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Abstract

The objective of this paper is to investigate the existence and uniqueness of mild solutions for stochastic integrodif-
ferential evolution equations in Hilbert spaces with infinite delay and a Rosenblatt Process. The main results of this
discussion are provided by Grimmer’s resolvent operator theory and stochastic analysis. The theory is demonstrated
with an example.
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1 Introduction

The theory of functional differential equations is intimately connected to the study of pure mathematics and
the practical applications of mathematics in the real world. Different mathematical formulations of physical laws
are described in functional differential equations. These equations include ordinary differential equations, partial
differential equations, integral differential equations, integrodifferential equations, delay equations, and equations
made by combining these different types of equations. The theory of differential equations and its applications
have recently attracted great interest due to their successful modeling in many areas of science and engineering,
including biomechanics, electrochemistry, financial markets, porous media, electromagnetic processes, and electrical
circuits. Significant advancements have been made in the theory and applications of differential equations within this
framework. For further information, refer to [1, 5, 9, 14, 22].

Noise, usually called random fluctuations, occurs frequently and predictably in both natural and artificial systems.
Therefore, studying stochastic models rather than deterministic models is strongly advised. When a mathematical
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description of a particular occurrence incorporates a component of uncertainty, stochastic differential equations are
used (SDEs).

In recent years, there has been a rise in interest in stochastic functional differential equations driven by fractional
Brownian motion(hereafter, fBm), which has led to an increase in the amount of focus placed on these equations.
We want to direct the reader to the extensive work presented in [2, 3, 12, 13, 17]. In addition, its distribution is
typically Gaussian, and the calculus involved is significantly less complicated than those involved in other processes.
However, if the data cannot support the Gaussianity assumption, the Rosenblatt process is a helpful tool at one’s
disposal and should be used whenever possible. As a direct result, the theory of the Rosenblatt process was developed
to explain its remarkable qualities. Self-similarity, stationarity of the increments, long-range dependence, and other
similar characteristics are some beautiful properties included here (see [10, 18, 23]). Tudor [24] gave more information,
emphasizing the Rosenblatt process and the stochastic calculus that goes along with it. Maejima and Tudor [11]
went on to establish some new properties within the Rosenblatt distribution after that. Recently, Shen et al. [19, 20]
analyzed the stability and controllability of the stochastic functional differential equation driven by the Rosenblatt
process. K. Dhanalakshmi and P. Balasubramaniam [6] explored higher-order fractional neutral stochastic differential
system stability results with infinite delay driven by Poisson jumps and the Rosenblatt process.

In various fields of science, there is a growing interest in studying systems with memory or after-effects, such as the
effect of infinite delay on state equations. We must discuss stochastic evolution systems with infinite delay. The theory
of integrodifferential equations with resolvent operators has become an active area of research because they are used in
many physical phenomena. There are few results on stochastic partial integrodifferential equations with the resolvent
operator with an infinite delay. It is possible to view [4, 7, 15, 16] and the references inside them. Motivated by the
previously mentioned problems, in this paper we will extend some of the results of mild solutions for the following
stochastic integrodifferential equations driven by the Rosenblatt process and with infinite delaydϑ(τ) =

[
A ϑ(τ) +

∫ τ

0

B(τ − s)ϑ(s)ds+ F (τ, ϑτ )

]
dτ +G(τ, ϑτ )dW (τ) + σ(τ)dRH(τ), τ ∈ [0, b],

ϑ0(·) = φ ∈ D , τ ≤ 0,
(1.1)

where the state ϑ(·) takes values in a separable Hilbert space V; A is the infinitesimal generator of a strongly
continuous semigroup (S(τ))τ≥0 of bounded linear operators in a Hilbert space V with domain D(A ), B(τ) is a closed
linear operator on V with domain D(B) ⊃ D(A ). The historyϑτ : (−∞, 0] → V, ϑτ (θ) = ϑ(τ + θ) for τ ≥ 0,
belongs to the phase space D , which will be defined in Section 2.Assume that the mappings F : [0, b] × D → V,
G : [0, b] × D → L 0

2 (K,V) and σ : [0, b] → L 0
2 (K,V) are appropriate functions to be specified later.The initial value

φ is an F0-measurable D-valued random variable independent of Rosenblatt process RH and Wiener process W with
the second finite moment.

The main contribution and advantage of this manuscript are listed as follows:

(i) Through the utilization of successive approximations in conjunction with the theory of resolvent operators for
integrodifferential equations in the sense of Grimmer, the purpose of our paper is to investigate the solvability
of (1.1) and to give findings on the existence of a mild solution to (1.1).

(ii) No study in the existing body of literature has documented stochastic integrodifferential equations with an
infinite delay and a Rosenblatt process in the form of (1.1).

(iii) This work’s objective is to examine such a subject to fill the gap that has been existing.

(iv) Our goal is to show that there are mild solutions to a group of stochastic integrodifferential equations with an
infinite delay and a Rosenblatt process when certain local conditions are met. Additionally, we will ensure that
these solutions are unique.

The rest of this paper is organized as follows: In Section 2, we briefly review the notations, concepts, and primary
results concerning the Rosenblatt process and deterministic integrodifferential equations, which we utilize throughout
this paper. Section 3 focuses on studying the existence and uniqueness of mild solutions for (1.1) along with their
proofs, presenting the main results. An example is given in Section 4 to illustrate the results obtained.
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2 Preliminaries

2.1 Rosenblatt process

In this segment, we recall the basic properties of the Rosenblatt process needed to establish our main results and
the Wiener integral. For details of this section, we refer the reader to [3] and the references therein. Throughout this
paper, (V, ∥ · ∥V < ·, · >) and (W, ∥ · ∥W < ·, · >) are two real separable Hilbert spaces. The notation L2(Ω,V) stands

for the space of all V-valued random variables G such that E ∥ G ∥2=
∫
Ω

∥ G ∥2 dP < ∞. Let L (K,V) denotes the

space of all bounded linear operators from K to V and Q ∈ L (K,K) represents a non-negative self-adjoint operator.
Let L 0

2 = L 0
2

(
K,V

)
be the space of all functions Γ ∈ (K,U) such that ΓQ1/2 is a Hilbert-Schmidt operators. The

norm is given by
∥ Γ ∥2L 0

Q
= ∥ ΓQ

1
2 ∥2= Tr

(
ΓQΓ ∗)

and Γ is called a Q-Hilbert-Schmidt operator from K to V.
The Wiener-Ito multiple integral of order k with respect to the standard Brownian motion

(
W1(ϑi)

)
ϑ∈R

is given by

Rk
H(τ) = q(H, k)

∫
Rk

∫ τ

0

 k∏
j=1

(s− ϑj)
(− 1

2+
1−H
k )

+

 dsdW1(ϑ1) · · · dW1(ϑk), (2.1)

where ϑ+ = max(ϑ, 0) and the constant c(H, k) is a positive normalization constant depending only on H and k that

ensures E
(
Rk

H(1)
)2

= 1. The process (Rk
H(τ))τ≥0 is called as the Hermite process and it is H self-similar in the sense

that for any c > 0, (Rk
H(cτ))

d
= (cHRk

H(τ)) and it has stationary increments.

For k = 1, the process given by (2.1) is the fBm with Hurst parameter H ∈
(
1
2 , 1
)
, further the process is not

Gaussian for k = 2. Moreover, for k = 2, the process given by (2.1) is called the Rosenblatt process.

Consider a time interval [0, b] with arbitrary fixed horizon b and {RH(τ), τ ∈ [0, b]} the one dimensional Rosenblatt

process with parameter H ∈ (
1

2
, 1), RH has the following integral representation [24]

RH(τ) = q(H)

∫ τ

0

∫ τ

0

[∫ τ

ϑ1∨ϑ2

∂KH′

∂u
(u, ϑ1)

∂KH′

∂u
(u, ϑ2)du

]
dW1(ϑ1)dW1(ϑ2), (2.2)

where KH(τ, s) is given by

KH(τ, s) = cHs
1
2−H

∫ τ

s

(u− s)H−3/2uH−1/2du for τ > s,

with

cH =

√
H(2H− 1)

β(2− 2H,H− 1
2 )
,

β(·, ·) denotes the Gamma function, KH(τ, s) = 0 when τ ≤ s, {W1(τ), τ ∈ [0, b]} is a Brownian motion, H′ = H+1
2 and

q(H) = 1
H+1

√
H

2(2H−1) is a normalizing constant. The covariance of the Rosenblatt process {RH(τ), τ ∈ [0, b]} satisfy

E(RH(τ)RH(s)) =
1

2

(
s2H + τ2H − |s− τ |2H

)
and this structure of {RH(γ)}γ∈[0, b] allows to represent it as a Wiener integral. Let RH

Q(τ) be a K-valued Rosenblatt
process with covariance Q as

RH
Q(τ) = RQ(τ) =

∞∑
n=1

√
δnξn(τ)en, t ≥ 0.

Let ρ : [0, b] → L2(Q1/2K,V) such that

∞∑
n=1

∥K∗
H(ρQ

1/2en)∥L2([0,b];V) <∞. (2.3)
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Definition 2.1. (Tudor[24]). Let ρ(l) : [0, b] : → L2(Q1/2K,V) satisfy (2.3). In that case, the stochastic integral of
ρ with respect to the Rosenblatt process RH

Q(τ) is defined for τ ≥ 0 as follows

∫ τ

0

ρ(l)dRH
Q(l) :=

∞∑
n=1

∫ τ

0

ρ(s)Q1/2endRn(l)

=

∞∑
n=1

∫ τ

0

∫ τ

0

(K∗
H(ρQ

1/2en))(ϑ1, ϑ2)dW1(ϑ1)dW1(ϑ2).

Lemma 2.2. ([20]) For any ρ : [0, b] → L2(Q1/2K,H ) such that
∑∞

n=1 ∥ρQ1/2en∥L1/H([0,b];V) <∞ holds, and for any
α, β ∈ [0, b] with β > α, we have

E

∥∥∥∥∥
∫ β

α

ρ(τ)dRQ(τ)

∥∥∥∥∥
2

≤ cH(β − α)2H−1
∞∑

n=1

∫ β

α

∥ρ(τ)Q1/2en∥2dτ.

If, in addition,
∞∑

n=1

∥ρ(τ)Q1/2en∥ is uniformly convergent for τ ∈ [0, b],

then, it holds that

E

∥∥∥∥∥
∫ β

α

ρ(τ)dRQ(τ)

∥∥∥∥∥
2

≤ cH(β − α)2H−1

∫ β

α

∥ρ(τ)∥2L2(Q1/2K,V)dτ.

For further references [23, 24].

2.2 Partial integrodifferential equation in Banach space

In this part, we recall some basic results about the resolvent operators for the following integro-differential equationϑ′(τ) = A ϑ(τ) +

∫ τ

0

B(τ − s)ϑ(s)ds for τ ≥ 0

ϑ(0) = ϑ0 ∈ Y,
(2.4)

where A and B(τ) are closed linear operators on Y. Let X and Y be two Banach spaces. L (X,Y) denotes the space of
all bounded linear operator from X to Y. To simplify, we write L (X) when X = Y. Let X be the Banach space D(A )
equipped with the graph norm given by

∥ϑ∥X = ∥A ϑ∥+ ∥ϑ∥ for ϑ ∈ X.

The notation C (R+,X) stands for the space of all continuous functions from R+ into X.

Definition 2.3. [8] A bounded linear operator valued function R(τ) ∈ L (Y), τ ≥ 0 is called the resolvent operator
for system (2.4) if it satisfies the following conditions:

(i) R(0) = I and ∥R(τ)∥L (Y) ≤ M̃eγτ for some constants M̃ and γ;

(ii) For all ϑ ∈ Y, R(τ) is strongly continuous for τ ≥ 0;

(iii) For ϑ ∈ X, R(·)ϑ ∈ C 1(R+,Y) ∩ C (R+,X) and

R
′
(τ)ϑ = A R(τ)ϑ+

∫ τ

0

B(τ − s)R(s)ϑds,

= R(τ)A ϑ+

∫ τ

0

R(τ − s)B(s)ϑds, τ ≥ 0.

In what follows, we suppose the following assumptions.
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(H1) A is the infinitesimal generator of a C0-semigroup {S(τ)}τ≥0.

(H2) For all τ ≥ 0, B(τ) is a continuous linear operator from (X, ∥ · ∥X) into (Y, ∥ · ∥Y). Moreover, there exists an
integrable function µ : R+ → R+ such that for any ϑ ∈ X, τ 7→ B(τ)ϑ belongs to W 1,1(R+,Y) and∥∥∥∥ ddτB(τ)ϑ

∥∥∥∥
Y

≤ µ(τ)∥ϑ∥X for ϑ ∈ X and τ ≥ 0.

Theorem 2.4. [8] Assume that (H1) and (H2) are satisfied. Then equation (2.4) has a unique resolvent operator
(R(τ))τ≥0.

Now, we present some results on the existence of solutions for the following integrodifferential equation:ϑ′(τ) = A ϑ(τ) +

∫ τ

0

B(τ − s)ϑ(s)ds+ Ξ(τ) for τ ≥ 0,

ϑ(0) = ϑ0 ∈ Y,
(2.5)

where Ξ : R+ → Y is a continuous function.

Definition 2.5. A continuous function ϑ : [0,∞[→ Y is said to be a strict solution for equation (2.5) if

1. ϑ ∈ C 1(R+,Y) ∩ C (R+,X),

2. ϑ satisfies equation (2.5) for τ ≥ 0.

Remark 2.6. From this definition, we deduce that ϑ(τ) ∈ D(A ), and the function s 7→ B(τ − s)ϑ(s) is integrable,
for all τ > 0 and s ≥ 0.

Theorem 2.7. [8] Suppose that hypotheses (H1) and (H2) hold. If ϑ is a strict solution of (2.5), then the following
variation of the constants formula holds.

ϑ(τ) = R(τ)ϑ0 +

∫ τ

0

R(τ − s)Ξ(s)ds, for τ ≥ 0. (2.6)

Consequently, we can establish the following definition.

Definition 2.8. [8] A function ϑ : R+ → Y is called a mild solution of (2.5) for ϑ0 ∈ Y, if ϑ sastisfies the variation
of constants formula (2.6).

Theorem 2.9. [8] Let Ξ ∈ C 1([0,+∞[;Y) and ϑ be defined by (2.6). If ϑ0 ∈ D(A ), then ϑ is a strict solution for
equation (2.4).

In this paper, D((−∞, 0];L2(Ω,V)) (denoted by D simply) denotes the family of all F0-measurable, bounded con-

tinuous functions φ : (−∞, 0] → L2(Ω,V) endowed with the norm ∥φ∥2 = supθ∈(−∞,0] E ∥φ(θ)∥2V. Let DF0
((−∞, 0];V)

denote the family of almost surely bounded, F0-measurable, D-valued random variables.

Moreover, let Db denote the Banach space of all Fτ adpted processes φ(τ, ω) which are almost surely continuous
in τ for fixed ω ∈ Ωwith norm ∥φ∥Db

<∞, where

∥φ∥Db
=
(

sup
0≤τ≤b

∥φ∥2τ
) 1

2 , and ∥φ∥τ = sup
−∞≤s≤τ

E∥φ(s)∥.

3 Existence and uniqueness

This section discusses the existence and uniqueness of a mild solution for the stochastic functional equation (1.1).
For this equation, we assume that the following conditions hold.
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(H3) (a) There exists a function K : R+ × R+ → R+ such that K (τ, r) is locally integrable in τ ≥ 0 for any fixed
r ≥ 0 and is continuous, monotone nondecreasing and concave in r for any fixed τ ∈ [0, b]. Moreover, for any
fixed τ ∈ [0, b] and φ1 ∈ D , the following inequality is satisfied:

∥F (τ, φ1)∥2 + ∥G(τ, φ1)∥2L0
2
≤ K (τ, ∥φ1∥2τ ).

(b) For any constant M > 0, the following differential equation
dϑ

dτ
= MK (τ, ϑ) for τ ≥ 0

ϑ(0) = ϑ0,

has a global solution on R+ for any initial value ϑ0 > 0.

(H4) (global conditions)
(a) There exists a function Z : R+×R+ → R+ such that Z (τ, r) is locally integrable in τ for any fixed r ≥ 0 and
is continuous, monotone nondecreasing and concave in r for any fixed τ ∈ [0, b], Z (τ, 0) = 0 for any τ ∈ [0, b].
Moreover, for any fixed τ ∈ [0, b], φ1, φ2 ∈ B, the following inequality is satisfied:

∥F (τ, φ2)− F (τ, φ1)∥2V + ∥G(τ, φ2)−G(τ, φ1)∥2L 0
2
≤ Z (τ, ∥φ2 − φ1∥2τ ).

(b) For any constant C > 0, if a nonnegative, continuous function v(τ) satisfies

v(τ) ≤ C

∫ τ

0

Z (s, v(s))ds for τ ∈ [0, b],

then v(τ) ≡ 0 for all τ ∈ [0, b].

(H5) There exists a constant p > 1 such that the function σ : [0,+∞) → L 0
2 satisfies the following∫ b

0

∥σ(s)∥2p
L 0

2
ds <∞.

(H6) (a) (the local condition) For any integer η > 0, there exists a function Zη : R+ × R+ → R+ such that Zη(τ, r)
is locally integrable in τ for any fixed r ≥ 0 and is continuous, monotone nondecreasing and concave in r for
any fixed τ ∈ [0, b] with Zη(τ, 0) = 0. Futhermore, the following inequality is satisfied: for any φ1, φ2 ∈ D with
∥φ1∥τ ≤ η, ∥φ2∥τ ≤ η, the following inequality holds:

∥F (τ, φ2)− F (τ, φ1)∥2V + ∥G(τ, φ2)−G(τ, φ1)∥2L 0
2
≤ Zη(τ, ∥φ2 − φ1∥2τ ).

(b) For any constant C > 0, if a nonnegative function v(t) satisfies that

v(τ) ≤ C

∫ τ

0

Zη(s, v(s))ds,

for all τ ∈ J , then v(τ) ≡ 0 holds for any τ ∈ [0, b].

Remark 3.1. Let Z (τ, ϑ) = β(τ)Z̄ (ϑ), τ ∈ [0, b], where β(τ) ≥ 0 is locally integrable and Z̄ (ϑ) is a concave

nondecreasing function from R+ to R+ such that Z̄ (0) = 0, Z̄ (ϑ) > 0 for ϑ > 0 and

∫
0+

1

Z̄ (ϑ)
dϑ = ∞. Then, by the

comparison theorem of differential equations, we know that assumption (H4-b) holds.
We propose now some concrete examples of the function Z̄ (·). Let ξ > 0 and let δ ∈ (0, 1) be sufficient small. Define
Z̄1(ϑ) = ξϑ, ϑ ≥ 0

Z̄2(ϑ) =

{
ϑ log(ϑ−1), 0 ≤ ϑ ≤ δ,

δ log(δ−1) + Z̄
′

2 (δ−)(ϑ− δ), ϑ > δ,

where Z̄
′

2 denotes the derivative of function Z̄2. They are all concave nondecreasing functions satisfying

∫
0+

1

Z̄i(ϑ)
dϑ =

∞ (i = 1, 2).
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Now, we introduce the definition of mild solutions for problem (1.1).

Definition 3.2. An Fτ -adapted V-valued stochastic process ϑ(τ) defined on −∞ < τ ≤ b is called the mild solution
for Eq. (1.1) if

(1) ϑ(τ) is continuous and {ϑτ : τ ∈ [0, b]} is a D-valued stochastic process;

(2) for arbitrary τ ∈ [0, b], ϑ(τ) satisfies the following integral equation: ϑ(τ) = R(τ)φ(0) +

∫ τ

0

R(τ − s)F (s, ϑs)ds+

∫ τ

0

R(τ − s)G(s, ϑs)dW (s) +

∫ τ

0

R(τ − s)σ(s)dRH
Q(s),

ϑ0(·) = φ ∈ D .
(3.1)

Next, we prove the existence and uniqueness of mild solution for (1.1).

Theorem 3.3. Assume that (H1)− (H5) are satisfied. Then the system (1.1) has a unique mild solution ϑ(τ) ∈ Db.

Proof . To prove this theorem, let us introduce the following iteration procedure. Define for each integer n = 1, 2, 3, · · ·

ϑn(τ) =R(τ)φ(0) +

∫ τ

0

R(τ − s)F (s, ϑn−1
s )ds+

∫ τ

0

R(τ − s)G(s, ϑn−1
s )dW (s) +

∫ τ

0

R(τ − s)σ(s)dRH
Q(s)ds, (3.2)

and for n = 0, ϑ0(τ) = R(τ)φ(0), τ ∈ [0, b], while for n = 1, 2, 3, · · · , ϑn(τ) = φ(τ), −∞ < τ ≤ 0. To ensure the
existence of mild solutions, we split the proof into several steps.

Step 1. For all n ∈ N, s ∈ (−∞, τ ], ϑn(·) ∈ Db, n ≥ 0 is bounded. It is obvious that ϑ0(τ) ∈ Db. By elementary
inequality to (3.2), for τ ∈ [0, b], it is seen

E ∥ϑn(s)∥2 ≤ 4E ∥R(s)φ(0)∥2 + 4E

∥∥∥∥∫ s

0

R(s− r)F (r, ϑn−1
r )dr

∥∥∥∥2 + 4E

∥∥∥∥∫ s

0

R(s− r)G(r, ϑn−1
r )dW (r)

∥∥∥∥2
+4E

∥∥∥∥∫ s

0

R(s− r)σ(r)dRH
Q(r)

∥∥∥∥2
=: 4

4∑
i=1

Ii. (3.3)

Thus, by (H3), one has

I1 ≤M2E ∥φ(0)∥2 . (3.4)

From (H3) and Hölder’s inequality, the following relation holds:

I2 ≤ M2E
(∫ s

0

F (r, ϑn−1
r )dr

)2
≤ M2

(∫ s

0

dr
)

E
∫ s

0

K (r, ∥ϑn−1∥2r)dr (3.5)

≤ M2bE
∫ s

0

K (r, ∥ϑn−1∥2r)dr.

By (H3), Hölder’s inequality, Doob’s martingale inequality and hypothesis (H3), we know that there exists a
positive constant C1 such that

I3 ≤M2bC1E
∫ s

0

K (r, ∥ϑn−1∥2r)dr. (3.6)
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For I4, by Lemma 2.2 and assumption (H5), we obtain for p > 1,

I4 ≤ cHH(2H− 1)b2H−1M2

∫ s

0

∥σ(r)∥2L 0
2
dr

≤ M2cHH(2H− 1)b2H−1+1− 1
p

(∫ τ

0

∥σ(r)∥2p
L 0

2
dr

) 1
p

(3.7)

≤ M2cHH(2H− 1)b2H− 1
p

(∫ b

0

∥σ(r)∥2p
L 0

2
dr

) 1
p

< ∞.

Hence, substituting (3.4)− (3.7) into (3.3) yields

E ∥ϑn(s)∥2 ≤ ∆0 +∆1E
∫ s

0

K (r, ∥ϑn−1∥2r)dr,

where we have used the notation

∆0 =M2E ∥φ(0)∥2 +M2cHH(2H− 1)b2H+1− 1
p

(∫ b

0

∥σ(r)∥2p
L 0

2
dr

) 1
p

and ∆1 = bM2(1 + C1). Then

E∥ϑn∥2τ = sup
−∞<s≤τ

E∥ϑn(s)∥2

≤ E sup
−∞<θ≤0

∥φ(θ)∥2+∆0 +∆1E
∫ s

0

K (r, ∥ϑn−1∥2r)dr

≤ ∆2 +∆1E
∫ τ

0

K (s, ∥ϑn−1
s ∥2s)ds,

where ∆2 = E sup
−∞<θ≤0

∥φ(θ)∥2+∆0. Using Jensen’s inequality, we obtain

E∥ϑn∥2τ≤ ∆2 +∆1

∫ τ

0

K (s,E∥ϑn−1∥2s)ds.

From assumption (H3-b) there is a solution zτ which satisfies

zτ = 2∆2 + 2∆1

∫ τ

0

K (r, zr)dr.

Since E∥ϑ0(τ)∥≤ M2∥φ(0)∥< ∞, it reads E∥ϑn∥2τ≤ zτ ≤ zb < ∞. Therefore {ϑn(τ), n ≥ 0}is uniformly bounded,
and Step 1 is then fulfilled.

Step 2. We claim that {ϑn(τ), n ≥ 0} is a Cauchy sequence. For all n,m ≥ 0 and τ ∈ J , from (3.3), we have

E
∥∥ϑn+1(s)− ϑm+1(s)

∥∥2 ≤ 2E

∥∥∥∥∫ s

0

R(s− r)
(
F (r, ϑnr )− F (r, ϑmr )

)
dr

∥∥∥∥2 + 2E

∥∥∥∥∫ s

0

R(s− r)
(
G(r, ϑnr )−G(r, ϑmr )

)
dW (r)

∥∥∥∥2
By (H4) and Burkhölder-Davis-Gundy’s inequality, there exists a positive constant C2 such that

E
∥∥ϑn+1(s)− ϑm+1(s)

∥∥2 ≤ 2M2b(1 + C2)E
∫ s

0

Z
(
r, ∥ϑnr − ϑmr ∥2r

)
dr.

Then, by Jensen’s inequality, we have

E
∥∥ϑn+1 − ϑm+1

∥∥2
τ

= sup
−∞<s≤τ

E
∥∥ϑn+1(s)− ϑm+1(s)

∥∥2 (3.8)

≤ ∆3

∫ τ

0

Z
(
s,E∥ϑn+1 − ϑm+1∥2s

)
ds,
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where ∆3 = 2M2b(1 + C2). By (5.1) and Fatou’s Lemma, we have

lim
n,m→∞

(
sup

0≤s≤b
E
∥∥ϑn+1(s)− ϑm+1(s)

∥∥2) ≤ ∆3

∫ τ

0

Z

(
s, lim

n,m→∞

(
sup

0≤θ≤s
E
∥∥ϑn+1(θ)− ϑm+1(θ)

∥∥2)) ds.
By assumption (H4-b) we obtain

lim
n,m→∞

sup
0≤s≤b

E
∥∥ϑn+1(s)− ϑm+1(s)

∥∥2 = 0.

This implies that {ϑn, n ≥ 0} is Cauchy in Db.

Step 3. The completeness of Bb guarantes the existence of a process ϑ ∈ Bb, such that

lim
n→∞

sup
0≤s≤b

E
∥∥ϑn+1(s)− ϑ(s)

∥∥2 = 0.

Hence, letting n → ∞ and taking limits on both sides of (3.3), we obtain that ϑ(τ) is a solution to (1.1). The
proof existence is complete. Appendix A shows uniqueness. Hence, the Theorem3.3 is completed. □

Theorem 3.4. Assume that (H1), (H2), (H3) and (H6) hold. Then the system (1.1) has a unique mild solution
ϑ(τ) ∈ Db.

Proof . Let η be a natural integer and let b0 ∈ (0, b). We define the sequence of functions {Fη(τ, v)} and {Gη(τ, v)}
for (τ, v) ∈ [0, b0]× V as follows:

Fη(τ, v) =

{
F (τ, v) if ∥v∥ ≤ η,

F (τ,
ηv

∥v∥
) if ∥v∥ > η, and Gη(τ, v) =

{
G(τ, v) if ∥v∥ ≤ η,

G(τ,
ηv

∥v∥
) if ∥v∥ > η.

Then, the functions Fη and Gη satisfy assumption (H3), and the following inequality hold:

∥Fη(τ, ϑ)− Fη(τ, v)∥2 + ∥Gη(τ, ϑ)−Gη(τ, v)∥2L0
2
≤ Zη(τ, ∥ϑ− v∥2τ ),

for any ϑ, v ∈ B, τ ∈ [0, b0]. So, by Theorem 3.3, there exist the unique mild solutions ϑη(τ) and ϑη+1(τ), respectively
to the following integral equations:

ϑη(τ) = R(τ)ϑ0 +

∫ τ

0

R(τ − s)Fη(s, ϑη(s))ds+

∫ τ

0

R(τ − s)Gη(s, ϑη(s))dW (s)

+

∫ τ

0

R(τ − s)σ(s)dRH
Q(s)ds, τ ∈ [0, b],

ϑη(τ) = φ(τ), τ ≤ 0,

(3.9)


ϑη+1(τ) = R(τ)ϑ0 +

∫ τ

0

R(τ − s)Fη+1(s, ϑη+1(s))ds+

∫ τ

0

R(τ − s)Gη+1(s, ϑη+1(s))dW (s)

+

∫ τ

0

R(τ − s)σ(s)dRH
Q(s)ds τ ∈ [0, b],

ϑη+1(τ) = φ(τ), τ ≤ 0.

(3.10)

Define the stopping times

ση := b0 ∧ inf{τ ∈ [0, b] : ∥ϑη(τ)∥ ≥ η},
ση+1 := b0 ∧ inf{τ ∈ [0, b] : ∥ϑη+1(τ)∥ ≥ η + 1},
κη := ση ∧ ση+1.
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In view of (3.9) and (3.10), we obtain

E∥ϑη+1(s)− ϑη(s)∥2 ≤ 2E

∥∥∥∥ ∫ s

0

R(s− r)[Fη+1(r, ϑη+1(s))− Fη(r, ϑη(r))]dr

∥∥∥∥2
+2E

∥∥∥∥∫ s

0

R(s− r)[Gη+1(r, ϑη+1(r))−Gη(r, ϑη(r))]dW (r)

∥∥∥∥2
= 2

2∑
i=1

Ii,

which we have used the fact that for 0 ≤ r ≤ τη,

Fη+1(r, ϑη(r)) = Fη(r, ϑη(r)), Gη+1(r, ϑη(r)) = Gη(r, ϑη(r)).

Employing assumption (H6) and Hölder’s inequality, it follows that

sup
0≤s≤τ∧κη

I1 ≤ M2bE sup
0≤s≤τ∧κη

∫ s

0

∥Fη+1(r, ϑη+1(r))− Fη(r, ϑη(r))∥2 dr

≤ M2b sup
0≤s≤τ∧κη

E
∫ s

0

Zη+1

(
r, ∥ϑη+1 − ϑη∥2r

)
dr.

Combining Burkhölder-Davis-Gundy’s inequality, there exist a positive constant K1 such that

sup
0≤s≤τ∧κη

I2 ≤ K1M
2 sup
0≤s≤τ∧κη

E
∫ s

0

∥∥∥∥[Gη+1(r, ϑη+1(r))−Gη(r, ϑη(r))
]∥∥∥∥2

L 0
2

dr

≤ K1M
2 sup
0≤s≤τ∧κη

E

(∫ s

0

Zη+1

(
r, ∥ϑη+1 − ϑη∥2r

)
dr

)
. (3.11)

Therefore, we have

sup
0≤s≤τ∧κη

E ∥ϑη+1(s)− ϑη(s)∥2 ≤ ∆4 sup
0≤s≤τ∧κη

E

(∫ s

0

Zη+1

(
r, ∥ϑη+1 − ϑη∥2r

)
dr

)

where ∆4 =M2(b+K1). Then for all τ ∈ [0, b0], by Jensen’s inequality, we have

sup
−∞<s≤τ∧κη

E ∥ϑη+1(s)− ϑη(s)∥2 ≤ C4

∫ s

0

Zη+1(r, sup
−∞<r≤s∧κη

E∥ϑη+1 − ϑη∥2r)ds.

The assumption (H6) indicates that

sup
−∞<s≤τ∧κη

E∥ϑη+1(s)− ϑη(s)∥2 = 0.

Thus, for a.e. ω,
ϑη+1(τ) = ϑη(τ), for 0 ≤ τ ≤ b0 ∧ κη.

Note that for each ω ∈ Ω, there exists an η0(ω) > 0 such that 0 < b0 ≤ κη0
. Define ϑ(τ) by ϑ(τ) = ϑ0η0(τ) for

τ ∈ [0, b0]. Since ϑ(τ ∧ κη) = ϑη(τ ∧ κη), it holds that

ϑ(τ ∧ κη) = R(τ ∧ κη)φ(0) +
∫ τ∧κη

0

R(τ ∧ κη − s)Fη(s, ϑη(s))ds+

∫ τ∧κη

0

R(τ − s)Gη(s, ϑη(s))dW (s)

+

∫ τ∧κη

0

R(τ ∧ κη − s)σ(s)dRH
Q(s)ds



Stochastic integrodifferential system with Rosenblatt process and infinite delay 55

= R(τ ∧ κη)φ(0) +
∫ τ∧κη

0

R(τ ∧ κη − s)F (s, ϑ(s))ds+

∫ τ∧κη

0

R(τ − s)G(s, ϑ(s))dW (s)

+

∫ τ∧κη

0

R(τ ∧ κη − s)σ(s)dRH
Q(s)ds. (3.12)

Taking η → ∞, we have

ϑ(τ) = R(τ)φ(0) +

∫ τ

0

R(τ − s)F (s, ϑ(s))ds+

∫ τ

0

R(τ − s)G(s, ϑ(s))dW (s) +

∫ τ

0

R(τ − s)σ(s)dRH
Q(s)ds,

which completes the proof. □

4 Example

This section presents an example for illustrating Theorem 3.4. For that, we consider the following stochastic
partial functional integrodifferential equation:

∂

∂τ
β(τ, ξ) =

∂2

∂ξ2
β(τ, ξ) +

∫ τ

0

Λ(τ − s)
∂2

∂ξ2
β(s, ξ)ds+ λ(τ)F1 (β(τ − r, ξ))β(τ − r, ξ)dτ + γ1β(τ − r, ξ)dW (t)

+σ(τ)dRH(τ), r > 0, ξ ∈ [0, π],
β(τ, 0) = β(τ, π) = 0, τ ∈ [0, b],
β(0, ξ) = β0(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π],

(4.1)
where, Λ : R+ → R is a continuous function, γ1 > 0 W (τ) denotes a R-valued Wiener process, RH a Rosenblatt
process, λ2(τ) > 0 is a locally integrable function, F1 : R+ → R is a bounded continuous functions, Λ ∈ C 1(R+,R)
and β0 : [0, π] → R is a given function such that β0(·) ∈ L2(0, π), is F0-measurable and satisfies E ∥β0∥2 <∞.

Let V = L2(0, π) with the norm ∥ · ∥ and en :=
√

2
π sin(nx), (n = 1, 2, 3, . . .) denote a complete orthonormal basis

in V.We assume that there exists the product ϑ1ϑ2 ∈ V for ϑ1, ϑ2 ∈ V.We note that there exists an M ≥ 1 such
that |ϑ1ϑ2| ≤ M ∥ϑ1∥ ∥ϑ2∥. Let W (τ) :=

∑∞
n=1

√
λnδn(τ)en (λn > 0), where δn(τ) are one-dimensional standard

Brownian motion mutually independent of an usual complete probability space (Ω,F , {Fτ}τ≥0,P).

Define A : D(A ) ⊂ V → V by A = ∂2

∂z2 , with domain D(A ) = H2(0, π) ∩H1
0 (0, π). Then

A ĥ = −
∞∑

n=1

n2 < ĥ, en > en, ĥ ∈ D(A ),

where en, n = 1, 2, 3, · · · , is also the orthonormal set of eigenvectors of A . It is well-known that A is the infinitesimal
generator of a strongly continuous semigroup S(τ) on V, given by

S(τ)ĥ =

∞∑
n=1

e−n2τ < ĥ, en > en for ĥ ∈ V,

which is compact. Let B : D(A ) ⊂ V → V be the operator defined by

B(τ)(z̃) = Λ(τ)A z̃ for τ ≥ 0 and z̃ ∈ D(A ).

Let ϕ be as follows :

ϕ(x) =


0, x = 0,

cx
(
log 1

x

)
, 0 < x ≤ δ,

cδ
(
log 1

δ

)
, x > δ,

or

ϕ(x) =


0, x = 0,

cx
(
log 1

x

) 1
3 log log 1

x , 0 < x ≤ δ,

cδ
(
log 1

δ

) 1
3 log log 1

δ , x > δ,
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with c > 0 and 0 < δ < 1 is sufficiently small. In order to rewrite Eq. (4.1) in an abstract form in V, we introduce the
following notation {

X(τ) = β(τ, ξ) for τ ≥ 0 and ξ ∈ [0, π],
φ(θ)(ξ) = β0(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π].

Assume that:

1. |F1(z2)− F1(z1)|2 ≤ ϕ
(
|z2 − z1|2

)
, z1, z2 ∈ R.

2. There exists a constant p > 1 such that the function σ : [0,+∞) → L 0
2 satisfies the following∫ b

0

∥σ(s)∥2p
L 0

2
ds <∞.

For t ≥ 0, ξ ∈ [0, π] and ψ a D-valued function, define the operators F,G : [0, b]× D → V by

F (τ, ψ)(ξ) = λ(τ)F1(ψ(−r))(ξ)ψ(−r)(ξ), (4.2)

G(τ, ψ)(ξ) = λ1ψ(−r)(ξ). (4.3)

Then, for any φ ∈ D , equation (4.1) takes the following abstract form dX(τ) = [AX(τ) +

∫ τ

0

B(τ − s)X(s)ds]dτ + F (τ,Xτ )dτ +G(τ,Xτ )dW (τ) + σ(τ)dRH(τ)

X(0) = x0 ∈ H.
(4.4)

Moreover, if Λ is bounded and C 1-function such that Λ′ is bounded and uniformly continuous, then (H2) is satisfied
and hence, by Theorem 2.4, Eq. (2.4) has a resolvent operator (R(τ))τ≥0 on V. Since F1(ϑ) is a bounded function,

there exists B1 > 0 such that |F (ϑ)| ≤ B1 for any ϑ ∈ V. For any nonnegative real number r ∈ R+ we set

Φη(r) := 2M2η2ϕ(r), (4.5)

Ψ(r) :=
(
2M2B2

1 + γ21trace(Q)
)
r. (4.6)

We define ρ(τ) by

ρ(τ) :=

{
1 if λ(τ) ≤ 1,

λ2(τ) if λ(τ) > 1.

Then ρ(τ) is a locally integrable function. And we have that

|λ(τ)F1(ϑ)ϑ− λ(τ)F1(u)u|2 + |γ1ϑ− γ1u|2L0
2
≤ ρ(τ)

(
Φη

[
|ϑ− u|2

]
+Ψ

[
|ϑ− u|2

])
, ϑ, u ∈ V.

On the other hand, set
a :=

(
2M2B2

1 + γ21trace(Q)
)
.

Since ϕ is a concave function, it follows that ϕ(r) ≥ ϕ(1)r for 0 ≤ r < 1. Thus it holds that∫ +∞

0+

1

Φη(r) + Ψ(r)
dr =

∫ +∞

0+

1

2M2η2ϕ(r) + ar
dr

≥ ϕ(1)

(a+ 2M2η2ϕ(1))

∫ +∞

0+

1

ϕ(r)
dr

= ∞.

Thus by the example of Lemma 3 [[21], p.157] we have that (H5) holds. Therefore, the proof of the example is
complete by Theorem 3.4.
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5 Conclusion

Our article focuses on whether or not mild solutions to local non-Lipschitz stochastic integrodifferential equations
with Rosenblatt processes and infinite delays exist and whether or not these solutions are unique. The primary
findings of our study are deduced from various theoretical frameworks, including resolvent operator theory in the
sense of Grimmer and stochastic analysis. The approximate controllability of these equations will be the topic of our
next paper.

Appendix A

Proof . (Proof of uniqueness)
Let ϑ1, ϑ2 be two solutions of Equation (1.1). Then the uniqueness is obvious on the interval ]−∞, 0], and for τ ∈ [0, b]
by similar analysis of Equation(3.3), elementary inequality, Burkhölder-Davis-Gundy’s inequality and hypothesis (H4),
it is easy to obtain

E ∥ϑ2(s)− ϑ1(s)∥2 ≤ 2M2b(1 + C2)E
∫ s

0

Z
(
r, ∥ϑ2 − ϑ1∥2r

)
dr.

Then, by Jensen’s inequality, we have

E ∥ϑ2(s)− ϑ1(s)∥2τ = sup
−∞<s≤τ

E ∥ϑ2(s)− ϑ1(s)∥2 (5.1)

≤ ∆3

∫ τ

0

Z
(
s,E∥ϑ2 − ϑ1∥2s

)
ds,

which, with the aid of (H4)− b, gives

E ∥ϑ2(s)− ϑ1(s)∥2τ = 0, 0 ≤ τ ≤ b.

Therefore ϑ2(s) = ϑ1(s) for all 0 ≤ τ ≤ b. Hence the uniqueness is proved. □
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