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Abstract

In this article, a novel model for the dynamics of toxoplasmosis in human and cat populations with vertical transmission
and contribution of oocysts to the environment from the mildly infected cats is constructed. The non-negative
properties of the model’s solutions are proved. We demonstrate that a secondary quantity that affects the overall
dynamics of T. gondii in human and cat populations is the reproductive ratio R◦. The impact of the contribution of
oocysts from the mildly infected cats as well as the impact of vertical transmission and the impact of effective contact
between cat and cat and cat and humans on the reproductive ratio are shown. The model’s endemic and disease-free
equilibria are derived, and their local and global stabilities are proved. The bifurcation and sensitivity of the model’s
parameters to T. gondii dynamics are studied. Finally, simulations are performed with the aid of the computer-in-built
Runge-Kutta package implemented in the software Maple to illustrate the behavior of the model graphically. The
results indicate that vertical transmission, contact with the infected cats and contribution of T. gondii from the mildly
infected cats have a significant impact on the dynamics of toxoplasmosis.
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1 Introduction

Toxoplasma gondii (or T. gondii), one of the most pervasive zoonotic parasites in the world, may infect almost all
warm-blooded species. Toxoplasmosis, a potentially deadly infection in humans that places a significant burden on the
public health system and causes significant financial losses in the livestock industry owing to abortion and stillbirth,
is caused by T. gondii [48].

The life cycle of T. gondii is complex and complicated. It involves both sexual and asexual development, many
hosts, and three infectious stages (invasive tachyzoites rapidly dividing and spreading in nucleated cells, slowly dividing
bradyzoites in tissue cysts, and sporozoites in oocysts) [20]. Members of the Felidae family have the most significant
role in T. gondii transmission because they are the parasite’s sole known host [60].

Any of the three T. gondii infection phases can cause an infection in cats [20]. After sexual reproduction in their
intestines, cat can release millions of oocysts through their faces [43]. This could go on for up to 20 days [11]. In the
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environment, oocysts sporulate in a matter of days and can stay contagious in soil or water for over a year [2]. By
consuming sporulated oocysts from contaminated habitats, a variety of warm-blooded animals can become infected
and act as the parasite’s intermediate hosts [32]. Additionally, T. gondii can spread across intermediate hosts through
carnivory, such as when individuals eat undercooked meat that contains tissue cysts [14]. Also, the tachyzoites from
T. gondii can pass through the placenta and infect the fetus, causing congenital toxoplasmosis, if the original infection
happens during pregnancy [22].

Models are useful for studying the dynamics of infectious disease transmission in many contexts because they
employ mathematical language to explain the behavior of a system. They can be used to validate, compare, and
optimize the preventive measures in addition to helping us better understand how a virus spreads. Compartmental
models, for instance, are frequently used in epidemiological research to examine the transmission of contagious diseases
at the population level. In these models, the entire population is usually divided into various compartments [15].

Many mathematical models have been developed to evaluate the dynamics of T. gondii in the population of
cats [5, 7, 10, 31, 32, 37, 39, 53, 56], population of humans [4] and, in the populations of both cat and human
[24, 30, 43, 50, 58, 59]. In [50], the dangers of T. gondii oocyst exposure to farm animals and people were investigated.
The authors x-rayed the impacts of kittens in maintaining environmental contamination by T. gondii oocysts on farms.
The authors however utilized probabilistic elements to allow various ambiguities surrounding the dynamics of T. gondii.
In [17], an exceptional x-ray of previous toxoplasmosis mathematical models is presented. In [5, 10, 41, 44, 45, 54, 56],
vaccinations were incorporated into toxoplasmosis studies to assess the effect of vaccines as control strategies and
it was discovered that vaccines were strong tools to alter the dynamics of T. gondii. Vaccines can confer life long
immunity to cats thereby reducing the rate of spread of T. gondii [26, 27].

The majority of the sickness that has been linked to human T. gondii is caused by congenital toxoplasmosis [17].
The burden of congenital toxoplasmosis was assessed to be 1.2 million DALYS (95% CI: 0.76-1.90) [55]. Despite
dangers of toxoplasmosis to humans and public health, few mathematical models have considered the dynamics of the
disease in human population as well as in human and cat populations [4, 24, 30, 43, 58, 59]. Aranda et al. [4] were
credited for developing the first model of toxoplasmosis transmission in human population though the model does
not include the major transmitter of the disease, the cats. Gonzalez-Parra et al. [30] modified [4] the following year
and the work caught the attention of Mathematical Biologists. The model is made up of five equations but does not
include the tendency of toxoplasmosis transmission from human-to-human as well as the tendency of contribution of
oocysts to the environment by the mildly infected cats. Like [30], other models of T. gondii spread in human and cat
populations lack human-to-human transmission of the disease and the contribution of oocysts to the environment by
the mildly infected cats.

In the present analysis, we develop a system of seven nonlinear ODEs to capture the dynamics of T. gondii in human
and cat populations. The seven system of equations allows the analysis of how various epidemiological parameters
affect the overall behavior of toxoplasmosis in the populations of humans and cats. Further, the proposed model
involves modeling the contacts between susceptible and infectious populations of both species. The horizontal spread
of the infection to humans is assumed to occur via interactions with infectious cats and humans while the existence of
vertical transmission is assumed in both human and cat populations. The model is studied analytically by deriving its
equilibria and reproductive ratio, examining the stability of its equilibria and performing bifurcation and sensitivity
analyses. To verify the theoretical results, we solve the model numerically and the conclusion of the findings of the
study is offered.

The paper is structured as follows: we design the model and outline the key assumptions in section 2. We analyze
the steady states for local and global stability and also perform bifurcation and sensitivity analyses in section 3. We
offer a range of simulations in section 4. Finally, we give the conclusion in section 5.

2 Materials and Methods

In this part, a mathematical model for the spread of toxoplasmosis disease in populations of humans and cats is
formulated. The model incorporates vertical transmission in both human and cat population though the probability
of vertical transmission in cats is very low [37]. The possibility of T. gondii spreading from human-to-human is also
included though it is omitted in most existing toxoplasmosis models [4, 7, 30, 31, 46, 53]. Studies have shown that
toxoplasmosis can spread from human-to-human through unprotected sexual intercourse, blood transfusion or organ
transplantation [3, 25, 35, 40, 42, 47, 52]. The constructed model also incorporates the possibility of shedding of oocysts
by the mildly infected cats. A cat becomes mildly infected when the oocysts shedding has been terminated and the
parasites have become dormant in the cat. This stage of infection is excluded in most known toxoplasmosis models



Modeling the influence of vertical transmission on the spread of toxoplasmosis 199

because it is considered that cats do not contribute oocysts to the environment at this stage [4, 7, 10, 30, 31, 32, 46, 53].
However, the contribution of oocysts into the environment by the mildly infected cats has been mentioned in [42, 52]
and considered recently in [37]. The T. gondii parasites primarily infect cats, who then shed the parasites into the
environment [40]. In the model constructed, there is a tendency for cats and oocysts to interact directly while the
environment is frequently contaminated by oocysts [21]. The prevalence of T. gondii in the environment has an
expected effect on the chance of infection. As a result, the number of oocysts in the environment, which is dependent
on the number of infected cats, is used to model the rate of infection [33].

The model assumes that when there are no infected cats, the oocysts deteriorate naturally [33]. This is a typical
premise used in biological process modeling. Oocysts that have been sporulated can persist for a very long time under
a range of environmental circumstances. Oocysts can indeed last in damp soil for a long time [33]. The following
presumptions form the basis of the model:

1. The entire population Nh(t) for humans is categorized into three subpopulations:

� Susceptible Sh(t) : people who could contract the disease among the human population.

� Infected Ih(t) : members of human population who are T. gondii - infected.

� Recovered Rh(t) : people who have had toxoplasmosis treatment.

2. The population of cats Nc(t) is categorized into three subpopulation

� Susceptible Sc(t) : individuals of the cat population who could contract the disease.

� Acutely Infected Ic(t) : members of the T. gondii parasite infected cat population.

� Mildly infected Mc(t) : members of the infected cats who have passed the stage of acute infection.

3. Through effective contact with an infected cat or human, a susceptible human can contract the disease at
different rates β2 and β3 and moves to the infected class Ih(t). An infected individual then moves to the recovered
class Rh(t) at a rate of γ1.

4. A susceptible cat can contract the disease through direct contact with an infected cat or contaminated environ-
ment at different rates β2 and β1 and moves to infected compartment Ic(t). Infected cats never make a full recovery
but move to the mildly infected compartment Mc(t) at rate γ2 when the parasites become dormant in them [37].
Susceptible humans and cats contract the disease from the infected cats at the same rate β2 [30].

5. Vertical transmission is assumed in both human and cat populations though the probability of it in cats is very
low [37]. The human and cat populations are recruited at rates b1 and b2 respectively such that a fraction ϵ1 and ϵ2
from humans and cats respectively are born infected from their infected mothers with ϵ1 > ϵ2.

6. Both acutely and mildly infected cats, Ic(t) and Mc(t), contribute oocyst to the environment compartment E(t)
at different rates η1 and η2 respectively (η2 < η1) [37]. Oocyst are lost in the environment at rates, δ and ϕ, due to
natural occurrences and human intervention (sanitation).

7. Death due to T. gondii is not considered but natural mortality occurs in human and cat populations at rate u1

and u2 respectively.

We denote the entire human population by

Nh(t) = Sh(t) + Ih(t) +Rh(t),

and the entire cat population by
Nc(t) = Sc(t) + Ic(t) +Mc(t).

Given the assumptions above, the dynamic toxoplasmosis disease model for the population of humans and cats is
graphically shown in Figure 1 and is analytically represented by the ODEs shown below
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Figure 1: Transmission diagram of the model defined in system (2.1)

dSh

dt
= (1− ϵ1Ih)b1 − (β2Ic + β3Ih)Sh − µ1Sh,

dIh
dt

= ϵ1Ihb1 + (β2Ic + β3Ih)Sh − (µ1 + γ1)Ih,

dRh

dt
= γ1Ih − µ1Rh,

dSc

dt
= (1− ϵ2Ic)b2 − (β1E + β2Ic)Sc − µ2Sc,

dIc
dt

= ϵ2b2Ic + (β1E + β2Ic)Sc − (µ2 + γ2 + η1)Ic,

dMc

dt
= γ2Ic − (µ2 + η2)Mc,

dE

dt
= η1Ic + η2Mc − (δ + ϕ)E,

(2.1)

subject to the initial conditions S0h > 0, I0h ≥ 0, R0h ≥ 0, S0c > 0, I0c ≥ 0,M0c ≥ 0, E0 ≥ 0.

Table 1: Nomenclatures for the model parameters

model parameters nomenclatures values reference

b1 recruitment rate for humans 100 Assumed
b2 recruitment rate for cats 5 Assumed
ϵ1 fraction of humans born from infected mothers 0.005 Assumed
ϵ2 fraction of cats born from infected mothers 0.001 Assumed
ϵ2 fraction of cats born from infected mothers 0.001 Assumed
β1 contact rate between cats and the environment 0.01-0.15 [37]
β2 contact rate between human and cats 0.008 Assumed
β3 contact rate between humans 0.001 Assumed
µ1 natural mortality rate for humans 0.000039 Estimamed
µ2 natural mortality rate for cats 0.00021 Estimated
γ1 recovery rate for humans 0.5 Assumed
γ2 rate of termination of oocyst shedding 0.47-1 [37]
η1 oocysts shedding rate for acutely infected cats 0.027-0.3 [10]
η2 oocysts shedding rate for mildly infected cats 0.00027-0.003 Assumed
δ removal rate of oocysts due to nature 0.058-0.096 [37]
ϕ removal rate of oocysts due to human intervention 0.085-0.5 [10]
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As in [57], we exclude the equation for the recovered human in (2.1) and base the analysis on the reduced system

dSh

dt
= (1− ϵ1Ih)b1 − (β2Ic + β3Ih)Sh − µ1Sh,

dIh
dt

= ϵ1Ihb1 + (β2Ic + β3Ih)Sh − (µ1 + γ1)Ih,

dSc

dt
= (1− ϵ2Ic)b2 − (β1E + β2Ic)Sc − µ2Sc,

dIc
dt

= ϵ2b2Ic + (β1E + β2Ic)Sc − (µ2 + γ2 + η1)Ic,

dMc

dt
= γ2Ic − (µ2 + η2)Mc,

dE

dt
= η1Ic + η2Mc − (δ + ϕ)E.

(2.2)

Now bringing the change in the total populations Nh(t) and Nc(t) for the two species together in an equation then

d

dt
Nh(t) = b1 − µ1Nh − γ1Ih,

d

dt
Nc(t) = b2 − µ2Nc − η1Ic − η2Mc.

(2.3)

Also, the change in oocyst population represented in the last equation in (2.2) can be expressed as

dE

dt
= (Ic +Mc)λ− (δ + ϕ)E, (2.4)

where λ = min(nβ1, nβ2) [6]. λ is the total contribution of the infectious cats (both acutely and mildly infected) to
the spread of oocyst. Before being considered valid, the model has to meet the boundedness and positivity features.
Further, it needs to be well-posed biologically and mathematically. To confirm the model’s validity, each of the features
must be verified one at a time.

2.1 Positivity of solutions

Since the system tracks the populations of human and animal, its solutions must be favorably positive. We will
demonstrate that the system’s solutions are nonnegative for any t > 0.

Theorem 2.1. The system’s solutions (Sh, Ih, Sc, Ic,Mc, E) are nonnegative for every t > 0 given the nonnegative
starting variables S0h > 0, I0h > 0, R0h > 0, S0c > 0, I0c > 0,M0c > 0, E0 > 0.

Proof . From (2.3), the following holds

lim
t→∞

supNh(t) ≤
b1
µ1

,

lim
t→∞

supNc(t) ≤
b2
µ2

.

(2.5)

Supposing ∇L = sup t > 0 : Sh(t) > 0, Ih(t) > 0, Sc(t) > 0, Ic(t) > 0,Mc(t) > 0, E(t) > 0 then ∇L > 0. Assuming
also that ∇L > ∞, then Sh, Ih, Sc, Ic,Mc, E become zero at ∇L. Hence, from the first equation in (2.2), it follows that

d

dt
Sh(t) exp[(β2Ic + β3Ih + µ1)t] =

∫ ∇L

0

(1− ϵ1Ih)b1 exp[(β2Ic + β3Ih + µ1)p]dp. (2.6)

Then

Sh(∇L) = Sh(0) exp[−(β2Ic+β3Ih+µ1)∇L]+exp[−(β2Ic+β3Ih+µ1)∇L]×
∫ ∇L

0

(1−ϵ1Ih)b1 exp[(β2Ic+β3Ih+µ1)p]dp > 0.

(2.7)

Following the same technique, we can show that Ih > 0, Sc(t) > 0, Ic(t) > 0,Mc(t) > 0, E(t) > 0, for all t > 0. □
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2.2 Boundedness of solutions

The solutions (Sh, Ih, Sc, Ic,Mc, E) of the system are bounded.

Proof . When there is no infection in the two populations then (2.3) reduces to

d

dt
Nh(t) ≤ b1 − µ1Nh,

d

dt
Nc(t) ≤ b2 − µ2Nc.

(2.8)

Integrating the first equation in (2.8),

eµ1tNh(t) =

∫
b1e

µ1tdt+ c1 ≤ b1
µ1

eµ1t + c1,

this implies that

Nh(t) ≤
b1
µ1

+ c1e
−µ1t.

When t = 0, we have, c1 ≥ Nh(0)−
b1
µ1

, therefore

Nh(t) ≤
b1
µ1

+

(
Nh(0)−

b1
µ1

)
e−µ1t.

Hence,

Nh(t) ≤ Nh(0)e
−µ1t +

b1
µ1

(1− e−µ1t). (2.9)

Also, integrating the second equation in (2.8), eµ2tNc(t) =
∫
b2e

µ2tdt+ c2, then

eµ2tNc(t) ≤
b2
µ2

+ c2,

and so,

Nc(t) ≤
b2
µ2

+ c2e
−µ2t.

When t = 0, we have, c2 ≥ Nc(0)−
b2
µ2

, therefore

Nc(t) ≤
b2
µ2

+

(
Nc(0)−

b2
µ2

)
e−µ2t.

Hence,

Nc(t) ≤ Nc(0)e
−µ2t +

b2
µ2

(1− e−µ2t). (2.10)

Following [13], (2.9) and (2.10) become

0 ≤ Nh(t) ≤
b1
µ1

and 0 ≤ Nc(t) ≤
b2
µ2

as t → ∞.

Particularly, Nh(t) ≤
b1
µ1

and Nc(t) ≤
b2
µ2

if Nh(0) ≤
b1
µ1

and Nc(0) ≤
b2
µ2

respectively. Hence, the solutions of the

two species populations enter
Ω1 =

{
Ωh ∪ Ωc ∈ R2

+ × R3
+

}
,

where

Ω1 =

{
(Sh, Ih) ∈ R2

+;Nh(t) ≤
b1
µ1

, (Sc, Ic,Mc) ∈ R3
+;Nc(t) ≤

b2
µ2

}
. (2.11)
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As for the oocyst concentration in the environment in (2.4), i.e.,

dE

dt
= (Ic +Mc)λ− (δ + ϕ)E,

Ic and Mc are of cats then Ic +Mc ≤
b2
µ2

[6]. Therefore,
dE

dt
≤ b2λ

µ2
− (δ + ϕ)E, then

E(t) ≤ b2λ

µ2(δ + ϕ)

(
1− c3e

−(δ+ϕ)t
)
.

As t → ∞ then,

E(t) ≤ b2λ

µ2(δ + ϕ)
.

Hence, the solution for the oocyst concentration exists in the feasible region

Ω2 =

{
E ∈ R+;E(t) ≤ b2λ

µ2(δ + ϕ)

}
.

Consequently, the entire set of solutions for the system enters

Ω =
{
(Ω1 ∪ Ω2) ∈ R2

+ × R3
+ × R+

}
,

where

Ω =

{
(Sh, Ih) ∈ R2

+;Nh(t) ≤
b1
µ1

, (Sc, Ic,Mc) ∈ R3
+;Nc(t) ≤

b2
µ2

, E ∈ R+;E(t) ≤ b2λ

µ2(δ + ϕ)

}
. (2.12)

Given (2.12), all the model’s solutions remain in Ω and Ω is positively invariant. In Ω where the model is
epidemiologically and mathematically properly posed, the dynamics of the disease regulated by (2.2) can therefore be
taken into consideration. □

3 Model Analysis

3.1 Equilibria

The model equilibrium points are obtained to analyze the long-term dynamics of toxoplasmosis. The system of
equations (2.2) is set to zero to obtain two equilibria. i.e.

dSh

dt
=

dIh
dt

=
dSc

dt
=

dIc
dt

=
dMc

dt
=

dE

dt
= 0. (3.1)

The solutions S◦
h, I

◦
h, S

◦
c , I

◦
c ,M

◦
c and E◦ satisfy equation (3.1) and clearly indicate that the equilibrium is not trivial

and the populations do not go into extinction as long as human recruitment rate b1 and the cats recruitment rate b2
are not zero. Hence, Ih = Ic = Mc = E = 0 when T. gondii is totally absent from the community and the system
admits a steady state, W◦, that represents the infection-free equilibrium (DFE). Therefore, the system has the DFE
denoted by

W◦ = (S◦
h, I

◦
h, S

◦
c , I

◦
c ,M

◦
c , E

◦) =

(
b1
µ1

, 0,
b2
µ2

, 0, 0, 0

)
.

However, if the community is invaded with T. gondii, each of the variables become nonzero. Assuming W ∗ defines
the system’s steady state when the community is invaded with the parasite with points S∗

h, I
∗
h, S

∗
c , I

∗
c ,M

∗
c , E

∗. We
solve the system (2.2) in terms of I∗h and I∗c and obtain

S∗
h =

(1− ϵ1I
∗
h)b1

β2I∗c + β3I∗h + µ1
,

S∗
c =

(1− ϵ2I
∗
c )b2(µ2 + η2)(δ + ϕ)

β1η1(µ2 + η2) + β1η2γ2(β2I∗c + µ2)(µ2 + η2)(δ + ϕ)
,

M∗
c =

γ2
(µ2 + η2)

I∗c ,

E∗ =
η1(η2 + µ2) + η2γ2
(µ2 + η2)(δ + ϕ)

I∗c .

(3.2)
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Since all the solutions of the model must be positive at W ∗, the endemic equilibrium W ∗ exists if and only if I∗h
and I∗c are positive.

3.2 Reproduction Number

The epidemiological quantity of the main interest is the reproductive ratio, (R◦), i.e., the average number of
secondary cases produced by an infectious agent introduced into a community that is fully susceptible [18]. Its values
typically dictate whether or not a contagious disease can propagate through a community. If R◦ is below unity, the
population finally finds an equilibrium where there is no longer any sickness. The infection will, nevertheless, be able
to transmit and persist in the community if the reproductive ratio is more than unity. The quantity (R◦) can be
determined using the approach described in [19]. For toxoplasmosis, in addition to being spread between definitive
hosts, the parasite also has a reservoir in the environment and is capable of spreading through intermediate hosts.
Therefore, the toxoplasmosis model in (2.2) consists of four infected states Ih, Ic,Mc and E and uninfected states Sh

and Sc. The rate of new infections and state transition, which are represented by F and V, respectively, are given by

F =


ϵ1b1Ih + β2IcSh + β3IhSh

η2b2Ic + β1ESc + β2IcSc

0
0

 ; V =


(µ1 + γ1)Ih

(µ2 + γ2 + η1)Ic
−γ2Ic + (µ2 + η2)Mc

−η1Ic − η2Mc + (δ + ϕ)E

 , (3.3)

At the DFE, Sh = S◦
h = p1 =

b1
µ1

, Ih = 0, Sc = S◦
c = p2 =

b2
µ2

and Ic = Mc = E = 0. The Jacobian at the DFE of

F and V are F and V , respectively with

F =


(ϵ1b1 + β3Sh) β2Sh (β2Ic + β2Ih) 0

0 (ϵ2b2 + β2Sc) 0 β1Sc

0 0 0 0
0 0 0 0



V =


(µ1 + γ1) 0 0 0

0 (µ2 + γ1 + η1) 0 0
0 −γ2 (µ2 + γ2) 0
0 −η1 −η2 (δ + ϕ).

 ,

(3.4)

The rates for fresh infections and changes that take place close to equilibrium are F and V . The duration spent
in each of the states and the overall number of new infections produced throughout each illness which are generally
denoted by V −1 and FV −1 are determined using Maple 18. The dominant eigenvalue of (FV −1) is R◦ and is given
by

R◦ = max(R◦hc,R◦ec) =
p1(β2 + β3) + ϵ1b1

(µ1 + γ1)
,

p2β2 + b2ϵ2
(µ2 + γ2 + η1)

+
p2β1(η2γ2 + η1(µ2 + η2))

(µ2 + η2)(µ2 + γ2 + η1)(δ + ϕ)
. (3.5)

In (3.5), while R◦hc measures the rate of spread of T. gondii into human population through contact rate between
infected cats and susceptible humans (β2) and contact rate between infected and susceptible humans (β3), R◦ec
measures the rate of spread of T. gondii into cat population through contact rate between infected and susceptible
cats (β2) and contact rate between susceptible cats and contaminated environment (β1). It is assumed that T. gondii
spreads from cats to cats and to humans at the same rate β2 [30]. The spread of T. gondii is significantly influenced
by the quantity (R◦). Consider the model’s second and fourth equations in (2.2) with Ic = Ih = 1 in the second
equation, the following equations are derived

dIh
dt

= k1(R◦hc − 1)Ih,

dIc
dt

= k2(R◦ec − 1)Ic,

(3.6)

where
k1 = (µ1 + γ1),

k2 = (µ2 + γ2 + η1).
(3.7)

Some information about the transmission and control of toxoplasmosis is revealed in (3.7). R◦hc < 0 and R◦ec < 0
are necessary for the change in the populations of infected humans and cats to be negative so that the disease does
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not spread into both human and cat populations. However, since the main transmitter of T. gondii is cat, we can
discuss the transmission of the parasite in both human and cat populations in terms of R◦ec. it is revealed in (3.7)
that when R◦ec < 1, the infected cats spread the parasite to less than one susceptible populations (both human and
cat). This is so because the change in the population of infected cats is negative when R◦ec < 1 and the infection just
dies out. On the contrary, the change in the population of infected cats is positive when R◦ec > 1 which signifies the
possibility of disease inversion because each infected cat can contribute to the growth of toxoplasmosis by more than
one infection. Therefore, R◦ec > 1 is necessary for the existence of endemic equilibrium. Furthermore, If R◦ec = 1, it
implies that each infected cat contributes to the growth of the disease by just one as a whole. Hence, the population
of the infected cats does not change when R◦ec = 1 and the infection subsequently persists in the community.

3.3 Local and global stability of zero equilibrium, W◦

The stability of W◦, both local and global, depends on R◦. W◦ is stable locally and globally if R◦ < 1 but it is
unstable if R◦ > 1. To verify the existence of local stability for W◦, we compute the Jacobian matrix of the system
(2.2) as follows

J =


−q1 −(ϵ1b1 + β3Sh) 0 −β2Sh 0 0
q2 (ϵ1b1 + β3Sh) 0 β2Sh 0 0
0 0 −q3 −(ϵ2b2 + β2Sc) 0 −β1Sc

0 0 q4 ϵ2b2 + β2Sc − (µ2 + γ2 + η1) 0 β1Sc

0 0 0 γ2 −(µ2 + η2) 0
0 0 0 η1 η2 −(δ + ϕ)

 , (3.8)

where q1 = (µ1 + β3Ih + β2Ic), q2 = (β3Ih + β2Ic), q3 = (µ2 + β1E + β2Ic), q4 = (β1E + β2Ic). Evaluating J at W◦
then (3.8) becomes

J(W◦) =


−µ1 −(ϵ1b1 + β3p1) 0 −β2p1 0 0
0 ϵ1b1 + β3p1 − (µ1 + γ1) 0 β2p1 0 0
0 0 −µ2 −(ϵ2b2 + β2p2) 0 −β1p2
0 0 0 ϵ2b2 + β2p2 − (µ2 + γ2 + η1) 0 β1p2
0 0 0 γ2 −(µ2 + η2) 0
0 0 0 η1 η2 −(δ + ϕ)

 . (3.9)

In (3.9), λ1 = −µ1, λ2 = −µ2 and the remaining solutions of J(W◦) are contained in B given as

B =


ϵ1b1 + β3p1 − (µ1 + γ1) β2p1 0 0

0 ϵ2b2 + β2p2 − (µ2 + γ2 + η1) 0 β1p2
0 −γ2 −(µ2 + η2) 0
0 η1 η2 −(δ + ϕ)

 . (3.10)

Following Gershgorin’s circle theorem [29, 12], the following hold from matrix B

R1 : 1 >
ϵ1b1 + β3p1
(µ1 + γ1)

+
β2p1

(µ1 + γ1)
,

R1 : 1 >
ϵ2b2 + β2p2

(µ2 + γ2 + η1)
+

β1p2
(µ2 + γ2 + η1)

,

R3 : 1 >
γ2

(µ2 + η2)

R4 : 1 >
η1

(δ + ϕ)
+

η2
(δ + ϕ)

.

(3.11)

From R1 in (3.11),

1 >
p1(β2 + β3) + ϵ1b1

(µ1 + γ1)
.

Then R◦hc < 1. Also, multiplying R3 and R4 and use the result to multiply the second term of R2 gives

1 >
p2β2 + b2ϵ2

(µ2 + γ2 + η1)
+

p2β1(η2γ2 + η1(µ2 + η2))

(µ2 + η2)(µ2 + γ2 + η1)(δ + ϕ)
,
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which indicates that R◦ec < 1, hence the DFE is locally asymptotically stable if R◦ < 1. To establish the global
stability of DFE that guarantees total elimination of T. gondii regardless of the initial populations of humans and
cats, we construct a Lyapunov function U(t) as in [9, 49] as follows

U(t) = A1Ih +A2Ic +A3Mc +A4E,

with time derivative
U̇(t) = A1İh +A2İc +A3Ṁc +A4Ė,

where A1, · · · , A4 are nonnegative constants whose values do not alter the positivity or negativity of U̇(t). Therefore,
we neglect them and assume that Ic = Ih = 1 in the second equation in (2.2) and write

U̇(t) =[(ϵ1Ihb1 + (β2Ih + β3Ih)Sh − (µ1 + γ1)Ih)] + (ϵ2Icb2 + (β1E + β2Ic)Sc − (µ2 + γ2 + η1)Ic)

+ γ2Ic − (µ2 + η2)Mc + η1Ic + η2Mc − (δ + ϕ)E

=(µ1 + γ1)

{
(β2 + β3)Sh + ϵ1b1

(µ1 + γ1)
− 1

}
Ih

+ (µ2 + γ2 + η1)

{
Scβ2 + b2ϵ2

(µ2 + γ2 + η1)
+

Scβ1(η2γ2 + η1(µ2 + η2))

(µ2 + η2)(µ2 + γ2 + η1)(δ + ϕ)
− 1

}
Ic.

Since Sh ≤ p1 and Sc ≤ p2, then

U̇(t) ≤(µ1 + γ1)

{
(β2 + β3)p1 + ϵ1b1

(µ1 + γ1)
− 1

}
Ih

+ (µ2 + γ2 + η1)

{
p2β2 + b2ϵ2

(µ2 + γ2 + η1)
+

p2β1(η2γ2 + η1(µ2 + η2))

(µ2 + η2)(µ2 + γ2 + η1)(δ + ϕ)
− 1

}
Ic,

Then
U̇(t) = K(R◦ − 1)I, (3.12)

where K is a positive constant and I denotes the existence of T. gondii parasite in the community. Equation (3.12)
indicates that U̇(t) < 0 if R◦ < 1. Again, U̇(t) = 0 at W◦. Putting Ih = Ic = Mc = E = 0 in the equations of Sh(t)

and Sc(t) in (2.2) then Sh(t) →
b1
µ1

and Sc(t) →
b2
µ2

as t → ∞. Also, putting Ih = Ic = Mc = E = 0 in the equations

for Ih(t), Ic(t),Mc(t) and E(t) in (2.2) indicates that (Ih(t), Ic(t),Mc(t), E(t)) → (0, 0, 0, 0) as t → ∞. Hence, U(t)
remains the Lyapunov function. Following Theorem 2.3.1 in [51] as employed in [23] then there exists DFE W◦ that
is globally asymptotically stable in Ω if R◦ < 1.

3.4 Local and global stability of nonzero equilibrium, W∗

As in DFE, W◦, the stability of W∗ depends on R◦. However, unlike in W◦, W∗ is stable locally and globally
if R◦ > 1 while it is unstable if R◦ < 1. To examine the local stability of W∗, we linearize (2.2) about W∗ and the
result obtained is in the form of (3.8) but with the asterisk in the variables to indicate endemic points. We perform a
simple row operation for the result obtained as in [49] to get the matrix in (3.13)

J∗ =



−q1 −Γ1 0 −β2S
∗
h 0 0

0
q1
q2

Γ1 − Γ1 0
q1
q2

β2S
∗
h − β2S

∗
h 0 0

0 0 −q3 −Γ2 0 −β1S
∗
c

0 0 q4 Γ2 − (µ2 + γ2 + η1) 0 β1S
∗
c

0 0 0 γ2 −(µ2 + η2) 0
0 0 0 η1 η2 −(δ + ϕ),


(3.13)

where q1 = (µ1+β3I
∗
h+β2I

∗
c ), q2 = (β3I

∗
h+β2I

∗
c ), q3 = (µ2+β1E

∗+β2I
∗
c ), q4 = (β1E

∗+β2I
∗
c ),Γ1 = (ϵ1b1+β3S

∗
h),Γ2 =

(ϵ2b2 + β2S
∗
c ). Elements of J∗ are represented in terms of f and we have

J∗ =


−f1 −f2 0 −f3 0 0
0 f4 − f5 0 f7 − f8 0 0
0 0 −f9 −f10 0 −f11
0 0 f12 f13 − f14 0 f15
0 0 0 f16 −f17 0
0 0 0 f18 f19 −f20,

 (3.14)
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The eigenvalues of J∗ can be obtained from (3.15) given by

(f1 + λ)(d0λ
5 + d1λ

4 + d2λ
3 + d3λ

2 + d4λ+ d5) = 0. (3.15)

One root in (3.15) is already negative (i.e., λ1 = −f1) then the endemic equilibrium W∗ is locally asymptotically
stable if all the roots of

(d0λ
5 + d1λ

4 + d2λ
3 + d3λ

2 + d4λ+ d5) = 0

are also negative. Following Routh-Hurwitz criteria [8], the roots of the equation are all negative and W∗ is locally
asymptotically stable if the following inequalities are true

d1d2d3 > d23 + d21d4, (d1d4 − d5)(d1d2d3 − d23 − d21d4) > d5(d1d2 − d3)
2 + d1d

2
5,

where
d0 = 1,
d1 = f13 + f14 + f17 + f20,
d2 = −f12f13 − (f13 − f14)(f17 − f20)− f18f15 + f17f20,
d3 = f12f13+(f13−f14)(f17+f20)+f15f18−f17f20+f12f13(f17+f20)+f12f15+f15f17f18+f15f16f19+(f13−f14)f17f20,
d4 = −f12f13(f13−f14)+f15f12f18+f15f17f18+f15f16f19+(f13−f14)f17f20+f12f13f17f20−f12f15f16f19−f12f15f17f18,
d5 = f12f15f17f18 + f12f15f16f19 − f12f13f17f20.

For the global attractiveness of W∗, we formulate a Lyapunov function as in [1, 28] as follows

V(t) = (Sh − S∗
h ln(Sh)) +A (Ih − I∗h ln(Ih)) + (Sc − S∗

c ln(Sc))

+B (Ic − I∗c ln(Ic)) + C (Mc −M∗
c ln(Mc)) +D (E − E∗ ln(E)) ,

with time derivative

V̇(t) =
(
Ṡh − S∗

h

Sh
Ṡh

)
+A

(
İh − I∗h

Ih
İh

)
+

(
Ṡc −

S∗
c

Sc
Ṡc

)
+B

(
İc −

I∗c
Ic

İc

)
+ C

(
Ṁc −

M∗
c

Mc
Ṁc

)
+D

(
Ė − E∗

E
Ė

)
=

(
1− S∗

h

Sh

)
Ṡh +A

(
1− I∗h

Ih

)
İh +

(
1− S∗

c

Sc

)
Ṡc +B

(
1− I∗c

Ic

)
İc + C

(
1− M∗

c

Mc

)
Ṁc +D

(
1− E∗

E

)
Ė.

(3.16)

At W∗, the following hold from (2.2)

b1 = ϵ1b1I
∗
h + β2I

∗
cS

∗
h + β3I

∗
hS

∗
h + µ1S

∗
h

µ1 + γ1 =
ϵ1b1I

∗
h + β2I

∗
cS

∗
h + β3I

∗
hS

∗
h

I∗h
b2 = ϵ2b2I

∗
c + β1E

∗S∗
c + β2I

∗
cS

∗
c + µ2S

∗
c

µ1 + γ2 + η1 =
ϵ2b2I

∗
c + β1E

∗S∗
c + β2I

∗
cS

∗
c

I∗c

µ2 + η2 =
γ2I

∗
c

M∗
c

δ + ϕ =
η1I

∗
c + η2M

∗
c

E∗ .

(3.17)

Appropriate substitution of (2.2) and (3.17) into (3.16) gives

V̇(t) =
(
1− S∗

h

Sh

)
[ϵ1b1I

∗
h + β2I

∗
cS

∗
h + β3I

∗
hS

∗
h + µ1S

∗
h − ϵ1b1Ih − β2IcSh − β3IhSh − µ1Sh]

+A

(
1− I∗h

Ih

)[
ϵ1b1Ih + β2IcSh + β3IhSh −

(
ϵ1b1I

∗
h + β2I

∗
cS

∗
h + β3I

∗
hS

∗
h

I∗h

)
Ih

]
+

(
1− S∗

c

Sc

)
[ϵ2b2I

∗
c + β1E

∗S∗
c + β2I

∗
cS

∗
c + µ2S

∗
c − ϵ2b2Ic − β1ESc − β2IcSc − µ2Sc]

+B

(
1− I∗c

Ic

)[
ϵ2b2Ic + β1ESc + β2IcSc −

(
ϵ2b2I

∗
c + β1E

∗S∗
c + β2I

∗
cS

∗
c

I∗c

)
Ic

]
+ C

(
1− M∗

c

Mc

)[
γ2Ic −

(
γ2I

∗
c

M∗
c

)
Mc

]
+D

(
1− E∗

E

)[
η1Ic + η2Mc −

(
η1I

∗
c + η2M

∗
c

E∗

)
E

]
.

(3.18)
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Simplifying (3.18), then

V̇(t) =µ1S
∗
h

(
2− Sh

S∗
h

− S∗
h

Sh

)
+ µ2S

∗
c

(
2− Sc

S∗
c

− S∗
c

Sc

)
+ ϵ1b1I

∗
h

(
1− S∗

h

Sh
− Ih

I∗h
+

IhS
∗
h

I∗hSh

)
+ ϵ2b2I

∗
c

(
1− S∗

c

Sc
− Ic

I∗c
+

IcS
∗
c

I∗cSc

)
+ β3I

∗
hS

∗
h

(
1− IhSh

I∗hS
∗
h

− S∗
h

Sh
+

Ih
I∗h

+A
IhSh

I∗hS
∗
h

−A
Ih
I∗h

− Sh

S∗
h

+A

)
+ β2I

∗
cS

∗
h

(
1− IcSh

I∗cS
∗
h

− S∗
h

Sh
+

Ih
I∗h

+A
IcSh

I∗cS
∗
h

−A
Ih
I∗h

− IcShI
∗
h

I∗cS
∗
hI

∗
h

+A

)
+ β2I

∗
cS

∗
c

(
1− IcSh

I∗cS
∗
c

+
S∗
c

Sc
+

Ic
I∗c

+B
IcSh

I∗cS
∗
c

−B
Ic
I∗c

−B
Sc

S∗
c

+B

)
+ β1E

∗S∗
c

(
1− ESc

E∗S∗
c

− S∗
c

Sc
+

E

E∗ +B
ESc

E∗S∗
c

−B
Ic
I∗c

−B
EScI

∗
c

E∗S∗
c I

∗
c

+B

)
+ Cγ2I

∗
c

(
1 +

Ic
I∗c

− Mc

M∗
c

− IcM
∗
c

I∗cM
∗
c

)
+Dη1I

∗
c

(
1 +

Ic
I∗c

− E

E∗ − Ic
I∗c

E∗

E

)
+Dη2M

∗
c

(
1 +

Mc

M∗
c

− E

E∗ − Mc

M∗
c

E∗

E

)
.

(3.19)

As in [1], A = B = C = D = 1 and Ih(t) ≤ I∗h, Ic(t) ≤ I∗c ,Mc(t) ≤ M∗
c , E(t) ≤ E∗ which implies that

Ih
I∗h

≤ 1,

Ic
I∗c

≤ 1,
Mc

M∗
c

≤ 1,
E

E∗ ≤ 1. Hence, V̇(t) reduces to

V̇(t) ≤µ1S
∗
h

(
2− Sh

S∗
h

− S∗
h

Sh

)
+ µ2S

∗
c

(
2− Sc

S∗
c

− S∗
c

Sc

)
+ β3I

∗
hS

∗
h

(
2− S∗

h

Sh
− Sh

S∗
h

)
+ β2I

∗
cS

∗
h

(
2− S∗

h

Sh
− Sh

S∗
h

)
+ β2I

∗
cS

∗
c

(
2− S∗

c

Sc
− Sc

S∗
c

)
+ β1E

∗S∗
c

(
2− S∗

c

Sc
− Sc

S∗
c

)
.

(3.20)

SinceGM ≤ AM [36], V̇(t) ≤ 0, and by La Salle’s Invariance Principle [38], the invariant set in {(Sh, Ih, Sc, Ic,Mc, E) ∈
R6

+ : (Sh, Ih, Sc, Ic,Mc, E) → W∗} is the singleton W∗. Therefore, any solution to (2.2) that intersect the interior of
R6

+ limits to W∗. Hence, W∗ is globally asymptotically stable in Ω whenever R◦ > 1.

3.5 Bifurcation analysis

Toxoplasmosis can be eradicated from the community if R◦ < 1 but some factors which depend on the model
parameters can make the eradication difficult even when R◦ < 1, a phenomenon known as backward bifurcation
[7, 34]. We investigate the existence of backward bifurcation for our model using the center manifold theory [16] as in
[7, 34]. The Jacobian of the system (2.2) at DFE W0 with β1 = β∗

1 is computed as

J(W0)|β1=β∗
1
=


−µ1 −(ϵ1b1 + β3p1) 0 −β2p1 0 0
0 ϵ1b1 + β3p1 − (µ1 + γ1) 0 β2p1 0 0
0 0 −µ1 −(ϵ2b2 + β2p2) 0 −β∗

1p2
0 0 0 ϵ2b2 + β2p2 − (µ2 + γ2 + η1) 0 β∗

1p2
0 0 0 γ2 −(µ2 + η2) 0
0 0 0 η1 η2 −(δ + ϕ)

 .

(3.21)
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The right eigen vector corresponding to J∗ = J(W0)|β1=β∗
2
is computed as

w1 =
1

µ1

{
β2p1(µ1 + γ1)

(ϵ1b1 + β3p1 − (µ1 + γ1))

}
w4,

w2 = − β2p1
(ϵ1b1 + β3p1 − (µ1 + γ1))

w4,

w3 = −µ2 + γ2 + η1
µ2

w4 < 0,

w4 = w4 > 0

w5 =
γ2

(µ2 + η2)
w4 > 0,

w6 = − (ϵ2b2 + β2p2 − (µ2 + γ2 + η1))

β∗
1p2

w4.

(3.22)

The left eigne vector for J∗ = J(W0)|β1=β∗
1
which met v.w = 1 is v1 = v2 = v3 = v5 = v6 = 0 but v4 = v4 > 0.

The bifurcation coefficients of a and b are then computed following [16] as

a = 2v4w3{β∗
1 + β2}(w4 + w6) = − 2v2

µ2β∗
1p2

(β∗
1 + β2)(µ2 + γ2 + η1){1− (ϵ2b2 + β2p2 − (µ2 + γ2 + η1))}v4w2

4,

b = p2v4w4 > 0.

(3.23)

Considering (3.23), backward bifurcation is possible for the T.gondii model as the bifurcation coefficient ”a” can
be positive especially with the existence of parameters ϵ2 and β2, fraction of cats born from infected mothers and
contact rate between humans and cats respectively. This shows that vertical transmissions in both humans and cats
as well as contact with the infected cats can make T.gondii eradication difficult.

3.6 Sensitivity analysis

There is need to investigate the relative contributions of the model parameters to T. gondii spread and control to
determine the parameters to be focused while designing interventions against T. gondii . Following the approach in
[6], the sensitivity of some parameters to T. gondii dynamics is computed as follows

ΓR◦hc

β2
=

b1
µ1(µ1 + γ1)

× β2

R◦hc
,

ΓR◦hc

β3
=

b1
µ1(µ1 + γ1)

× β3

R◦hc
,

ΓR◦hc
ϵ1 =

b1
µ1(µ1 + γ1)

× ϵ1
R◦hc

,

ΓR◦ec

b2
=

β2 + ϵ2
µ2(µ2 + γ2 + η1)

+
β1(η2γ2 + η1(µ2 + η2))

(µ2 + η2)(µ2 + γ2 + η1)(δ + ϕ)
× b2

R◦ec
,

ΓR◦ec

β1
=

b2(η2γ2 + η1(µ2 + η2))

(µ2 + η2)(µ2 + γ2 + η1)(δ + ϕ)
× β1

R◦ec
,

ΓR◦ec
ϵ2 =

b2
µ2(µ2 + γ2 + η1)

× ϵ2
R◦ec

.

(3.24)

4 Numerical Simulations and graphs

We gather data from several sources and solve the system using fourth order Runge-Kutta technique. Some
parameters’ values are real; for instance, the natural mortality rate of human is µ1 = 0.000039 per day, which
corresponds to a 70-year old person’s life expectancy, and the mortality rate of cats is µ2 = 0.00021 per day, which
corresponds to a cat’s average lifespan of 13 years. A number of values for the parameters is selected from [37, 10].
The daily recruitment rates for humans and cats are b1 = 100 and b2 = 5, respectively. The rates of contribution of the
acutely infected cats to environmental contamination are η1 = 0.027 − 0.3 and the rate of contribution of the mildly
infected cats to environmental contamination are η2 = 0.00027 − 0.003, respectively. β1 = 0.01 − 0.15, β2 = 0.008,
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are the spreading rates of T. gondii from environment to cat and human to cat population, respectively, β3 = 0.001
is spreading rate of T. gondii from human to human. The human recovery rate is γ1 = 0.5 while oocyst shedding
is terminated at rate γ2 = 0.47 − 1. We also make assumptions about the initial population sizes, ϵ1 = 0.005 and
ϵ2 = 0.001. In rare instances the new offspring of infected cats are infected with T. gondii so take ϵ2 = 0.001 and
consider that humans transmit T. gondii vertically at ϵ1 = 0.005. The rate of loss of oocysts due to nature and due to
human intervention are assumed to be δ = 0.058− 0.096 and ϕ = 0.085− 0.5 respectively. The definitions and values
for the parameters can be accessed at a glance from Table 1. With these values, we obtain the indices of sensitivity
for the model parameters in Table 2.

Table 2: Nomenclatures for the model parameters

parameters signs sensitivity indices

β2 + 0.57
β3 + 0.07
ϵ1 + 0.36
b2 + 1
β1 + 0.0037
ϵ2 + 0.2

In Table 2, the contributions of some parameters to T. gondii spread are revealed. It is deduced that recruitment
rate of cats b2 has the highest contribution to T. gondii spread. This shows that toxoplasmosis is likely to be a
challenge in a community where there is no restriction in the population of cats. Another parameter with high rate of
contribution to T. gondii spread is effective contact between susceptible humans and infectious cats and susceptible
cats and infectious cats β2. The index for β2 in Table 2 means that failure to identify infected cats on time for prompt
treatment can escalate T. gondii transmission. Also, vertical transmission in humans ϵ1 is sensitive to toxoplasmosis
transmission. The implication of index for ϵ1 is that pregnant women have to be monitored for toxoplasmosis to
prevent T. gondii spread in human population.

Let Sh(0) = 800, Ih(0) = 75, Sc(0) = 150, Ic(0) = 35,Mc(0) = 20, and E(0) = 300 be the initial values for the
model’s variables. We graphically depict the outcomes after solving to demonstrate the effects of recruitment rate for
cats, vertical transmission, sanitation and contact with the infected cats. Figure 2 depicts how recruitment rate for
cats affects the population of infectious humans. Figure 3 depicts how vertical transmission affects the population of
susceptible and infectious humans. Figure 4 depicts how oocysts contribution from the mildly infected cats affects the
population T. gondii parasites. Figure 5 depicts how improved sanitation affects the population of infectious humans
and pathogens. Figure 6 depicts how poor sanitation affects the population of infectious humans and pathogens.
Lastly, Figure 7 depicts how contact with the infected cats affects population susceptible and infectious humans.

We can observe from Figure 2 that increasing the recruitment rate for cats from 5 to 15 increases the number
of individuals who are infected with T. gondii and the increase reach the peak when the highest number of cats is
recruited. This is an indication that prevention and control measures have to be intensified should the population of
cats increase because T. gondii infection might spread if the population of cats is not controlled.

Figure 3 shows that as more and more children are born from infected women, individuals who are susceptible to
T. gondii declines (Figure 3a) while those who are infected with the parasite rise (Figure 3b). It is therefore shown
that infection with T. gondii during pregnancy can exarcerbate T. gondii transmission in human population.

In Figure 4, although the population of oocysts declines continuously over a period of a decade which might be as a
result of mortality from natural and human factors, the possibility of oocysts contribution from the mildly infected cats
still pushes the curves outward, an indication of increase in the oocysts population in some regards. The implication of
mildly infection in cats for T. gondii transmission in human population as shown in Figure 4 is that every cat should
be regarded as a potential carrier of T. gondii and should be put under close monitoring to forstall cat-to-human
spread of toxoplasmosis.

In Figure 5, as environmental sanitation improved and increased from more the 30% through to 50%, the population
of individuals who are infected with T. gondii decreased and the decrease is highest when the improvement in sanitation
attained 50% (Figure 5a). Also, the population of pathogen in the environment reduced with the improved sanitation
(Figure 5b). This shows that improved sanitation is key to the elimination of the parasite as well as the eradication
of T. gondii infection in human population.
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Figure 2: Effect of increasing recruitment rate for cats.

(a) Effect of increasing vertical transmission on suscep-
tible humans

(b) Effect of increasing vertical transmission on infec-
tious humans

Figure 3: Effect of T. gondii infection during pregnancy

Unlike in Figure 5, Figure 6 indicates the effect of poor sanitation on the population of infectious human and
pathogen. As environmental sanitation fell from more that 30% through to 20%, the number of infected people
increased (Figure 6a) and the population of the pathogen in the environment also increased (Figure 6b). Therefore,
T. gondii parasites multiply and the infection escalates in a human population where sanitation is poor.

In Figure 7, increase in contact with infected cats reduces the population of humans who are susceptible to the
disease ( Figure 7a) but increases the population of those who are infected (Figure 7b). Since avoidance of cats is
not easy for individuals who keep them and the fact that cats are asymptomatic to T. gondii infection, frequent
examination of T. gondii infection is necessary for cats to prevent T. gondii transmission from cats to humans.

5 Conclusion

Toxoplasmosis transmission has serious health and economic implications. It is transmitted to humans and other
animals through parasites that can spread from the infected agents to the susceptible populations via various modes.
This study developed a model for the dynamics of toxoplasmosis that include horizontal and vertical transmissions as
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Figure 4: Effect of increasing oocysts contribution from the mildly infected cats

(a) Effect of improved sanitation on the population of
infectious humans

(b) Effect of improved sanitation on the population of
parasites

Figure 5: Effect of sanitation on the spread of T. gondii infection in humans

well as the contribution of the parasites from the mildly infected cats. In the work, we identified the factors that can
cause T. gondii to be eradicated and those that can cause it to persist. We examined T. gondii dynamics with a focus
on the equilibria stability. To investigate the equilibria stability locally, we computed and applied the characteristic
equations. We show that the DFE is locally stable if R0 < 1. In contrast, the endemic equilibrium is locally stable if
R0 > 1. The Lyapunov theorem was used to determine the global stability of the DFE. In particular, the DFE is
globally stable if R0 < 1, and T. gondii eventually goes extinct.

Overall, our findings give a better understanding of T. gondii dynamics. Some parameters were selected from
toxoplasmosis literature. Though, some of the parameters have some degree of uncertainties as are general in biological
processes. We can observe from the expression for R0 that the endemic equilibrium and the value for R0 are influenced
by the recruitment rate for cats, vertical transmission rates, contact rate with infected cats and oocysts contributions
to the environment. For example, when all the stated parameters rise, R0 increases and this has negative control
effects on T. gondii.

Graphical simulations are used to display the behavior of the disease. The effect of increase in the population of cats
on the spread of toxoplasmosis is indicated in Figure 2 where an increase in the population of cats is accompanied with a
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(a) Effect of poor sanitation on the population of infec-
tious humans

(b) Effect of poor sanitation on the population of par-
asites

Figure 6: Effect of sanitation on the spread of T. gondii infection in humans

(a) Effect of increased contacts with infectious cats on
the population of susceptible humans

(b) Effect of increased contacts with infectious cats
on the population of infectious humans

Figure 7: Effect of contact with infectious cats on humans.

corresponding increase in the population of infectious humans. The impact of vertical transmission on the transmission
of the disease is depicted in Figure 3. As the vertical transmission rises, the susceptible human population falls while
the infected human population rises. Figure 4 indicates the effect of contribution of the parasites from the mildly
infected cats. As the contribution of the parasites from the mildly infected cats increases, the environment becomes
more contaminated with T. gondii.

Figures 5 and 6 show the effect of sanitation on the dynamics of T. gondii. While improved sanitation reduces
the population of infectious humans and pathogen, poor sanitation increases their populations. Figure 7 indicates
the effects of contact with the infected cats on the human populations. As contact with the infected cat rises, the
susceptible human population falls but the infected human population rises. The analysis shows that recruitment rate
for cats, vertical transmission, contact with the infected cats, sanitation and contribution of T. gondii from the mildly
infected cats can shape the dynamics of toxoplasmosis. Therefore, effective monitoring of pregnant women and cats
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for T. gondii infection and every other intervention that can make the environment free from T. gondii are necessary
to prevent or control the spread of toxoplasmosis.

This study is not without limitations and some of the limitations would be mentioned to give direction for fututure
work. The model developed in this study is based on the assumption of homogeneous mixing which might not be
true for toxoplasmosis in all regions. Therefore, further studies are needed in this regard. The values used for basic
transmission rates are not clear and vary from one place to another. The effective contact rate between infected and
susceptible cats and infected cats and susceptible humans is assumed equal. This might not be true but calls for
extensive more biological field research.

Finally, we want to emphasize that studies of this kind shed more light on toxoplasmosis condition and can aid
public health officials in lowering the incidence of toxoplasmosis.
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[12] D. Bejarano, E. Ibarguen-Mondragön, and E.A. Gómez-Hernadez, A stability test for nonlinear systems of ordi-
nary differential equations based on the Gershgorin circles, Contemp. Engin. Sci.11 (2018), 4541–4548.

[13] G. Birkhorff and G.C. Rota, Ordinary Differential Equations, Needham Heights, Ginn, Boston, 1982.

[14] R. Blaizot, C. Nabet, L. Laghoe, B. Faivre, S. Escotte-Binet, F. Djossou, E. Mosnier, F. Hena, D. Blanchet, A.
Mercier, M-L. Darde, I. Villena, and M. Demar, Outbreak of Amazonian toxoplasmosis: a one health investigation
in a remote Amerindian community, Front. Cell. Infect. Microbiol. 10 (2020), 401.

[15] F. Brauer, P. van den Driessche, J. Wu, and L.J.S. Allen, Mathematical Epidemiology, Springer, Berlin Heidelberg,
2008.

[16] C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng. 1
(2004), no. 2, 361–404.



Modeling the influence of vertical transmission on the spread of toxoplasmosis 215

[17] H. Deng, R. Cummins, G. Schares, C. Trevisan, H. Enemark, H. Waap, J. Srbljanovic, O. Djurkovic-Djakovic,
S.M. Pires, J.W. van der Giessen, and M. Opsteegh. Mathematical modelling of Toxoplasma gondii transmission:
A systematic review, Food Waterborne Parasitol. 22 (2021), e00102.

[18] O. Diekmann, J.A.J. Heesterbeek, and J.A.J. Metz, On the definition and the computation of the basic reproduction
ratio R◦ in models for infectious diseases in heterogeneous populations, J. Math. Bio. 28 (1990), 365–373.

[19] O. Diekmann, J.A.J. Heesterbeek, and M.J. Roberts, The construction of next generation matrices for compart-
mental epidemic models, J. Royal Soc. Interface 47 (2010), 873–885.

[20] J.P. Dubey, Advances in the life cycle of Toxoplasma gondii, Int. J. Parasitol. 28 (1988), 1019–1024.

[21] J. Dubey and C. Beattie, Toxoplasmosis of Animals and Man, CRC Press: Boca Raton, FL, USA, 1988.

[22] D. Dunn, M. Wallon, F. Peyron, E. Petersen, C. Peckham, and R. Gilbert, Mother-to-child transmission of
toxoplasmosis: risk estimates for clinical counselling, Lancet 353 (1999), 1829–1833.

[23] G. Fan, J. Liu, P. van den Driessche, J. Wu, and H. Zhu, The impact of maturation delay of mosquitoes on the
transmission of West Nile virus, Math. Biosci. 228 (2010), 119–126.

[24] J.D. Ferreira, L.M. Echeverry, and C.A. Pena Rincon, Stability and bifurcation in epidemic models describing the
transmission of toxoplasmosis in human and cat populations, Math. Meth. Appl. Sci. 40 (2017), 55–75.

[25] J. Flegr, K. Klapilova, and S. Kankova, Toxoplasmosis can be a sexually transmitted infection with serious clinical
consequences. Not all routes of infection are created equal, Med. Hypoth. 83 (2014), 286–289.

[26] J. Frenkel, Transmission of toxoplasmosis and the role of immunity in limiting transmission and illness, J. Amer.
Vet. Med Assoc. 196 (1990), 233–240.

[27] A. Freyre, L. Choromanski, J. Fishback, and I. Popiel, Immunization of cats with tissue cysts, bradyzoites, and
tachyzoites of the T-263 strain of Toxoplasma gondii, J. Parasitol. 9 (1993), 716–719.

[28] A.A. Gebremeskel, Global stability of malaria transmission dynamics model with logistic growth, Discrete Dyn.
Nat. Soc. 2018 (2018).

[29] D. Gomez, A more direct proof of Gerschgorin’s theorem Mat.: Enseńanza Univ. 14 (2006), no. 2, 119-122.
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