1 and |wn| ≤ 1 − |w1|2, (n = 2, 3, . . .).

Lemma 1.5. (Prokhorov and Szynal [15]) If w is a Schwarz function of the form w(z) =
∑∞
n=1 wnz

n, then for any
complex numbers ρ and τ the following sharp estimate holds:

|c3 + ρc1c2 + τc31| ≤ 1,

where (ρ, τ) ∈ Ω1 ∪ Ω2 with

Ω1 =

{
(ρ, τ) : |ρ| ≤ 1

2
, |τ | ≤ 1

}
,

and

Ω2 =

{
(ρ, τ) :

1

2
≤ |ρ| ≤ 2,

4

27
(|ρ| + 1)3 − (|ρ| + 1) ≤ τ ≤ 1

}
.

Lemma 1.6. [2, Lemma 1] If w(z) = w1z + w2z
2 + · · · is a Schwarz function, then

|w2 − tw2
1| ≤


−t, t ≤ −1;

1 −1 ≤ t ≤ 1;

t, t ≥ 1.

All inequalities are sharp.
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Lemma 1.7. [10] Let the function p(z) = 1 + p1z + p2z
2 + · · · be analytic in D and ℜ{p(z)} > 0 for all z ∈ D. Then

for any complex number µ

|p2 − µp21| ≤


−4µ+ 2, µ ≤ 0;

2, 0 ≤ µ ≤ 1;

4µ− 2, µ ≥ 1.

The result is sharp.

In the present paper, we estimate the initial coefficients of the function f ∈ Bψ(α,m, p, q) and obtain some
coefficients inequalities.

2 Main Results

We begin with the following result.

Theorem 2.1. Let α ∈ (0, 1], 0 ≤ p ≤ 1, q = 1 − p, and m ≥ 1. If a function f(z) is of the form (1.1) belongs to the
class Bψ(α,m, p, q), then

|a2| ≤
1

qm
and |a3| ≤

3α+ 2

4mpqm−1
. (2.1)

If α ∈ (0, 0.625], then

|a4| ≤
4 + (9α+ 6)

6m(m− 1)p2qm−2
. (2.2)

All inequalities are sharp.

Proof . Let the function f ∈ A belong to the class Bψ(α,m, p, q), where α ∈ (0, 1], 0 ≤ p ≤ 1, q = 1 − p, and m ≥ 1.
Then there exists a Schwarz function w(z) such that

z(K(m, p, q; z) ∗ f(z))′(z)

(K(m, p, q; z) ∗ f(z))(z)
− 1 = ψα(w(z)), (z ∈ D), (2.3)

where K(m, p, q; z) and ψα are defined as in (1.7) and (1.2), respectively. A simple calculation gives

z(K(m, p, q; z) ∗ f(z))′(z)

(K(m, p, q; z) ∗ f(z))(z)
− 1 = C2z + (2C3 − C2

2 )z2 + (3C4 − 3C2C3 + C3
2 )z3 + · · · , (2.4)

where Cn defined in (1.9). On the other hand, if w(z) = w1z +w2z
2 + · · · is a Schwarz function, then by use of (1.3)

we obtain

ψα(w(z)) = w1z +

(
w2 +

3α

2
w2

1

)
z2 +

(
w3 + 3αw1w2 +

5α2

3
w3

1

)
z3 + · · · . (2.5)

Equating the corresponding coefficients in (2.4) and (2.5) gives us the following

qma2 = w1, 2mpqm−1a3 − q2ma22 = w2 +
3α

2
w2

1 (2.6)

and
3

2
m(m− 1)p2qm−2a4 − 3mpq2m−1a2a3 + q3ma32 = w3 + 3αw1w2 +

5α2

3
w3

1. (2.7)

It follows from Lemma 1.4 that qma2 = w1 which implies the first inequality of (2.1). In order to estimate a3 we
obtain

2mpqm−1a3 = w2 −
(
−3α

2
− 1

)
w2

1. (2.8)

As an application of Lemma 1.6 we get the second inequality of (2.1). By (2.6) and (2.7) we have

3

2
m(m− 1)p2qm−2a4 = w3 + 3αw1w2 +

5

3
α2w3

1 +
3

2
w1

(
w2 +

(
3α

2
+ 1

)
w2

1

)
.
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Therefore, by Lemma 1.6 and Lemma 1.5 we get

3

2
m(m− 1)p2qm−2|a4| ≤

∣∣∣∣w3 + 3αw1w2 +
5

3
α2w3

1

∣∣∣∣+
3

2
|w1|

∣∣∣∣w2 +

(
3α

2
+ 1

)
w2

1

∣∣∣∣
≤ 1 +

3

2

(
3α

2
+ 1

)
.

It is enough to show that
∣∣w3 + 3αw1w2 + 5α2w3

1/3
∣∣ ≤ 1. We consider two cases for α.

Case 1: 0 < α ≤ 1/6. Let ρ = 3α and τ = 5α2/3. Then it is easy to see that 0 < ρ ≤ 1/2 and 0 < τ < 1. Thus
(ρ, τ) ∈ Ω1, where Ω1 is defined in Lemma 1.5, which means that

∣∣w3 + 3αw1w2 + 5α2w3
1/3
∣∣ ≤ 1.

Case 2: 1/6 ≤ α ≤ 0.625. In this case, we see that 1/2 ≤ ρ ≤ 1.86 and because 5α2/3 < 1, and

h(α) :=
4

27
(3α+ 1)3 − (3α+ 1) − 5α2

3
≤ 0

for all α ∈ [1/6, 0.625] (see Figure 3), therefore, (ρ, τ) ∈ Ω2, where Ω2 is defined in Lemma 1.5. In this case also we
have ∣∣w3 + 3αw1w2 + 5α3w3

1/3
∣∣ ≤ 1.

All inequalities are sharp, when f is a solution of the equation (2.3) with w(z) = z. The proof is now complete. □

0.2 0.3 0.4 0.5 0.6

-1.0

-0.8

-0.6

-0.4

-0.2

Figure 3: The graph of h(α) for 1/6 ≤ α ≤ 0.625.

Complex function theory relies heavily on the kth root transform in many different ways. Based on subordination,
Ali et al. [1] investigated Fekete-Szegö coefficient functionals for the kth root transform of several classes of analytic
functions. Here, we recall that for a univalent function f of the form (1.1), the k-th (k ≥ 1) root transform is defined
by

Fk(z) := (f(zk))1/k = z +

∞∑
n=1

bnk+1z
nk+1, (z ∈ D). (2.9)

Therefore, for f ∈ A we have,

(f(zk))1/k = z +
1

k
a2z

k+1 +

(
1

k
a3 −

1

2

k − 1

k2
a22

)
z2k+1 + · · · . (2.10)

Following, we estimate |b2k+1 − µbk+1| which is known as Fekete-Szegö problem of the kth root transform of f .

Theorem 2.2. Let the function f ∈ A belong to the class Bψ(α,m, p, q), where α ∈ (0, 1], 0 ≤ p ≤ 1, q = 1 − p, and
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m ≥ 1. Then for all µ ∈ C we have

|b2k+1 − µb2k+1| ≤



1
4kmpqm−1

(
2(1−k)mp
kqm+1 − 4mpµ

kqm+1 + 3α+ 2
)
, µ ≤ δ1;

1
2kmpqm−1 , δ1 ≤ µ ≤ δ2;

1
4kmpqm−1

(
4mpµ
kqm+1 − 2(1−k)mp

kqm+1 − 3α− 2
)
, µ ≥ δ2,

where

δ1 :=
3αkqm+1

4mp
− 1

2
(k − 1), (k ≥ 1), (2.11)

and

δ2 :=
kqm+1

mp
+

3αkqm+1

4mp
− 1

2
(k − 1), (k ≥ 1). (2.12)

The result is sharp.

Proof . Let α ∈ (0, 1], 0 ≤ p ≤ 1, q = 1 − p, and m ≥ 1. If a function f ∈ A belongs to the class Bψ(α,m, p, q), then
there exists a Schwarz function w(z) such that (2.3) holds true. Define

1 + w(z)

1 − w(z)
=: p(z) = 1 + p1z + p2z

2 + · · · . (2.13)

It clear that p(0) = 1 and ℜ p(z) > 0, where z ∈ D. It follows from (2.13) that

w(z) =
1

2
p1z +

1

2

(
p2 −

1

2
p21

)
z2 + · · · . (2.14)

From (1.3) and (2.14), we get

1 + ψα(w(z)) = 1 +
1

2
p1z +

(
3α

8
p21 +

1

2

(
p2 −

1

2
p21

))
z2 + · · · . (2.15)

Now by (2.3), (2.4), and (2.15), we obtain

1

2
p1 = C1, and

3α

8
p21 +

1

2

(
p2 −

1

2
p21

)
= 2C3 − C2

2 , (2.16)

where C2 and C3 are defined as in (1.10). The first identity of (2.16) gives

a2 =
p1

2qm
, (2.17)

while the second identity of (2.16) gives

a3 =
1

4mpqm−1

(
p2 +

3α

4
p21

)
. (2.18)

Equating the corresponding coefficients of (2.9) and (2.10) give

bk+1 =
1

k
a2, (2.19)

and

b2k+1 =
1

k
a3 −

1

2

k − 1

k2
a22. (2.20)

It follows from (2.17) and (2.19) that

bk+1 =
p1

2kqm
. (2.21)
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Also, by (2.18) and (2.20) we obtain

b2k+1 =
1

4kmpqm−1

(
p2 +

3α

4
p21

)
− 1

2

k − 1

k2
p21

4q2m
. (2.22)

Now by (2.21) and (2.22) we get

b2k+1 − µb2k+1 =
1

4kmpqm−1

(
p2 −

1

2

[
k − 1

k

mp

qm+1
+

2mpµ

kqm+1
− 3α

2

]
p21

)
, (2.23)

where µ ∈ C. If we let

µ′ =
1

2

[
k − 1

k

mp

qm+1
+

2mpµ

kqm+1
− 3α

2

]
,

and then apply Lemma 1.7, we get the desired result. The result is sharp for a solution of the equation (2.3) with
w(z) = z. □

Pommerenke [13] was the first to study the Hankel determinant Hq,n(f) of a function f given by (1.1). The Hankel
determinant Hq,n(f) is given as follows:

Hq,n(f) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an+2 · · · an+q
...

... · · ·
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ .
Based on different values of q and n, Hankel determinants for various orders can be derived. Here is how the

above-defined determinant looks when n is equal to 1 and q is equal to 2

H2,1(f) =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ =
∣∣a3 − a22

∣∣ , (a1 = 1).

In addition, if q = n = 2, then we have the second Hankel determinant

H2,2(f) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ =
∣∣a2a4 − a23

∣∣ .
The upper bound of H2,2(f) for different subclasses of analytical functions has been studied and investigated by

many authors in recent years, see for instance [1-2-3]. Motivated by aforementioned works, we estimate H2,1(f) and
H2,2(f), where f ∈ Bψ(α,m, p, q).

Theorem 2.3. Let 0 < p ≤ 1, 0 < q ≤ 1, m ≥ 1, and α ∈ (0, 1]. Also, let the function f be of the form (1.1) belong
to Bψ(α,m, p, q). Then

H2,1(f) ≤ 1

2mpqm−1

(
3α

2
+ 1

)
+

1

q2m
.

The result is sharp.

Proof . If the function f ∈ A belongs to the class Bψ(α,m, p, q), then by (2.6) we get

a3 − a22 =
1

2mpqm−1

[
w2 −

(
−3α

2
− 1

)
w2

1

]
− 1

q2m
w2

1.

Therefore, ∣∣a3 − a22
∣∣ =

∣∣∣∣ 1

2mpqm−1

[
w2 −

(
−3α

2
− 1

)
w2

1

]
− 1

q2m
w2

1

∣∣∣∣
≤ 1

2mpqm−1

∣∣∣∣w2 −
(
−3α

2
− 1

)
w2

1

∣∣∣∣+
1

q2m
|w1|2

≤ 1

2mpqm−1

(
3α

2
+ 1

)
+

1

q2m
,

concluded the result by Lemma 1.6. The result is sharp for a solution of the equation (2.3) with w(z) = z. □



A new Ma-Minda type class 357

Theorem 2.4. Let 0 < p ≤ 1, 0 < q ≤ 1, m ≥ 1, and α ∈ (0, 1]. If a function f is of the form (1.1) belongs to
Bψ(α,m, p, q), then

H2,2(f) ≤ 2

3m(m− 1)p2q2(m−1)

(
1 +

3

2

(
3α

2
+ 1

))
+

1

4m2p2q2(m−1)

(
3α

2
+ 1

)2

.

The result is sharp.

Proof . By (2.6) and (2.7), and a simple calculation, we see that

a2a4 − a23 =
2

3m(m− 1)p2q2(m−1)

{
w3 + 3αw1w2 +

5α2

3
w3

1 +
3

2

[
w2 −

(
−3α

2
− 1

)
w2

1

]
+ w3

1

}
w1

− 1

4m2p2q2(m−1)

[
w2 −

(
−3α

2
− 1

)
w2

1

]2
.

Now, by triangle inequality, the proof of Theorem 2.1 and Lemma 1.6 we obtain

H2,2(f) ≤ 2

3m(m− 1)p2q2(m−1)

{∣∣∣∣w3 + 3αw1w2 +
5α2

3
w3

1

∣∣∣∣+
3

2

∣∣∣∣w2 −
(
−3α

2
− 1

)
w2

1

∣∣∣∣+ |w1|3
}
|w1|

+
1

4m2p2q2(m−1)

∣∣∣∣w2 −
(
−3α

2
− 1

)
w2

1

∣∣∣∣2
≤ 2

3m(m− 1)p2q2(m−1)

(
1 +

3

2

(
3α

2
+ 1

))
+

1

4m2p2q2(m−1)

(
3α

2
+ 1

)2

.

The result is sharp for a solution of the equation (2.3) with w(z) = z. The proof now is complete. □
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