
Int. J. Nonlinear Anal. Appl. 15 (2024) 2, 369–377
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2023.31401.4625

Semi linear elliptic system at resonance

Ouahiba Gharbi

Department of Mathematics, Faculty of Science, Badji Mokhtar University, Annaba, Algeria

(Communicated by Abdolrahman Razani)

Abstract

In this work, we investigate the existence of weak solutions for the following semi-linear elliptic system{
−∆u+ p(x)u = αu+ ϕ (x, v) in Ω,
−∆v + q(x)v = βv + ψ (x, u) in Ω,

with Dirichlet boundary condition, where Ω is a bounded open set of RN (N ≥ 2) , α, β two real parameters,

(p(x), q(x)) ∈ (L∞ (Ω))
2
and p(x), q(x) ≥ 0. using the Leray-Schauder’s topological degree and under some suitable

conditions for the non linearities ϕ and ψ, we show the existence of nontrivial solutions.
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1 Introduction

The Laplacian has significant applications in various fields, including mathematics, physics, computer science, and
image processing. The Laplacian operator, denoted by ∇2 (nabla squared), is a second-order differential operator
that measures the rate of change of a quantity (such as temperature, pressure, or potential) with respect to spatial
coordinates. Several studies related to the Laplacian, p-Laplacian, or in general the p(x)-Laplacian, operator have
been reported (see for instance [2, 3, 4, 5] and the references therein).

Here are some of its key applications: 1)Physics and Engineering: Heat Diffusion : In the field of heat
conduction, the Laplacian is used to describe how heat diffuses through materials over time. The heat equation, which
involves the Laplacian, describes this phenomenon and is essential in understanding heat transfer processes.

2) Image Processing and Computer Vision: Image Enhancement: The Laplacian is used in image en-
hancement techniques like Laplacian sharpening, where the Laplacian of an image is used to highlight edges and fine
details.

3) Geometry and Differential Geometry: Surface Curvature: The Laplace-Beltrami operator, a general-
ization of the Laplacian to curved surfaces, is used to compute the curvature of surfaces in differential geometry.

These applications illustrate the versatility and importance of the Laplacian operator across a wide range of
disciplines. Its ability to capture spatial variations and rates of change makes it a fundamental tool in understanding
and analyzing various phenomena in the natural and scientific world.
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Semilinear elliptic equations are the first nonlinear generalization of linear elliptic partial differential equations. It
is well known that linear elliptic equations, such as the ubiquitous Laplace and Poisson equations, provide models for
a variety of physics problems. For this reason, they have been studied for more than two hundred years and continue
to attract researchers today. Solutions to these equations also represent or describe the potential of force fields in
various physical contexts, such as electromagnetism, gravitation, fluid dynamics etc.

Systems of nonlinear elliptic equations present some new and interesting phenomena not found when studying a
single equation. In general, the systems are coupled or even strongly coupled in the dependent variables.

In this work we investigate semilinear elliptic systems which in the scalar case are reduced to equations of the form

−∆u = αu+ f (u) in Ω,

under certain conditions of non-linearity called Landesman–Lazer type conditions according to the work of
Landesman & Lazer [1], where analogous results were proved for the first time and we speak of resonance problems
because the corresponding ordinary differential version describes them the resonance in electric circuits when α is an
eigenvalue.

More specifically, we investigate the existence of weak solutions for the following elliptic systems
−∆u+ p(x)u = αu+ ϕ (x, v) in Ω,

−∆v + q(x)v = βv + ψ (x, u) in Ω,

u = v = 0, on ∂Ω.

(1.1)

where Ω is a bounded open set of RN (N ≥ 2) , α, β two real parameters, (p(x), q(x)) ∈ (L∞ (Ω))
2
and p(x), q(x) ≥ 0.,

φ,ψ : Ω× R → R two continuous functions satisfying |ϕ (x, s)| ≤ C1 (1 + |s|) ,

|ψ (x, t)| ≤ C2 (1 + |t|) .
(1.2)

where C1, C2 are two positive constants. Verifying also
lim
s→∞

ϕ(x,s)
s = lim

t→∞
ψ(x,t)
t = 0 uniformely in Ω,

lim
−s→∞

ϕ(x,s)
s = lim

−t→∞
ψ(x,t)
t = 0 uniformely in Ω.

(1.3)

2 Preliminaries

Assume the space
Z = H1

0 (Ω)×H1
0 (Ω)

which is a Banach space equipped with the norm, which we shall denote by ∥.∥Z

∥(u, v)∥2Z = ∥u∥2H1
0 (Ω) + ∥v∥2H1

0 (Ω)

and let us take
Y = L2(Ω)× L2(Ω).

In the following, ∥.∥L2(Ω) and ∥.∥H1
0 (Ω) denote the usual norms for L2(Ω) and H1

0 (Ω), respectively. Recalling that

the operator (−△+ p), given by

D(−△+ p) =
{
u ∈ H1

0 (Ω), (△+ p)u ∈ L2(Ω)
}

define an inverse compact operator on L2(Ω). It has a countable family of eigenvalues (λk)k∈N∗ that can be written
as an increasing sequence of positive numbers tending to +∞ when n→ +∞ is defined by

0 < λ1 < λ2 ≤ λ3 ≤ ... ≤ λk ≤ ...
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Each eigenvalue is repeated as many times as its multiplicity (which is finite) corresponds to. Let λ1 ∈ R be defined
as

λ1 = inf
u∈H1

0 ,u ̸=0

∫
Ω

(
|∇u(x)|2 + p(x) |u(x)|2

)
dx∫

Ω

|u(x)|2 dx

or equivalently as

λ1 = inf


∫
Ω

(
|∇u(x)|2 + p(x) |u(x)|2

)
dx :

∫
Ω

|u(x)|2 dx = 1, u ∈ H1
0 (Ω) , u ̸= 0

 ,

λ1 is the first eigenvalue of the operator subject to the Dirichlet boundary conditions. There exists an orthonormal
and complet Hilbertian basis (φk)k≥1 be the sequence of all eigenfunctions such that

⟨φk, φj⟩2 =

{
1, if k = j,
0, if k ̸= j

and ∫
Ω

φ1 (x) dx = 1.

Riesz representation theorem: Let H be a Hilbert space equipped with the product scalar denoted ⟨., .⟩; f ∈ H ′

a continuous linear form on H. Then there exist an unique y such that for every x of H we have f(x) = ⟨y, x⟩ .

∃!y ∈ H, ∀x ∈ H, f(x) = ⟨y, x⟩ .

Defining the weak solution of the problem (1.1) as follows

Definition 2.1. We say that (u, v) ∈ Z is a weak solution of the problem if we have

∫
Ω

∇u (x)∇ū (x) dx+
∫
Ω

p(x)u (x)u (x) dx = α
∫
Ω

u (x)u (x) dx+
∫
Ω

φ (x, v)u (x) dx,

∫
Ω

∇v (x)∇v (x) dx+
∫
Ω

q(x)v (x) v (x) dx = β
∫
Ω

v (x) v (x) dx+
∫
Ω

ψ (x, u) v (x) dx,

(ū, v̄) ∈ Z.

(2.1)

We recall the following propsition proved by T. Gallouet and O. Kavian (see [1]). The operator A : Z → Z
defined by

⟨A (u, v) , (u, v)⟩Z = ⟨(A1u,A2v) , (u, v)⟩Z ; (u, v) , (u, v) ∈ Z (2.2)

where
⟨A1u, u⟩H1

0 (Ω) =
∫
Ω

u (x)u (x) dx, u ∈ H1
0 (Ω)

and
⟨A2v, v⟩H1

0 (Ω) =
∫
Ω

v (x) v (x) dx, v ∈ H1
0 (Ω)

is positive, self-adjoint and compact.

For fixed (u, v) ∈ Z, we define the following linear forms on the space H1
0 (Ω)

T̃u (u) =
∫
Ω

∇u (x)∇u (x) dx; T̃v (v) =
∫
Ω

∇v (x)∇v (x) dx

S̃v (u) =
∫
Ω

ϕ(x, v (x))u (x) dx; S̃u (v) =
∫
Ω

ψ(x, u (x))v (x) dx

(2.3)
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The Riesz representation theorem shows that there exist uniquely determined elements L1 (u), L2 (v), S1 (v),
S2 (u) ∈ H1

0 (Ω) such that

T̃u (u) = ⟨L
1
(u) , u⟩H1

0 (Ω) for all u ∈ H1
0 (Ω)

T̃v (v) = ⟨L
2
(v) , v⟩H1

0 (Ω) for all v ∈ H1
0 (Ω)

and
S̃v (u) = ⟨S1 (v) , u⟩H1

0 (Ω) for all u ∈ H1
0 (Ω)

S̃u (v) = ⟨S
2
(u) , v⟩H1

0 (Ω) for all v ∈ H1
0 (Ω).

We constat that the research of weak solution (u, v) ∈ Z to the problem (1.1) is equivalent to the resolution of the
operator equation

L (u, v) = BA (u, v) + S (u, v) , (u, v) ∈ Z, (2.4)

with

B =

(
α− p (x) 0

0 β − q (x)

)
.

and  S(u, v) = (S
1
(v) , S

2
(u))

and
L(u, v) = (L1 (u) , L2 (v)) .

Clearly
S : (u, v) ∈ Z → (S1 (v) , S2 (u)) ∈ Z

is compact and continuous operator. We will use the Leray-Schauder degree theory to prove the result.

3 The first case

In this case we study the existence of solutions when α, β are not respectively eigenvalues to the operator −∆ +
ki (x) I; k1 = p, k2 = q. For τ ∈ [0, 1] and (u, v) ∈ Z we define the following homotopy

H(τ, u, v) =

 H1(τ, u, v)

H2(τ, u, v)

 =

 u+ p (x)A1 (u)− αA1 (u)− τS1 (v)

v + q (x)A
2
(v)− βA

2
(v)− τS

2
(u)

 ,

in view of (2.4) , we have

H(τ, u, v) =

(
u
v

)
−BA (u, v)− τ S (u, v) .

It is clear that
H : [0, 1]× Z → Y

is a compact homotopy and the existence of at least one solution of the system (1.1) would follow from

deg (I −BA− S,B (0, R) , 0) ̸= 0.

Theorem 3.1. Under hypothesis (1.2) , (1.3) and if α, β ̸= λk, k = 1, 2, then the problem (1.1) have at least one
solution.

The following lemma is necessarily for the proof of the theorem.

Lemma 3.2. There exists R > 0 such that ∀τ ∈ [0, 1] ,∀ (u, v) ∈ Z, ∥(u, v)∥Z = R

H(τ, u, v) ̸= 0
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4 Proof of the main results

Proof . By contradiction, Assume that no such R > 0 exists, i.e., we can find a sequence {(un, vn)}n=∞
n=1

∈ Z and

{τn}n=∞
n=1

⊂ [0, 1] such that ∥(un, vn)∥Z > n and

(un, vn)−BA (un, vn)− τn S (un, vn) = 0 , (4.1)

where

B =

(
α− p (x) 0

0 β − q (x)

)
Setting

wn = (w1,n, w2,n) =

(
un

∥(un, vn)∥Z
,

vn
∥(un, vn)∥Z

)
then it follows with choice of wn that

wn = (w1,n, w2,n) ∈ D (−△+ p)×D (−△+ q) and ∥wn∥Z = 1 (4.2)

Indeed, it is easy to see that ∥wn∥Z = 1. Let us show that wn ∈ D (−△+ p)×D (−△+ q) . We have

wn −BA (wn)− τn
S(un,vn)

∥(un,vn)∥Z
= 0 , (4.3)

this is equivalent to
∫
Ω

∇w1,n∇w1
dx+

∫
Ω

p (x)w1,nw1
dx = α

∫
Ω

w1,nw1
dx− τn

∫
Ω

ϕ(x,vn)
∥(un,vn)∥

Z

w
1
dx

∫
Ω

∇w2,n∇w2
dx+

∫
Ω

q (x)w2,nw2
dx = β

∫
Ω

w2,nw2
dx− τn

∫
Ω

ψ(x,un)
∥(un,vn)∥Z

w
2
dx.

(4.4)

From (1.2) , it is easy to obtain the following estimate∫
Ω

|ϕ(x, vn)|2 dx ≤
∫
Ω

c21 (1 + |vn|)2 dx

≤ c
′
(
1 + ∥vn∥2H1

0

)
where c

′
is positive constant. Therefore∫

Ω

|ϕ(x, vn)|2

∥(un, vn)∥2Z
dx ≤ c

′

(
1

∥(un, vn)∥2Z
+

∥vn∥2H1
0

∥(un, vn)∥2Z

)

≤ c
′
(

1

n2
+ 1

)
≤ 2c

′

that is, |ϕ(x,,vn)|
∥(un,vn)∥Z

is bounded in L2(Ω). Similarly, the function |ψ(x,un)|
∥(un,vn)∥Z

is bounded in L2(Ω). Then wn = (w1,n, w2,n) ∈
D (−△+ p)×D (−△+ q). Since the embedding (Z ↪→ Y ) is compact, we can extract a subsequence (τn, w1,n, w2,n) ,
still denoted by (τn, w1,n, w2,n), which converges in [0, 1]× Y .

Let (τ, w1, w2) be the limit of (τn, w1,n, w2,n) in [0, 1]× Y. From the hypothesis (1.3) , it follows that
ϕ(x,,vn)

∥(un,vn)∥Z
= vn

∥(un,vn)∥Z

ϕ(x,vn)
vn

= w2,n.
ϕ(x,vn)
vn

→ 0
n→∞

a.e. in Ω

ψ(x,un)
∥(un,vn)∥Z

= un

∥(un,vn)∥Z

ψ(x,un)
un

= w1,n.
ψ(x,un)
un

→ 0
n→∞

a.e. in Ω

and since the sequences w1,n, w2,n are bounded in L2 (Ω) , we get
ϕ(x,vn)

∥(un,vn)∥Z
≤ c1 (1 + |w2,n|) ≤ c

′
a.e. in Ω

ψ(x,un)
∥(un,vn)∥Z

≤ c2 (1 + |w1,n|) ≤ c
′′

a.e. in Ω
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where c
′
, c

′′
are real positive constants. Then, thanks to the Lebesgue’s convergence theorem, we deduce that

ϕ(x,vn)
∥(un,vn)∥Z

→
n→∞

0 in L2 (Ω) ,

ψ(x,un)
∥(un,vn)∥Z

→
n→∞

0 in L2 (Ω) ,

To summarize, we have

τn
S(un,vn)

∥(un,vn)∥Z
→ 0 in Y

A (wn) → A (w) in Z,

which gives
w −BA (w) = 0 , ∥w∥Z = 1.

Equivalently  −△w1 + p (x)w1 = αw1

−△w2 + q (x)w2 = βw2

which is a contradiction. □

Proof . Let

B (0, R) = {(u, v) ∈ Z, ∥(u, v)∥Z < R}

where R is as in the lemma 1. By invariance of the topological degree we have

deg(H(τ, ., .), B (0, R) , 0), t ∈ [0, 1] ,

is constant. Then
deg(H(0, ., .), B (0, R) , 0) = deg(H(1, ., .), B (0, R) , 0) = ±1

and theorem 1 was validated. □

5 The second case

Now we will examinate the situation where α, β are respectively eigenvalues of the operator −∆ + ki (x) I, k1 =
p, k2 = q, under Dirichlet boundary conditions, i.e

−∆u+ p(x)u = αu in Ω,

−∆v + q(x)v = βv in Ω,

u = v = 0 on Γ,

and ϕ (x, v) , ψ (x, u) are respectively of the form ϕ (v)− h1 (x) , ψ (u)− h2 (x) . Then it is clear that the problem (1.1)
is equivalent to the following 

−∆u+ p(x)u = αu+ ϕ (v)− h1 (x) in Ω,

−∆v + q(x)v = βv + ψ (u)− h2 (x) in Ω,

u = v = 0 on ∂Ω,

(5.1)

where (h1, h2) ∈
(
L2 (Ω)

)2
, ϕ, ψ : R → R two continuous functions with finit limit

lim
s→±∞

ϕ (s) = ϕ (±∞) ,

lim
t→±∞

ψ (t) = ψ (±∞) ,
(5.2)
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and such that for all s, t ∈ R, we have  ϕ (−∞) < ϕ (s) < ϕ (+∞)

ψ (−∞) < ψ (t) < ψ (+∞) .
(5.3)

Theorem 5.1. Under hypothesis (1.2) , (1.3) , (5.2), (5.3) and if α, β = λk, k = 1, 2, then the problem (5.1) have at
least one solution if and only if 

ϕ (−∞) <
∫
Ω

h1 (x)φ1 (x) dx < ϕ (+∞)

ψ (−∞) <
∫
Ω

h2 (x)φ2 (x) dx < ψ (+∞) .
(5.4)

Lemma 5.2. There exists R1 > 0 such that
∀t ∈ [0, 1] ,∀ (u, v) ∈ Z, ∥(u, v)∥

Z
= R1

H(τ, u, v) ̸= 0

Proof . Let ε > 0 such that ]λi, λi + ε] ∩ sp(−△+ q) = ∅, i = 1, 2 (λ1 = α, λ2 = β). For τ ∈ [0, 1] and (u, v) ∈ Z we
define the following homotopy

H(τ, u, v) =

 H1(τ, u, v)

H2(τ, u, v)

 =

 u+ p (x)A
1
(u)− αA

1
(u)− τS

1
(v)− (1− τ) εA1 (u)

v + q (x)A
2
(u)− βA

2
(v)− τS

2
(u)− (1− τ) εA2 (v)

 ,∀ε > 0

then

H(τ, u, v) =

(
u
v

)
−BA (u, v)− τ S (u, v)− (1− τ) ΛA (u, v) = 0 ,∀ε > 0.

where

B =

(
α− p (x) 0

0 β − q (x)

)
and Λ =

(
ε 0
0 ε

)
here also

H : [0, 1]× Z → Y

is a compact homotopy. We follow the same arguments to the proof of precedent lemma. Assume that no such R1 > 0
exists, i.e. we can find a sequence {(un, vn)}n=∞

n=1
∈ Z and {τn}n=∞

n=1
⊂ [0, 1] such that ∥(un, vn)∥Z > n and(

un
vn

)
−BA (un, vn)− τn S (un, vn)− (1− τn) ΛA (un, vn) = 0 ,∀ε > 0 (5.5)

Setting

wn = (w1,n, w2,n) =

(
un

∥(un, vn)∥Z
,

vn
∥(un, vn)∥Z

)
then it follows with choice of wn that

wn ∈ D (−△+ p)×D (−△+ q) and ∥wn∥Z = 1. (5.6)

Finally we arrive at
w − [B + (1− τ) Λ]A (w) = 0 , ∥w∥Z = 1,∀ε > 0.

This is a contradiction if τ ̸= 1. Since −△w1 + p (x)w1 = [α+ (1− τ)]w1

−△w2 + q (x)w2 = [β + (1− τ)]w2.
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Let us assume τ = 1 i.e τn → 1. Now, however, we have no contradiction since α, β are not eigenvalues and

w −BA (w) = 0,

has a solution with ∥w∥Z = 1. We have to revise the last step when passing to the limit in

wn −BA (wn)− (1− τn) ΛA (wn)− τn
S(un,vn)

∥(un,vn)∥Z
= 0 ,∀ε > 0,

and employ special properties of S. Namely,(
unk

vnk

)
−BA (unk

, vnk
)− τnk

S (unk
, vnk

)− (1− τnk
) ΛA (unk

, vnk
) = 0 ,∀ε > 0

is equivalent to the integral identity

∫
Ω

∇unk
∇w

1
dx+

∫
Ω

p (x)unk
w

1
dx = [α+ (1− τnk

) ε]
∫
Ω

unk
w

1
dx+ τnk

∫
Ω

ϕ(vnk
)w

1
dx− τnk

∫
Ω

h1 (x)w1
dx

∫
Ω

∇vnk
∇w

2
dx+

∫
Ω

q (x) vnk
w

2
dx = [β + (1− τnk

) ε]
∫
Ω

vnk
w

2
dx+ τnk

∫
Ω

ψ(unk
)w

2
dx− τnk

∫
Ω

h2 (x)w2
dx

(w
1
, w

2
) ∈ Z.

(5.7)

Taking (w1 , w2) = (φ1, φ2) and using the fact that
∫
Ω

∇unk
∇φ1 (x) dx+

∫
Ω

p (x)unk
φ1 (x) dx = α

∫
Ω

unk
φ1 (x) dx

∫
Ω

∇vnk
∇φ2 (x) dx+

∫
Ω

q (x) vnk
φ2 (x) dx = β

∫
Ω

vnk
φ2 (x) dx.

(5.8)

With (5.8), the expression (5.7) became
(1− τnk

) ε
∫
Ω

unk
φ1 (x) dx+ τnk

∫
Ω

ϕ(vnk
)φ1 (x) dx = τnk

∫
Ω

h1 (x)φ1 (x) dx

(1− τnk
) ε
∫
Ω

vnk
φ2 (x) dx+ τnk

∫
Ω

ψ(unk
)φ2 (x) dx = τnk

∫
Ω

h2 (x)φ2 (x) dx.
(5.9)

Similarly to the first step we have wnk
→ w in L2 (Ω) and we can write w1, w2 as follows w1 = kφ1

w2 = k′φ2.

, k, k′ ̸= 0.

Assume that k, k′ > 0, then 
vnk

→
k→∞

∞ a.e in Ω

unk′ →
k′→∞

∞ a.e in Ω.

With the passage to the limit in (5.9), the using of τnk
→ 1 and thanks to the Lebesgue’s convergence theorem we

get 
∫
Ω

h1 (x)φ1 (x) dx ≥ lim
k→∞

∫
Ω

ϕ(vnk
)φ1 (x) dx =

∫
Ω

ϕ(+∞)φ1 (x) dx = ϕ(+∞)

∫
Ω

h2 (x)φ2 (x) dx ≥ lim
k′→∞

∫
Ω

ψ(unk′ )φ2 (x) dx =
∫
Ω

ψ(+∞)φ2 (x) dx = ψ(+∞).

A Contradiction. If k, k′ < 0 we get the contradiction with the first inequality. □

Proof . Choosing R1 as in lemma 2. Let

B (0, R1) = {(u, v) ∈ Z, ∥(u, v)∥Z < R1}
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By invariance of the topological degree we have

deg(H(τ, ., .), B (0, R1) , 0), t ∈ [0, 1] ,

is constant. Then
deg(H(0, ., .), B (0, R1) , 0) = deg(H(1, ., .), B (0, R1) , 0) = ±1

and theorem 2 was validated. □
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l’infini, Ann. Fac. Sci. Toulouse 3 (1981), no. 3-4, 201–246.

[2] S. Heidari, A. Razani, Infinitely many solutions for (p(x),q(x))-Laplacian-like systems, Commun. Korean Math.
Soc. 36 (2021), no. 1, 51–62

[3] A. Khaleghi and A. Razani, Solutions to a (p(x),q(x))-biharmonic elliptic problem on a bounded domain, Bound.
Value Prob. 2023 (2023), Article number: 53.

[4] M.A. Ragusa, A. Razani, and F. Safari, Existence of radial solutions for a p(x)-Laplacian Dirichlet problem, Adv.
Differ. Equ. 2021 (2021), Article number: 215.

[5] A. Razani and G.M. Figueiredo, Weak Solution by the Sub-Super solution method for a nonlocal system involving
Lebrsgue generalized spaces, Electronic J. Differ. Equ. 2022 (2022), no. 36, 1–18.


	Introduction
	Preliminaries
	The first case
	Proof of the main results
	The second case

