Int. J. Nonlinear Anal. Appl. 15 (2024) 7, 349–358 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2023.30432.4400

On coefficients of a new Ma-Minda type class connected to binomial distribution

Salam Khazali, Shahram Najafzadeh*

Department of Mathematics, Payame Noor University, Tehran, Iran

(Communicated by Mugur Alexandru Acu)

Abstract

In this paper, we define a new Ma-Minda type class based on binomial distribution series. Our investigation will be focused on the coefficients of the function f belonging to that class.

Keywords: Coefficients, Convolution or Hadamard product, Ma-Minda type class, Subordination, Binomial distribution

2020 MSC: Primary 30C45; Secondary 30C50

1 Introduction

Throughout the paper, we denote by \mathbb{D} the open unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. Denote also $\overline{\mathbb{D}} := \{z \in \mathbb{C} : |z| \le 1\}$. The family of all analytic and normalized functions in \mathbb{D} will be denoted by \mathcal{A} . It is well-known that each function f in the class \mathcal{A} has the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad (z \in \mathbb{D}).$$

$$(1.1)$$

Let $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, and f be defined by (1.1). Then, their Hadamard product is defined by $(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n$, where $z \in \mathbb{D}$. A function $f \in \mathcal{A}$ is said to be univalent in \mathbb{D} , if $f(z_1) \neq f(z_2)$ for all $z_1, z_2 \in \mathbb{D}$ with $z_1 \neq z_2$. We denote by \mathcal{S} the class of all univalent functions in \mathbb{D} . For two functions f and g belong to \mathcal{A} , we say that f is subordinate to g, denoted by $f \prec g$ or $f(z) \prec g(z)$, if there exists a Schwarz function $w : \mathbb{D} \to \overline{\mathbb{D}}$, $w(z) = w_1 z + w_2 z^2 + \cdots$ such that f(z) = g(w(z)) for all $z \in \mathbb{D}$. If g is univalent in \mathbb{D} , then we have the following equivalence:

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0) \quad ext{and} \quad f(\mathbb{D}) \subseteq g(\mathbb{D}).$$

A function $f \in \mathcal{A}$ is starlike in \mathbb{D} , if and only if

$$\Re\left\{\frac{zf'(z)}{f(z)}\right\} > 0, \quad (z \in \mathbb{D}).$$

*Corresponding author

Received: April 2023 Accepted: July 2023

Email addresses: salamkhazali@gmail.com (Salam Khazali), shnajafzadeh440pnu.ac.ir (Shahram Najafzadeh)

We denote by S^* the class of all starlike functions in \mathbb{D} . Also, a function $f \in \mathcal{A}$ is convex in the unit disk \mathbb{D} , if and only if

$$\Re\left\{1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right\}>0,\quad(z\in\mathbb{D}).$$

The class of all convex functions in \mathbb{D} is denoted by \mathcal{K} . It is well-known that $\mathcal{K} \subset \mathcal{S}^* \subset \mathcal{S} \subset \mathcal{A}$, see [3]. There is an other way to define the class of starlike and convex functions. Indeed, applying the subordination relation gives

$$f \in \mathcal{S}^* \Leftrightarrow \frac{zf'(z)}{f(z)} \prec \frac{1+z}{1-z}, \quad (z \in \mathbb{D}),$$

and

$$f \in \mathcal{K} \Leftrightarrow 1 + \frac{zf''(z)}{f'(z)} \prec \frac{1+z}{1-z}, \quad (z \in \mathbb{D}).$$

It is easy to see that (1+z)/(1-z) is a univalent function in \mathbb{D} and maps \mathbb{D} onto the right-half plane. Also, it is clear that it maps 0 to 1. During the past few years, several researchers have defined new subclasses of analytic functions by replacing some special functions instead of (1+z)/(1-z), see for instance [4, 5, 6, 7, 8, 9, 11, 16, 18, 19, 20]. These kinds of classes are known as Ma-Minda type classes. Motivated by mentioned works, we are aiming to introduce a new subclass of analytic functions. It should be noted that our new class is related to binomial distribution. At first, we introduce a special function as follows:

Definition 1.1. For $\alpha \in (0, 1]$, let ψ_{α} be defined as

$$\psi_{\alpha}(z) = \frac{e^{\alpha z} - 1}{\alpha(1 - \alpha z)}, \quad (z \in \mathbb{D}).$$
(1.2)

It easy to check that ψ_{α} has the following expansion

$$\psi_{\alpha}(z) = z + \frac{3\alpha}{2}z^2 + \frac{5\alpha^2}{3}z^3 + \frac{41\alpha^3}{24}z^4 + \cdots, \quad (z \in \mathbb{D}).$$
(1.3)

In order to obtain our results, it is important to obtain the radius of convexity of the function ψ_{α} . In the next lemma, we find it.

Lemma 1.2. The function ψ_{α} is convex univalent in the unit disk \mathbb{D} for all $\alpha \in (0, 0.32]$.

Proof. Suppose that $\alpha \in (0, 1]$. It follows from (1.2), after some calculations that

$$1 + \frac{z\psi_{\alpha}''(z)}{\psi_{\alpha}'(z)} = 1 + \frac{\alpha z \left(e^{\alpha z} - \alpha z e^{\alpha z}\right)}{2e^{\alpha z} - \alpha z e^{\alpha z} - 1} + \frac{2\alpha z}{1 - \alpha z}, \quad (z \in \mathbb{D}).$$
(1.4)

Applying the triangle inequality and since $e^{-\alpha |z|} \leq |e^{\alpha z}| \leq e^{\alpha |z|}$ for all $z \in \mathbb{D}$, the last equality (1.4) implies that

$$\begin{split} \Re \left\{ 1 + \frac{z\psi_{\alpha}''(z)}{\psi_{\alpha}'(z)} \right\} &= \Re \left\{ 1 + \frac{\alpha z e^{\alpha z} \left(1 - \alpha z\right)}{2e^{\alpha z} - \alpha z e^{\alpha z} - 1} + \frac{2\alpha z}{1 - \alpha z} \right\} \\ &\geq 1 - \left| \frac{\alpha z e^{\alpha z} \left(1 - \alpha z\right)}{2e^{\alpha z} - \alpha z e^{\alpha z} - 1} + \frac{2\alpha z}{1 - \alpha z} \right| \\ &\geq 1 - \frac{\alpha r e^{\alpha r} \left(1 + \alpha r\right)}{2e^{-\alpha r} - \alpha r e^{\alpha r} - 1} - \frac{2\alpha r}{1 - \alpha r}, \quad (|z| = r) \\ &= \frac{2e^{-\alpha r} (1 - 3\alpha r) + \left(\alpha^3 r^3 + 3\alpha^2 r^2 - 2\alpha r\right) e^{\alpha r} + 3\alpha r - 1}{(2e^{-\alpha r} - \alpha r e^{\alpha r} - 1) \left(1 - \alpha r\right)} =: h(r, \alpha), \end{split}$$

where r = |z| < 1. It is easy to check that $h(r, \alpha) > 0$ if and only if $g(r, \alpha) := 2e^{-\alpha r} - \alpha r e^{\alpha r} - 1 > 0$. Computer experiment (Mathematica) shows that $g(r, \alpha) > 0$ for all $r \in (0, 1)$ and $\alpha \in (0, 0.32]$, see Figure 1 for more details. The proof is now complete. \Box

Figure 2 shows the image of the unit disk \mathbb{D} under the function $\psi_{\alpha}(z)$, where $\alpha = 0.32$ and $\alpha = 0.5$. In 2014, Porwal [14] introduced a Poisson distribution series and obtained necessary and sufficient conditions for this series belonging to some certain subclasses of analytic functions. Following, we introduce a power series whose coefficients are probabilities of the binomial distribution. Before, we recall the binomial distribution.

Figure 1: The 3D plot of $g(r, \alpha)$ for $r \in (0, 1)$ and $\alpha \in (0, 0.32]$.

Figure 2: (a): The image of \mathbb{D} under $\psi_{0.32}(z)$ (convex) (b): The image of \mathbb{D} under $\psi_{0.5}(z)$ (non-convex).

1.1 Binomial Distribution

A binomial distribution is used when a trial has exactly two mutually exclusive outcomes. A successful outcome will be tagged "success" and a failure will be tagged "failure". With a binomial distribution, x successes are calculated in m trials, with p representing the probability of success on a single trial. For all trials, p is assumed to be fixed in a binomial distribution. A binomial probability mass function can be expressed as follows:

$$P(x; p, n) = \binom{m}{x} p^{x} q^{m-x}, \quad (m \ge 1, x = 0, 1, 2, \dots, m),$$
(1.5)

where q = 1 - p, and $\binom{m}{x} = m!/x!(m - x)!$. Therefore, binomial cumulative probability can be calculated using the following formula:

$$F(x; p, m) = \sum_{i=0}^{x} {m \choose i} p^{i} q^{m-i}.$$
 (1.6)

By using (1.5) we define a new analytic and normalized function whose coefficients are binomial distribution

probabilities as follows:

$$K(m, p, q; z) := z + \sum_{n=2}^{\infty} {m \choose n-2} p^{n-2} q^{m-n+2} z^n$$

= $z + q^m z^2 + mpq^{m-1} z^3 + \cdots$ (1.7)

It is easy to see that by ratio test, the radius of convergence of the above series K(m, p, q; z) is infinity. Applying the Hadamard product for K(m, p, q; z) and $f \in \mathcal{A}$, we define a new analytic function as follows:

$$F(z) := F(m, p, q; z) = K(m, p, q; z) * f(z)$$

$$= \left(z + \sum_{n=2}^{\infty} {m \choose n-2} p^{n-2} q^{m-n+2} z^n\right) * \left(z + \sum_{n=2}^{\infty} a_n z^n\right)$$

$$= z + \sum_{n=2}^{\infty} C(m, n) z^n,$$
(1.8)

where

$$C_n := C(m, n, p, q) = \binom{m}{n-2} p^{n-2} q^{m-n+2} a_n.$$
(1.9)

In particular,

$$C_2 = q^m a_2, \ C_3 = mpq^{m-1}a_3, \quad \text{and} \quad C_4 = \binom{m}{2} p^2 q^{m-2}a_4.$$
 (1.10)

In this paper by F(z), $\psi_{\alpha}(z)$, and the subordination relation we are going to introduce a new Ma-Minda type class.

Definition 1.3. Let $\psi_{\alpha}(z)$ be defined by (1.2), $\alpha \in (0, 1]$, $0 \le p \le 1$, q = 1 - p, and $m \ge 1$. We say that a function $f(z) \in \mathcal{A}$ belongs to the class $B_{\psi}(\alpha, m, p, q)$, if it satisfies the following subordination relation:

$$\left(\frac{z(K(m, p, q; z) * f(z))'(z)}{(K(m, p, q; z) * f(z))(z)} - 1\right) \prec \psi_{\alpha}(z), \quad (z \in \mathbb{D}),$$
(1.11)

where K(z) is defined as in (1.7).

In order to estimate the coefficients of the function $f \in B_{\psi}(\alpha, m, p, q)$, the following lemmas will be useful.

Lemma 1.4. [12, p. 172] Assume that w is a Schwarz function, so that $w(z) = \sum_{n=1}^{\infty} w_n z^n$. Then

 $|w_1| \le 1$ and $|w_n| \le 1 - |w_1|^2$, (n = 2, 3, ...).

Lemma 1.5. (Prokhorov and Szynal [15]) If w is a Schwarz function of the form $w(z) = \sum_{n=1}^{\infty} w_n z^n$, then for any complex numbers ρ and τ the following sharp estimate holds:

$$|c_3 + \rho c_1 c_2 + \tau c_1^3| \le 1,$$

where $(\rho, \tau) \in \Omega_1 \cup \Omega_2$ with

$$\Omega_1 = \left\{ (\rho, \tau) : |\rho| \le \frac{1}{2}, |\tau| \le 1 \right\},$$

and

$$\Omega_2 = \left\{ (\rho, \tau) : \frac{1}{2} \le |\rho| \le 2, \frac{4}{27} (|\rho| + 1)^3 - (|\rho| + 1) \le \tau \le 1 \right\}.$$

Lemma 1.6. [2, Lemma 1] If $w(z) = w_1 z + w_2 z^2 + \cdots$ is a Schwarz function, then

$$|w_2 - tw_1^2| \le \begin{cases} -t, & t \le -1; \\ 1 & -1 \le t \le 1; \\ t, & t \ge 1. \end{cases}$$

All inequalities are sharp.

Lemma 1.7. [10] Let the function $p(z) = 1 + p_1 z + p_2 z^2 + \cdots$ be analytic in \mathbb{D} and $\Re\{p(z)\} > 0$ for all $z \in \mathbb{D}$. Then for any complex number μ

$$|p_2 - \mu p_1^2| \le \begin{cases} -4\mu + 2, & \mu \le 0; \\ 2, & 0 \le \mu \le 1; \\ 4\mu - 2, & \mu \ge 1. \end{cases}$$

The result is sharp.

In the present paper, we estimate the initial coefficients of the function $f \in B_{\psi}(\alpha, m, p, q)$ and obtain some coefficients inequalities.

2 Main Results

We begin with the following result.

Theorem 2.1. Let $\alpha \in (0,1]$, $0 \le p \le 1$, q = 1 - p, and $m \ge 1$. If a function f(z) is of the form (1.1) belongs to the class $B_{\psi}(\alpha, m, p, q)$, then

$$|a_2| \le \frac{1}{q^m} \quad and \quad |a_3| \le \frac{3\alpha + 2}{4mpq^{m-1}}.$$
 (2.1)

If $\alpha \in (0, 0.625]$, then

$$|a_4| \le \frac{4 + (9\alpha + 6)}{6m(m-1)p^2q^{m-2}}.$$
(2.2)

All inequalities are sharp.

Proof. Let the function $f \in \mathcal{A}$ belong to the class $B_{\psi}(\alpha, m, p, q)$, where $\alpha \in (0, 1]$, $0 \le p \le 1$, q = 1 - p, and $m \ge 1$. Then there exists a Schwarz function w(z) such that

$$\frac{z(K(m,p,q;z)*f(z))'(z)}{(K(m,p,q;z)*f(z))(z)} - 1 = \psi_{\alpha}(w(z)), \quad (z \in \mathbb{D}),$$
(2.3)

where K(m, p, q; z) and ψ_{α} are defined as in (1.7) and (1.2), respectively. A simple calculation gives

$$\frac{z(K(m,p,q;z)*f(z))'(z)}{(K(m,p,q;z)*f(z))(z)} - 1 = C_2 z + (2C_3 - C_2^2)z^2 + (3C_4 - 3C_2C_3 + C_2^3)z^3 + \cdots,$$
(2.4)

where C_n defined in (1.9). On the other hand, if $w(z) = w_1 z + w_2 z^2 + \cdots$ is a Schwarz function, then by use of (1.3) we obtain

$$\psi_{\alpha}(w(z)) = w_1 z + \left(w_2 + \frac{3\alpha}{2}w_1^2\right) z^2 + \left(w_3 + 3\alpha w_1 w_2 + \frac{5\alpha^2}{3}w_1^3\right) z^3 + \cdots$$
(2.5)

Equating the corresponding coefficients in (2.4) and (2.5) gives us the following

$$q^{m}a_{2} = w_{1}, \quad 2mpq^{m-1}a_{3} - q^{2m}a_{2}^{2} = w_{2} + \frac{3\alpha}{2}w_{1}^{2}$$
 (2.6)

and

$$\frac{3}{2}m(m-1)p^2q^{m-2}a_4 - 3mpq^{2m-1}a_2a_3 + q^{3m}a_2^3 = w_3 + 3\alpha w_1w_2 + \frac{5\alpha^2}{3}w_1^3.$$
(2.7)

It follows from Lemma 1.4 that $q^m a_2 = w_1$ which implies the first inequality of (2.1). In order to estimate a_3 we obtain

$$2mpq^{m-1}a_3 = w_2 - \left(-\frac{3\alpha}{2} - 1\right)w_1^2.$$
(2.8)

As an application of Lemma 1.6 we get the second inequality of (2.1). By (2.6) and (2.7) we have

$$\frac{3}{2}m(m-1)p^2q^{m-2}a_4 = w_3 + 3\alpha w_1w_2 + \frac{5}{3}\alpha^2 w_1^3 + \frac{3}{2}w_1\left(w_2 + \left(\frac{3\alpha}{2} + 1\right)w_1^2\right)$$

Therefore, by Lemma 1.6 and Lemma 1.5 we get

$$\frac{3}{2}m(m-1)p^2q^{m-2}|a_4| \le \left|w_3 + 3\alpha w_1w_2 + \frac{5}{3}\alpha^2 w_1^3\right| + \frac{3}{2}|w_1| \left|w_2 + \left(\frac{3\alpha}{2} + 1\right)w_1^2\right| \le 1 + \frac{3}{2}\left(\frac{3\alpha}{2} + 1\right).$$

It is enough to show that $|w_3 + 3\alpha w_1 w_2 + 5\alpha^2 w_1^3/3| \le 1$. We consider two cases for α .

Case 1: $0 < \alpha \leq 1/6$. Let $\rho = 3\alpha$ and $\tau = 5\alpha^2/3$. Then it is easy to see that $0 < \rho \leq 1/2$ and $0 < \tau < 1$. Thus $(\rho, \tau) \in \Omega_1$, where Ω_1 is defined in Lemma 1.5, which means that $|w_3 + 3\alpha w_1 w_2 + 5\alpha^2 w_1^3/3| \leq 1$.

Case 2: $1/6 \le \alpha \le 0.625$. In this case, we see that $1/2 \le \rho \le 1.86$ and because $5\alpha^2/3 < 1$, and

$$h(\alpha) := \frac{4}{27}(3\alpha + 1)^3 - (3\alpha + 1) - \frac{5\alpha^2}{3} \le 0$$

for all $\alpha \in [1/6, 0.625]$ (see Figure 3), therefore, $(\rho, \tau) \in \Omega_2$, where Ω_2 is defined in Lemma 1.5. In this case also we have

$$|w_3 + 3\alpha w_1 w_2 + 5\alpha^3 w_1^3/3| \le 1.$$

All inequalities are sharp, when f is a solution of the equation (2.3) with w(z) = z. The proof is now complete. \Box

Figure 3: The graph of $h(\alpha)$ for $1/6 \le \alpha \le 0.625$.

Complex function theory relies heavily on the kth root transform in many different ways. Based on subordination, Ali et al. [1] investigated Fekete-Szegö coefficient functionals for the kth root transform of several classes of analytic functions. Here, we recall that for a univalent function f of the form (1.1), the k-th ($k \ge 1$) root transform is defined by

$$F_k(z) := (f(z^k))^{1/k} = z + \sum_{n=1}^{\infty} b_{nk+1} z^{nk+1}, \quad (z \in \mathbb{D}).$$
(2.9)

Therefore, for $f \in \mathcal{A}$ we have,

$$(f(z^k))^{1/k} = z + \frac{1}{k}a_2 z^{k+1} + \left(\frac{1}{k}a_3 - \frac{1}{2}\frac{k-1}{k^2}a_2^2\right)z^{2k+1} + \cdots$$
(2.10)

Following, we estimate $|b_{2k+1} - \mu b_{k+1}|$ which is known as Fekete-Szegö problem of the *k*th root transform of *f*. **Theorem 2.2.** Let the function $f \in \mathcal{A}$ belong to the class $B_{\psi}(\alpha, m, p, q)$, where $\alpha \in (0, 1], 0 \le p \le 1, q = 1 - p$, and $m\geq 1.$ Then for all $\mu\in\mathbb{C}$ we have

$$|b_{2k+1} - \mu b_{k+1}^2| \le \begin{cases} \frac{1}{4kmpq^{m-1}} \left(\frac{2(1-k)mp}{kq^{m+1}} - \frac{4mp\mu}{kq^{m+1}} + 3\alpha + 2\right), & \mu \le \delta_1; \\\\ \frac{1}{2kmpq^{m-1}}, & \delta_1 \le \mu \le \delta_2; \\\\ \frac{1}{4kmpq^{m-1}} \left(\frac{4mp\mu}{kq^{m+1}} - \frac{2(1-k)mp}{kq^{m+1}} - 3\alpha - 2\right), & \mu \ge \delta_2, \end{cases}$$

where

$$\delta_1 := \frac{3\alpha k q^{m+1}}{4mp} - \frac{1}{2}(k-1), \quad (k \ge 1),$$
(2.11)

and

$$\delta_2 := \frac{kq^{m+1}}{mp} + \frac{3\alpha kq^{m+1}}{4mp} - \frac{1}{2}(k-1), \quad (k \ge 1).$$
(2.12)

The result is sharp.

Proof. Let $\alpha \in (0, 1]$, $0 \le p \le 1$, q = 1 - p, and $m \ge 1$. If a function $f \in \mathcal{A}$ belongs to the class $B_{\psi}(\alpha, m, p, q)$, then there exists a Schwarz function w(z) such that (2.3) holds true. Define

$$\frac{1+w(z)}{1-w(z)} =: p(z) = 1 + p_1 z + p_2 z^2 + \cdots .$$
(2.13)

It clear that p(0) = 1 and $\Re p(z) > 0$, where $z \in \mathbb{D}$. It follows from (2.13) that

$$w(z) = \frac{1}{2}p_1 z + \frac{1}{2}\left(p_2 - \frac{1}{2}p_1^2\right)z^2 + \cdots .$$
(2.14)

From (1.3) and (2.14), we get

$$1 + \psi_{\alpha}(w(z)) = 1 + \frac{1}{2}p_1 z + \left(\frac{3\alpha}{8}p_1^2 + \frac{1}{2}\left(p_2 - \frac{1}{2}p_1^2\right)\right) z^2 + \cdots$$
(2.15)

Now by (2.3), (2.4), and (2.15), we obtain

$$\frac{1}{2}p_1 = C_1$$
, and $\frac{3\alpha}{8}p_1^2 + \frac{1}{2}\left(p_2 - \frac{1}{2}p_1^2\right) = 2C_3 - C_2^2$, (2.16)

where C_2 and C_3 are defined as in (1.10). The first identity of (2.16) gives

$$a_2 = \frac{p_1}{2q^m},$$
(2.17)

while the second identity of (2.16) gives

$$a_3 = \frac{1}{4mpq^{m-1}} \left(p_2 + \frac{3\alpha}{4} p_1^2 \right).$$
(2.18)

Equating the corresponding coefficients of (2.9) and (2.10) give

$$b_{k+1} = \frac{1}{k}a_2,\tag{2.19}$$

and

$$b_{2k+1} = \frac{1}{k}a_3 - \frac{1}{2}\frac{k-1}{k^2}a_2^2.$$
(2.20)

It follows from (2.17) and (2.19) that

$$b_{k+1} = \frac{p_1}{2kq^m}.$$
 (2.21)

Also, by (2.18) and (2.20) we obtain

$$b_{2k+1} = \frac{1}{4kmpq^{m-1}} \left(p_2 + \frac{3\alpha}{4} p_1^2 \right) - \frac{1}{2} \frac{k-1}{k^2} \frac{p_1^2}{4q^{2m}}.$$
(2.22)

Now by (2.21) and (2.22) we get

$$b_{2k+1} - \mu b_{k+1}^2 = \frac{1}{4kmpq^{m-1}} \left(p_2 - \frac{1}{2} \left[\frac{k-1}{k} \frac{mp}{q^{m+1}} + \frac{2mp\mu}{kq^{m+1}} - \frac{3\alpha}{2} \right] p_1^2 \right),$$
(2.23)

where $\mu \in \mathbb{C}$. If we let

$$\mu' = \frac{1}{2} \left[\frac{k-1}{k} \frac{mp}{q^{m+1}} + \frac{2mp\mu}{kq^{m+1}} - \frac{3\alpha}{2} \right].$$

and then apply Lemma 1.7, we get the desired result. The result is sharp for a solution of the equation (2.3) with w(z) = z. \Box

Pommerenke [13] was the first to study the Hankel determinant $H_{q,n}(f)$ of a function f given by (1.1). The Hankel determinant $H_{q,n}(f)$ is given as follows:

$$H_{q,n}(f) = \begin{vmatrix} a_n & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2} \end{vmatrix}$$

Based on different values of q and n, Hankel determinants for various orders can be derived. Here is how the above-defined determinant looks when n is equal to 1 and q is equal to 2

$$H_{2,1}(f) = \begin{vmatrix} a_1 & a_2 \\ a_2 & a_3 \end{vmatrix} = \begin{vmatrix} a_3 - a_2^2 \end{vmatrix}, \quad (a_1 = 1).$$

In addition, if q = n = 2, then we have the second Hankel determinant

$$H_{2,2}(f) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix} = \begin{vmatrix} a_2 a_4 - a_3^2 \end{vmatrix}$$

The upper bound of $H_{2,2}(f)$ for different subclasses of analytical functions has been studied and investigated by many authors in recent years, see for instance [1-2-3]. Motivated by aforementioned works, we estimate $H_{2,1}(f)$ and $H_{2,2}(f)$, where $f \in B_{\psi}(\alpha, m, p, q)$.

Theorem 2.3. Let $0 , <math>0 < q \le 1$, $m \ge 1$, and $\alpha \in (0, 1]$. Also, let the function f be of the form (1.1) belong to $B_{\psi}(\alpha, m, p, q)$. Then

$$H_{2,1}(f) \le \frac{1}{2mpq^{m-1}} \left(\frac{3\alpha}{2} + 1\right) + \frac{1}{q^{2m}}$$

The result is sharp.

Proof. If the function $f \in \mathcal{A}$ belongs to the class $B_{\psi}(\alpha, m, p, q)$, then by (2.6) we get

$$a_3 - a_2^2 = \frac{1}{2mpq^{m-1}} \left[w_2 - \left(-\frac{3\alpha}{2} - 1 \right) w_1^2 \right] - \frac{1}{q^{2m}} w_1^2$$

Therefore,

$$\begin{aligned} |a_3 - a_2^2| &= \left| \frac{1}{2mpq^{m-1}} \left[w_2 - \left(-\frac{3\alpha}{2} - 1 \right) w_1^2 \right] - \frac{1}{q^{2m}} w_1^2 \right| \\ &\leq \frac{1}{2mpq^{m-1}} \left| w_2 - \left(-\frac{3\alpha}{2} - 1 \right) w_1^2 \right| + \frac{1}{q^{2m}} |w_1|^2 \\ &\leq \frac{1}{2mpq^{m-1}} \left(\frac{3\alpha}{2} + 1 \right) + \frac{1}{q^{2m}}, \end{aligned}$$

concluded the result by Lemma 1.6. The result is sharp for a solution of the equation (2.3) with w(z) = z. \Box

Theorem 2.4. Let $0 , <math>0 < q \le 1$, $m \ge 1$, and $\alpha \in (0,1]$. If a function f is of the form (1.1) belongs to $B_{\psi}(\alpha, m, p, q)$, then

$$H_{2,2}(f) \le \frac{2}{3m(m-1)p^2q^{2(m-1)}} \left(1 + \frac{3}{2}\left(\frac{3\alpha}{2} + 1\right)\right) + \frac{1}{4m^2p^2q^{2(m-1)}} \left(\frac{3\alpha}{2} + 1\right)^2.$$

The result is sharp.

Proof. By (2.6) and (2.7), and a simple calculation, we see that

$$a_{2}a_{4} - a_{3}^{2} = \frac{2}{3m(m-1)p^{2}q^{2(m-1)}} \left\{ w_{3} + 3\alpha w_{1}w_{2} + \frac{5\alpha^{2}}{3}w_{1}^{3} + \frac{3}{2} \left[w_{2} - \left(-\frac{3\alpha}{2} - 1 \right)w_{1}^{2} \right] + w_{1}^{3} \right\} w_{1} - \frac{1}{4m^{2}p^{2}q^{2(m-1)}} \left[w_{2} - \left(-\frac{3\alpha}{2} - 1 \right)w_{1}^{2} \right]^{2}.$$

Now, by triangle inequality, the proof of Theorem 2.1 and Lemma 1.6 we obtain

$$\begin{aligned} H_{2,2}(f) &\leq \frac{2}{3m(m-1)p^2q^{2(m-1)}} \left\{ \left| w_3 + 3\alpha w_1 w_2 + \frac{5\alpha^2}{3} w_1^3 \right| + \frac{3}{2} \left| w_2 - \left(-\frac{3\alpha}{2} - 1 \right) w_1^2 \right| + |w_1|^3 \right\} |w_1| \\ &+ \frac{1}{4m^2 p^2 q^{2(m-1)}} \left| w_2 - \left(-\frac{3\alpha}{2} - 1 \right) w_1^2 \right|^2 \\ &\leq \frac{2}{3m(m-1)p^2 q^{2(m-1)}} \left(1 + \frac{3}{2} \left(\frac{3\alpha}{2} + 1 \right) \right) + \frac{1}{4m^2 p^2 q^{2(m-1)}} \left(\frac{3\alpha}{2} + 1 \right)^2. \end{aligned}$$

The result is sharp for a solution of the equation (2.3) with w(z) = z. The proof now is complete.

Acknowledgment

The authors gratefully thank to the reviewers and the editor for the constructive comments and recommendations which definitely help to improve the readability and quality of this article.

References

- R.M. Ali, S.K. Lee, V. Ravichandran, and S. Supramaniam, The Fekete-Szegö coefficient functional for the transforms of analytic functions, Bull. Iran. Math. Soc. 35 (2009), no. 2, 119–142.
- [2] R.M. Ali, V. Ravichandran, and N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2006), no. 1, 35–46.
- [3] P.L. Duren, Univalent Functions, Springer-Verlag, New York Inc, 1983.
- [4] N.E. Cho, V. Kumar, S.S. Kumar, and V. Ravichandran, Radius problems for starlike functions associated with the Sine function, Bull. Iran. Math. Soc. 45 (2019), 213–232.
- [5] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polonici Math. 23 (1970), 159–177.
- [6] R. Kargar and L. Trojnar-Spelina, Starlike functions associated with the generalized Koebe function, Anal. Math. Phys. 11 (2021), 1-26.
- [7] R. Kargar, A. Ebadian, and L. Trojnar-Spelina, Further results for starlike functions related with Booth lemniscate, Iran. J. Sci. Technol. Trans. A 43 (2019), 1235–1238.
- [8] V. Kumar, N.E. Cho, V. Ravichandran, and H.M. Srivastava, Sharp coefficient bounds for starlike functions associated with the Bell numbers, Math. Slovaca 69 (2019), 1053–1064.
- S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bull. Math. 40 (2016), 199–212.

- [10] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proc. Conf. Complex Anal., Tianjin-China, International Press Inc, 1992, pp. 157–169.
- [11] R. Mendiratta, S. Nagpal, and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), 365–386.
- [12] Z. Nehari, Conformal Mapping, McGraw-Hill, New York, NY, USA, 1952.
- [13] C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika 14 (1967), no. 1, 108–112.
- [14] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal. 2014 (2014), 1–3.
- [15] D.V. Prokhorov and J. Szynal, *Inverse coefficients for* (α, β) -convex functions, Ann. Univer. Mariae Curie-Sklodowska, sectio A **35** (1981), no. 1984, 125–143.
- [16] R.K. Raina, and J. Sokół, Some properties related to a certain class of starlike functions, Compt. Rendus Math. 353 (2015), no. 11, 973–978.
- [17] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48 (1943), no. 1, 48–82.
- [18] K. Sharma, N.K. Jain, and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), 923–939.
- [19] J. Sokół, A certain class of starlike functions, Comput. Math. Appl. 62 (2011), no. 2, 611–619.
- [20] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Naukowe 19 (1996), 101–105.