Solving split equality monotone inclusion problem of maximal monotone mappings in Banach spaces

Getahun Bekele Wega
Department of Mathematics, Jimma University, P.O. Box 378, Jimma, Ethiopia

(Communicated by Oluwatosin Temitope Mewomo)

Abstract

A new iterative scheme for approximating a solution of the split equality monotone inclusion problem (SEMIP) of maximal monotone mappings in the setting of Banach spaces is introduced. Strong convergence of the sequence generated by the proposed scheme to a solution of the SEMIP is then derived without prior knowledge of operator norms of the linear operators involved. In addition, we give some applications of our method and provide numerical examples to illustrate the convergence of the proposed scheme. Our results generalize, improve and extend many results in the literature.

Keywords: Maximal monotone map, zero point, monotone map, split equality inclusion problem
2020 MSC: 47JO5, 47J25, 47H10, 49M27, 47H09, 90C25

1 Introduction

Let E be a real Banach space with its dual E^{*}. A mapping $S: E \rightarrow 2^{E^{*}}$ is is called monotone if

$$
\left\langle p^{*}-q^{*}, p-q\right\rangle \geq 0, \forall\left(p, p^{*}\right),\left(q, q^{*}\right) \in G p h(S)
$$

where $\operatorname{Gph}(S)=\left\{\left(p, p^{*}\right) \in E \times E^{*}: p^{*} \in S p\right\}$ is a graph of S. A monotone mapping is called maximal monotone provided that its graph is not properly contained in a graph of any other monotone mapping. The resolvent of maximal monotone mapping S denoted by $\operatorname{Res}{ }_{S}^{g}$, is defined as

$$
\operatorname{Res}_{S}^{g}(p):=(\nabla g+\gamma S)^{-1} \nabla g(p)
$$

where ∇g is the gradient of a convex function $g: E \rightarrow(\infty, \infty]$ satisfies certain conditions. This resolvent operator enjoys important properties such as single valued and Bregman firmly nonexpansive (see, [5] Prop. 3.8 (iv), pp. 604). Let $S: E \rightarrow 2^{E^{*}}$ be a monotone mapping. The problem of finding a point p^{*} in E such that

$$
\begin{equation*}
0 \in S p^{*}, \tag{1.1}
\end{equation*}
$$

is called monotone inclusion problem. This problem has been studied extensively by several authors (see, e.g., 88, 12, 13, 16, 18, 22, 32, 34, 35]). The solution set of the problem (1.1), above is denoted by $S^{-1}(0)$ and $S^{-1}(0)=F\left(\operatorname{Res}_{S}^{g}\right)$, where $F\left(\operatorname{Res} s_{S}^{g}\right)$ is the set of fixed points of $R e s_{S}^{g}$ and S is maximal monotone mapping. One of the generalization of

[^0]the problem 1.1 above is split equality monotone inclusion problem and formulated as the problem of finding p^{*} and q^{*} with the property:
\[

$$
\begin{equation*}
p^{*} \in C, q^{*} \in D, \text { such that } A p^{*}=B q^{*}, \tag{1.2}
\end{equation*}
$$

\]

where C and D are closed and convex subsets of H_{1} and H_{2}, respectively, $S: H_{1} \rightarrow H_{1}$ and $T: H_{2} \rightarrow H_{2}$ are nonlinear mappings and $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ are bounded linear operators. This problem was introduced by Moudafi 19 and has received much attention of researchers due to its applications in many disciplines (see, e.g., [1, 2]). Consequently, it has been studied by several authors in both Hilbert and Banach spaces (see, e.g., [10, 12, 14, 15, 19, 30, 36]).

In 2015, Gua et al. [14 established an iterative algorithm and proved strong convergence of a sequence proposed in their method to a solution of problem (1.2) above in Hilbert spaces. In 2020, Wega and Zegeye 30 introduced an iterative scheme for problem 1.2 and proved a sequence proposed in their algorithm convergence strongly to a solution of the problem for the sum of two maximal monotone mappings in Hilbert spaces. Recently, in 2021 Jolaoso et al. [15] constructed an scheme for problem (1.2) and proved strong convergence of a sequence proposed in their scheme to a solution of the problem for maximal monotone mappings in p-uniformly convex and uniformly smooth Banach spaces.

We note that if in problem (1.2), we take $H_{2}=H_{3}$ and $B=I$, where I is identity map on H_{2}, the SEMIP reduced to split monotone inclusion problem (SMIP). The SMIP mathematically formulated as as the problem of finding p^{*} with the property:

$$
\begin{equation*}
p^{*} \in C \text { such that } q^{*}=A p^{*} \in D \tag{1.3}
\end{equation*}
$$

Now, we consider the following split equality monotone inclusion problem (SEMIP). Let $S: E_{1} \rightarrow 2^{E_{1}^{*}}$ and $T: E_{2} \rightarrow 2^{E^{*}}$ be maximal monotone mappings, where E_{1}, E_{2} and E_{3} are Banach spaces with their dual spaces E_{1}^{*}, E_{2}^{*} and E_{3}^{*}, respectively. Let $A: E_{1} \rightarrow E_{3}$ and $B: E_{2} \rightarrow E_{3}$ be bounded linear operators with their adjoints $A: E_{3}^{*} \rightarrow E_{1}$ and $B: E_{3}^{*} \rightarrow E_{2}$, respectively. The SEMIP in the setting of can be formulated as the problem of finding $\left(p^{*}, q^{*}\right) \in E_{1} \times E_{2}$ such that

$$
\begin{equation*}
p^{*} \in S^{-1}(0) \text { and } q^{*} \in T^{-1}(0) \text { such that } A p^{*}=B q^{*} \tag{1.4}
\end{equation*}
$$

Question Can we introduce an iterative algorithm which converges strongly to a solution of SEMIP for maximal monotone mappings in real reflexive Banach spaces?

Inspired and motivated by the research works of Moudafi [19, Gua et al. [14, Wega and Zegeye [30] and Jolaoso et al. [15] it is our purpose in this paper to introduce and study new iterative scheme for solving SEMIP for maximal monotone mappings in the setting of Banach spaces. Strong convergence of the sequence generated by the proposed scheme to a solution of the SEMIP for maximal monotone mappings is proved without prior knowledge of operator norms of the linear operators involved. Some applications of our main result is also provided. Numerical examples are given to illustrate the convergency of the sequence generated by the proposed scheme. Our main result provide an affirmative answer to our concern. Our result generalize, improve and extend many research works in the literature.

2 Preliminaries

In this section, we recall some useful results which will be used in the sequel. Hereafter, in this paper let E be a real reflexive Banach space with its dual space E^{*}, C be a nonempty, convex and closed subset of E and let \mathcal{G} be a family of proper, lower semi-continuous and convex functions.

Let g be an element of \mathcal{G}. The domain of g, dom g, is given by dom $g=\{p \in E: g(p)<\infty\}$, the Fenchel conjugate of g at $p^{*}, g^{*}\left(p^{*}\right)$, is given by $g^{*}\left(p^{*}\right)=\sup \left\{\left\langle p^{*}, p\right\rangle-g(p): p \in E\right.$ and $\left.p^{*} \in E^{*}\right\}$, the subdifferential of g at $p, \partial g(p)$, is given by $\partial g(p)=\left\{p^{*} \in E^{*}: g(q) \geq g(p)+\left\langle p^{*}, q-p\right\rangle, \forall p \in E\right\}$, the right hand derivative of g at u in the direction of $q, g^{\prime}(p, q)$, is given by

$$
\begin{equation*}
g^{\prime}(p, q)=\lim _{s \rightarrow 0_{+}} \frac{g(p+s q)-g(p)}{s} \tag{2.1}
\end{equation*}
$$

and the gradient of g, at p is a linear function, ∇g, is given by $\langle\nabla g(p), q\rangle=g^{\prime}(p, q)$.
Definition 2.1. The function g is called:
(i) Gâteaux differentiable at p element of E if the limit in (2.1) exists for any q in E as $s \rightarrow 0$.
(ii) Gâteaux differentiable if it is Gâteaux differentiable at every element u in int domg.
(iii) uniformity Fréchet differentiable on C if the limit as $s \rightarrow 0$ in attained uniformly for $p \in C$ and $\|q\|=1$.
(iv) Strongly coercive if $\lim _{\|p\| \rightarrow \infty} \frac{g(p)}{\|p\|}=\infty$.

Definition 2.2. Gâteaux differentiable function g is called Legendre if g^{*} is Gâteaux differentiable, both int dom g and int dom g^{*} are nonempty, $\operatorname{dom} \nabla g=i n t \operatorname{dom} g$ and $\operatorname{dom} \nabla g^{*}=i n t d o m g^{*}$.

Remark 2.3. $\nabla g^{*}=(\nabla g)^{-1}$ (see, [9]) provided that g is Legendre function and the gradient of Legendre function g defined by $g(u)=\frac{\|u\|^{p}}{p}$ is coincides with the generalized duality map, that is, $\nabla g=J_{p}$, where $(1<p, q<\infty)$ and q is a conjugate of p (see, e.g., [4]).

Definition 2.4. The Bregman distance with respect to g (see, e.g., [11]) is a function $D_{g}: \operatorname{dom} g \times$ int dom $g \rightarrow[0, \infty)$ defined by

$$
\begin{equation*}
D_{g}(q, p)=g(q)-g(p)-\langle\nabla g(p), q-p\rangle \tag{2.2}
\end{equation*}
$$

where g is Gâteaux differentiable. The Bregman projection with respect to g at u in int dom g onto C is denoted by $P_{C}^{g} p$ defined by $D_{g}\left(P_{C}^{g} p, p\right)=\inf \left\{D_{g}(q, p): \forall q \in C\right\}$.

Remark 2.5. We note that the Bregiman distance is not distance in the usual sense. However, it has the following properties (see, e.g., [7, 25, 26]):
(i) The three point identity:

$$
\begin{equation*}
D_{g}(p, q)+D_{g}(q, w)-D_{g}(p, w)=\langle\nabla g(w)-\nabla g(q), p-q\rangle \tag{2.3}
\end{equation*}
$$

for all $q \in \operatorname{dom} g$ and $p, w \in$ int dom g.
(ii) The four point identity:

$$
\begin{equation*}
D_{g}(q, p)+D_{g}(q, z)-D_{g}(w, p)+D_{g}(w, z)-\langle\nabla g(z)-\nabla g(p), q-w\rangle \tag{2.4}
\end{equation*}
$$

for all $q, w \in \operatorname{dom} g$ and $p, z \in$ int dom g.
Lemma 2.6. 6] Let g be a totally convex and Gáteaux differentiable on int domg. Let $p \in$ int domg. Then, the P_{c}^{g} from E onto C is a unique point with the following properties:
(i) $\left\langle\nabla g(p)-\nabla g(z), q-z \leq 0\right.$ if and only if $z=P_{C}^{g} p, \forall q \in C$.
(ii) $D_{g}(p, q) \geq D_{g}\left(q, P_{C}^{g} p\right)+D_{g}\left(P_{C}^{g} p, p\right), \forall q \in C$.

Let g be a Legendre and $V_{g}: E \times E^{*} \rightarrow[0, \infty)$ be a function defined by

$$
\begin{equation*}
V_{g}\left(p, p^{*}\right)=g(p)-\left\langle p^{*}, p\right\rangle+\nabla g^{*}\left(q^{*}\right), \forall p \in E, p^{*} \in E^{*} \tag{2.5}
\end{equation*}
$$

Then, V_{g} is nonnegative which satisfies (see, e.g., [28])

$$
\begin{equation*}
V_{g}\left(p, p^{*}\right)=D_{g}\left(p, \nabla g^{*}\left(p^{*}\right)\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{g}\left(p, p^{*}\right) \leq V_{g}\left(p, p^{*}+q^{*}\right)-\left\langle q^{*}, \nabla g^{*}\left(p^{*}\right)-p\right\rangle \tag{2.7}
\end{equation*}
$$

for all $p \in E$ and $p^{*} \in E^{*}$.
Lemma 2.7. 23] If g is lower, convex, semi-convex proper function, then g^{*} is a weak ${ }^{*}$ lower semi-convex and proper function and hence, we have

$$
D_{g}\left(w, \nabla g^{*}\left(\sum_{i=1}^{N} s_{i} \nabla g\left(p_{i}\right)\right)\right) \leq \sum_{i=1}^{N} s_{i} D_{g}\left(w, p_{i}\right)
$$

for all w in E, where $\left\{p_{i}\right\} \subseteq E$ and $\left\{s_{i}\right\} \subseteq(0,1)$ with $\sum_{i=1}^{N} s_{i}=1$.
Definition 2.8. A Gâteaux differentiable function g is called
(i) uniformly convex function (see, [33), provided that for all p and q dom g and $s \in[0,1]$, we have

$$
\begin{equation*}
g(s p+(1-s) q) \leq s g(p)+(1-s) g(p)-(1-s) s \phi(\|p-q\|) \tag{2.8}
\end{equation*}
$$

where ϕ is a function that is increasing and vanishes only at zero.
(ii) strongly convex with constant $\alpha>0$ for all u and q elements of domg (see, 21)

$$
\begin{equation*}
\langle\nabla g(p)-\nabla g(p), p-q\rangle \geq \alpha\|p-q\|^{2} . \tag{2.9}
\end{equation*}
$$

(iii) totaly convex if $\nu_{g}(p, s)=\inf _{\{p \in E:\|p-q\|=s\}} D_{g}(q, p)>0$, for all $p \in E$ and $s>0$.

We note that g is uniformly convex if and only if g is totally convex on bounded subsets of E (see, 6], Theorem 2.10 p. 9). Moreover, the class of uniformly convex function functions contains the class of strongly convex functions.

Definition 2.9. A mapping $T: C \rightarrow E$ with $\widehat{F}(T) \neq \emptyset$ is said to be
(i) Bregman strongly nonexpansive [25] with respect to $\widehat{F}(T)$, if

$$
D_{g}\left(p^{*}, T p\right) \leq D_{g}\left(p^{*}, p\right), \forall p \in C, p^{*} \in \widehat{F}(T)
$$

and, whenever $\left\{p_{n}\right\} \subseteq C$ is bounded $p^{*} \in \widehat{F}(T)$, and

$$
\lim _{n \rightarrow \infty}\left(D_{g}\left(p^{*}, p_{n}\right)-D_{g}\left(p^{*}, T p_{n}\right)\right)=0
$$

it follow that $\lim _{n \rightarrow \infty} D_{g}\left(p_{n}, T p_{n}\right)=0$.
(ii) Bregman firmly nonexpansive [24] if for each $p, q \in C$

$$
\langle\nabla g(T p)-\nabla g(T q), T p-T q\rangle \leq\langle\nabla g(p)-\nabla g(q), T p-T q\rangle .
$$

We remark that if T is a Bregman firmly nonexpansive map and g is a Legender function which is bounded uniformly Frèchet differentiable and totaly convex on bounded subset of E, then it is knowen that $F(T)=\widehat{F}(T)$ and $F(T)$ is closed and convex (see, [24]) and hence every Bregman firmly nonexpansive map is Bregman strongly nonexpansive with respect to $F(T)=\widehat{F}(T)$.

3 Main results

Hereafter, let E_{1}, E_{2} and E_{3} be real reflexive Banach spaces with its dual E_{1}^{*}, E_{2}^{*} and E_{3}^{*}, respectively. In the sequel, we shall make the following conditions.

Conditions:

(C1) Let $g_{1}: E_{1} \rightarrow(-\infty,+\infty] \in \mathcal{G}\left(E_{1}\right), g_{2}: E_{2} \rightarrow(-\infty,+\infty] \in \mathcal{G}\left(E_{2}\right)$ and $g_{3}: E_{3} \rightarrow(-\infty,+\infty] \in \mathcal{G}\left(E_{3}\right)$ be bounded, strongly coercive, uniformly Fréchet differentiable Legendre function on bounded subsets of E_{1}, E_{2} and E_{3}, respectively and strongly convex with constants α_{1}, α_{2} and α_{3}, respectively, and $\alpha=\min \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$.
(C2) Let $S: E_{1} \rightarrow 2^{E_{1}^{*}}$ and $T: E_{2} \rightarrow 2^{E^{*}}$ be maximal monotone mappings with $\operatorname{Res}_{S}^{g_{1}}:=\left(\nabla g_{1}+\lambda S\right)^{-1} \nabla g_{1}$ and $\operatorname{Res}_{T}^{g_{2}}:=\left(\nabla g_{2}+\lambda T\right)^{-1} \nabla g_{2}$, respectively, where $\lambda>0$.
(C3) Let $A: E_{1} \rightarrow E_{3}$ and $B: E_{2} \rightarrow E_{3}$ be bounded linear operators with adjoints $A: E_{3}^{*} \rightarrow E_{1}$ and $B: E_{3}^{*} \rightarrow E_{2}$, respectively.
(C4) Let $\Omega=\left\{(p, q): p \in S^{-1}(0)\right.$ and $q \in T^{-1}(0)$ such that $\left.A p=B q\right\} \neq \emptyset$.
(C5) Let $\left\{\alpha_{n}\right\} \subset(0, \epsilon) \subset(0,1)$, for some constant $\epsilon>0$, be such that $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\sum_{n=1}^{\infty} \alpha_{n}=\infty$.
(C6) Let $0<\mu \leq \gamma_{n} \leq \frac{\alpha^{2}\left\|A p_{n}-B q_{n}\right\|^{2}}{2\left[\left\|A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\|^{2}+\left\|B^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\|^{2}\right]}$ for $n \in \Upsilon=\left\{n \in \mathbb{N}: A p_{n}-B q_{n} \neq 0\right\}$, otherwise $\gamma_{n}=\gamma>0$.

Theorem 3.1. Suppose conditions (C1)-(C6) hold. For any $\left(p_{0}, q_{0}\right),(p, q) \in E_{1} \times E_{2}$, define an iterative algorithm by

$$
\left\{\begin{array}{l}
x_{n}=\operatorname{Res}_{S}^{g_{1}}\left(\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right]\right), \tag{3.1}\\
y_{n}=\operatorname{Res}_{T}^{g_{2}}\left(\nabla g_{2}^{*}\left[\nabla g_{2} q_{n}-\gamma_{n} B^{*}\left(\nabla g_{3} B q_{n}-\nabla g_{3} A p_{n}\right)\right]\right), \\
p_{n+1}=\nabla g_{1}^{*}\left(\alpha_{n} \nabla g_{1} p+\left(1-\alpha_{n}\right) \nabla g_{1} x_{n}\right), \\
q_{n+1}=\nabla g_{2}^{*}\left(\alpha_{n} \nabla g_{2} q+\left(1-\alpha_{n}\right) \nabla g_{2} y_{n}\right) .
\end{array}\right.
$$

Then, the sequence generated by Algorithm 3.1 is bounded in $E_{1} \times E_{2}$.

Proof. Let $\left(p^{*}, q^{*}\right) \in \Omega$. Then, $p^{*} \in S^{-1}(0), q^{*} \in T^{-1}(0)$ and $A p^{*}=B q^{*}$. Hence, from 3.1 and Lemma 2.7. we get

$$
\begin{align*}
D_{g_{1}}\left(p^{*}, p_{n+1}\right) & =D_{g_{1}}\left(p^{*}, \nabla g_{1}^{*}\left(\alpha_{n} \nabla g_{1} p+\left(1-\alpha_{n}\right) \nabla g_{1} x_{n}\right)\right) \\
& \leq \alpha_{n} D_{g_{1}}\left(p^{*}, p\right)+\left(1-\alpha_{n}\right) D_{g_{1}}\left(p^{*}, x_{n}\right) . \tag{3.2}
\end{align*}
$$

Similarly, we get

$$
\begin{align*}
D_{g_{2}}\left(q^{*}, q_{n+1}\right) & =D_{g_{2}}\left(q^{*}, \nabla g_{2}^{*}\left(\alpha_{n} \nabla g_{2} q+\left(1-\alpha_{n}\right) \nabla g_{2} y_{n}\right)\right) \\
& \leq \alpha_{n} D_{g_{2}}\left(q^{*}, q\right)+\left(1-\alpha_{n}\right) D_{g_{2}}\left(q^{*}, y_{n}\right) . \tag{3.3}
\end{align*}
$$

Now, denote $a_{n}=\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right]$ and
$b_{n}=\nabla g_{2}^{*}\left[\nabla g_{2} q_{n}-\gamma_{n} B^{*}\left(\nabla g_{3} B q_{n}-\nabla g_{3} A p_{n}\right)\right]$. Then, from Lemma 2.6 and (2.6), we obtain

$$
\begin{align*}
D_{g_{1}}\left(p^{*}, x_{n}\right) & =D_{g_{1}}\left(p^{*}, \operatorname{Res}_{S}^{g_{1}}\left(\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right]\right)\right. \\
& \leq V_{g_{1}}\left(p^{*}, \nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right) \\
& \leq D_{g_{1}}\left(p^{*}, p_{n}\right)-\gamma_{n}\left\langle A a_{n}-A p^{*}, \nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right\rangle . \tag{3.4}
\end{align*}
$$

Similarly, we get that

$$
\begin{equation*}
D_{g_{2}}\left(q^{*}, y_{n}\right) \leq D_{g_{2}}\left(q^{*}, q_{n}\right)-\gamma_{n}\left\langle B b_{n}-B q^{*}, \nabla g_{3} B q_{n}-\nabla g_{3} A p_{n}\right\rangle . \tag{3.5}
\end{equation*}
$$

Now, from (3.2) and (3.4), we obtain

$$
\begin{align*}
D_{g_{1}}\left(p^{*}, p_{n+1}\right) \leq & \alpha_{n} D_{g_{1}}\left(p^{*}, p\right)+\left(1-\alpha_{n}\right) \alpha_{n} D_{g_{1}}\left(p^{*}, x_{n}\right) \\
\leq & \alpha_{n} D_{g_{1}}\left(p^{*}, p\right)+\left(1-\alpha_{n}\right) D_{g_{1}}\left(p^{*}, p_{n}\right) \\
& -\left(1-\alpha_{n}\right) \gamma_{n}\left\langle A a_{n}-A p^{*}, \nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right\rangle \tag{3.6}
\end{align*}
$$

Similarly, from (3.3) and (3.5), we get

$$
\begin{equation*}
D_{g_{2}}\left(q^{*}, q_{n+1}\right) \leq \alpha_{n} D_{g_{2}}\left(q^{*}, q\right)+\left(1-\alpha_{n}\right) D_{g_{2}}\left(q^{*}, q_{n}\right)-\left(1-\alpha_{n}\right) \gamma_{n}\left\langle B b_{n}-B q^{*}, \nabla g_{3} B q_{n}-\nabla g_{3} A p_{n}\right\rangle \tag{3.7}
\end{equation*}
$$

Denote $\Gamma_{n}=D_{g_{1}}\left(p^{*}, u_{n}\right)+D_{g_{2}}\left(q^{*}, v_{n}\right)$ and $\Gamma=D_{g_{1}}\left(p^{*}, p\right)+D_{g_{2}}\left(q^{*}, q\right)$. Then by adding inequalities (3.6) and (3.7), we get

$$
\begin{align*}
\Gamma_{n+1} & \leq \alpha_{n} \Gamma+\left(1-\alpha_{n}\right) \Gamma_{n}-\left(1-\alpha_{n}\right) \gamma_{n}\left\langle A a_{n}-A p^{*}+B q^{*}-B b_{n}, \nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right\rangle \\
& =\alpha_{n} \Gamma+\left(1-\alpha_{n}\right) \Gamma_{n}-\left(1-\alpha_{n}\right) \gamma_{n}\left\langle A a_{n}-B b_{n}, \nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right\rangle \tag{3.8}
\end{align*}
$$

Observe that,

$$
\begin{align*}
-\gamma_{n}\left\langle A a_{n}-B b_{n}, \nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right\rangle= & -\gamma_{n}\left\langle A p_{n}-B q_{n}, \nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right\rangle-\gamma_{n}\left\langle a_{n}-p_{n}, A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\rangle \\
& -\gamma_{n}\left\langle q_{n}-b_{n}, B^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\rangle \\
\leq & -\alpha\left\|A p_{n}-B q_{n}\right\|^{2}+\left\|a_{n}-p_{n}\right\|\left\|A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\| \\
& +\left\|b_{n}-q_{n}\right\|\left\|B^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\| \tag{3.9}
\end{align*}
$$

Moreover, from definitions of g_{1} and a_{n}, we obtain

$$
\begin{align*}
\left\|p_{n}-a_{n}\right\| & =\left\|\nabla g_{1}^{*}\left(\nabla g_{1} p_{n}\right)-\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right]\right\| \\
& \leq \frac{\gamma_{n}}{\alpha}\left\|A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\| . \tag{3.10}
\end{align*}
$$

Similarly, from definitions of g_{2} and b_{n}, we get

$$
\begin{equation*}
\left\|q_{n}-b_{n}\right\| \leq \frac{\gamma_{n}}{\alpha}\left\|B^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\| \tag{3.11}
\end{equation*}
$$

Hence, from 3.9, 3.10 and 3.11, we get

$$
\begin{align*}
-\gamma_{n}\left\langle A a_{n}-B b_{n}, \nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right\rangle \leq & -\gamma_{n} \alpha\left\|A p_{n}-B q_{n}\right\|^{2}+\frac{\gamma_{n}^{2}}{\alpha}\left\|A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\|^{2} \\
& +\frac{\gamma_{n}^{2}}{\alpha}\left\|B^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\|^{2} \\
\leq & -\frac{\mu \alpha}{2}\left\|A p_{n}-B q_{n}\right\|^{2}-\gamma_{n}\left[\frac{\alpha}{2}\left\|A p_{n}-B q_{n}\right\|^{2}\right. \\
& \left.-\frac{\gamma_{n}}{\alpha}\left(\left\|A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\|^{2}+\left\|B^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right\|^{2}\right)\right] \\
\leq & -\frac{\mu \alpha}{2}\left\|A p_{n}-B q_{n}\right\|^{2} . \tag{3.12}
\end{align*}
$$

Finally, from (3.8) and (3.12), we get

$$
\begin{align*}
\Gamma_{n+1} & \leq \alpha_{n} \Gamma+\left(1-\alpha_{n}\right) \Gamma_{n}-\left(1-\alpha_{n}\right) \frac{\mu \alpha}{2}\left\|A p_{n}-B q_{n}\right\|^{2} \tag{3.13}\\
& \leq \alpha_{n} \Gamma+\left(1-\alpha_{n}\right) \Gamma_{n} \tag{3.14}
\end{align*}
$$

and hence by induction we get

$$
\begin{equation*}
\Gamma_{n} \leq \max \left\{\Gamma_{0}, \Gamma\right\} \tag{3.15}
\end{equation*}
$$

Hence, the sequence $\left\{\Gamma_{n}\right\}$ is bounded. Thus, by Lemma 7 in [29], $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ are bounded and hence the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{S x_{n}\right\},\left\{T y_{n}\right\}$ are bounded.

Theorem 3.2. Suppose conditions (C1)-(C6) hold. For any $\left(p_{0}, q_{0}\right),(p, q) \in E_{1} \times E_{2}$, define an iterative algorithm by

$$
\left\{\begin{array}{l}
x_{n}=\operatorname{Res}_{S}^{g_{1}}\left(\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right]\right), \tag{3.16}\\
y_{n}=\operatorname{Res}_{T}^{g_{2}}\left(\nabla g_{2}^{*}\left[\nabla g_{2} q_{n}-\gamma_{n} B^{*}\left(\nabla g_{3} B q_{n}-\nabla g_{3} A p_{n}\right)\right]\right), \\
p_{n+1}=\nabla g_{1}^{*}\left(\alpha_{n} \nabla g_{1} p+\left(1-\alpha_{n}\right) \nabla g_{1} x_{n}\right), \\
q_{n+1}=\nabla g_{2}^{*}\left(\alpha_{n} \nabla g_{2} q+\left(1-\alpha_{n}\right) \nabla g_{2} y_{n}\right) .
\end{array}\right.
$$

Then, the sequence generated by Algorithm 3.16 converges strongly to an element $\left(p^{*}, q^{*}\right)=P_{\Omega}^{g}(p, q)$.
Proof . Let $\left(p^{*}, q^{*}\right) \in \Omega$ such that $\left(p^{*}, q^{*}\right)=P_{\Omega}^{g}(p, q)$. From Theorem 3.1. we have that the sequence $\left\{\left(p_{n}, q_{n}\right)\right\}$ is bounded. Then, using the same techniques of Theorem 2 of [34], we obtain

$$
D_{g_{1}}\left(p^{*}, p_{n+1}\right) \leq\left(1-\alpha_{n}\right) D_{g_{1}}\left(p^{*}, p_{n}\right)+\alpha_{n}\left\|p_{n}-p_{n+1}\right\|\left\|\nabla g_{1} p-\nabla g_{1} p^{*}\right\|+\alpha_{n}\left\langle\nabla g_{1} p-\nabla g_{1} p^{*}, p_{n}-p^{*}(3\right.
$$

and

$$
\begin{equation*}
D_{g_{2}}\left(q^{*}, q_{n+1}\right) \leq\left(1-\alpha_{n}\right) D_{g_{2}}\left(q^{*}, q_{n}\right)+\alpha_{n}\left\|q_{n}-q_{n+1}\right\|\left\|\nabla g_{2} q-\nabla g_{2} q^{*}\right\|+\alpha_{n}\left\langle\nabla g_{2} q-\nabla g_{2} q^{*}, q_{n}-q^{*}\right\rangle . \tag{.3.18}
\end{equation*}
$$

Thus, by adding inequalities (3.17) and (3.18), we obtain

$$
\begin{align*}
\Gamma_{n+1} \leq & \left(1-\alpha_{n}\right) \Gamma_{n}+\alpha_{n}\left\|q_{n}-p_{n+1}\right\|\left\|\nabla g_{1} p-\nabla g_{1} p^{*}\right\|+\alpha_{n}\left\|q_{n}-q_{n+1}\right\|\left\|\nabla g_{2} q-\nabla g_{2} q^{*}\right\| \\
& +\alpha_{n}\left\langle\nabla g_{1} p-\nabla g_{1} p^{*}, p_{n}-p^{*}\right\rangle+\alpha_{n}\left\langle\nabla g_{2} q-\nabla g_{2} q^{*}, v_{n}-q^{*}\right\rangle, \tag{3.19}
\end{align*}
$$

where $\Gamma_{n}=D_{g_{1}}\left(p^{*}, p_{n}\right)+D_{g_{2}}\left(q^{*}, q_{n}\right)$. Now, to complete our proof we consider the following two cases.
Case 1. Suppose there exists $n_{0} \in \mathbb{N}$ such that the sequence of real numbers Γ_{n} is decreasing for all $n \geq n_{0}$. Thus, the sequence Γ_{n} is convergence and hence $\Gamma_{n}-\Gamma_{n+1} \rightarrow 0$ as $n \rightarrow \infty$. Hence, from (3.13) and the conditions on the sequence $\left\{\alpha_{n}\right\}$, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|A p_{n}-B q_{n}\right\|=0 \tag{3.20}
\end{equation*}
$$

and the fact that ∇g_{1}^{*} is uniformly continuous on bounded subset of E_{1}^{*} (see, 33]) yields

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|p_{n+1}-x_{n}\right\|=0 \tag{3.21}
\end{equation*}
$$

Similarly, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|q_{n+1}-y_{n}\right\|=0 \tag{3.22}
\end{equation*}
$$

In addition, from Lemma 2.6, we obtain

$$
\begin{align*}
D_{g_{1}}\left(p_{n}, x_{n}\right) & =D_{g_{1}}\left(p_{n}, \operatorname{Res}_{S}^{g_{1}}\left(\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right]\right)\right. \\
& \leq V_{g_{1}}\left(p_{n}, \nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right) \\
& \leq V_{g_{1}}\left(p_{n}, \nabla g_{1} p_{n}\right)-\left\langle\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right), \nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right]-p_{n}\right\rangle \\
& \leq D_{g_{1}}\left(p_{n}, p_{n}\right)+\frac{\gamma_{n}^{2}}{\alpha}\|A\|^{2}\left\|A p_{n}-B q_{n}\right\|^{2} . \tag{3.23}
\end{align*}
$$

Thus, from 3.20 and 3.23), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} D_{g_{1}}\left(p_{n}, x_{n}\right)=0 \tag{3.24}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|p_{n}-x_{n}\right\|=0 \tag{3.25}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|q_{n}-y_{n}\right\|=0 \tag{3.26}
\end{equation*}
$$

Consequently, from (3.21) and 3.25, we get

$$
\begin{equation*}
\left\|p_{n+1}-p_{n}\right\| \leq\left\|p_{n+1}-x_{n}\right\|+\left\|x_{n}-p_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.27}
\end{equation*}
$$

Similarly, from 3.22 and 3.26, we get

$$
\begin{equation*}
\left\|q_{n+1}-q_{n}\right\| \leq\left\|q_{n+1}-y_{n}\right\|+\left\|y_{n}-q_{n}\right\| \rightarrow 0 \text { as } n \rightarrow \infty \tag{3.28}
\end{equation*}
$$

Denote $a_{n}=\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right]$ and $b_{n}=\nabla g_{2}^{*}\left[\nabla g_{2} q_{n}-\gamma_{n} B^{*}\left(\nabla g_{3} B q_{n}-\nabla g_{3} A p_{n}\right)\right]$. Now, since the sequence $\left\{\left(p_{n}, q_{n}\right)\right\}$ is bounded in $E_{1} \times E_{2}$, there exists $(\hat{p}, \hat{q}) \in E_{1} \times E_{2}$ and a subsequence $\left\{\left(p_{n_{k}}, q_{n_{k}}\right)\right\}$ of $\left(p_{n}, q_{n}\right)$ such that $\left\{\left(p_{n_{k}}, q_{n_{k}}\right)\right\} \rightharpoonup(\hat{p}, \hat{q})$ and

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left[\left\langle p_{n}-p^{*}, \nabla g_{1} p-\nabla g_{1} p^{*}\right\rangle+\left\langle q_{n}-p^{*}, \nabla g_{2} q-\nabla g_{2} q^{*}\right\rangle\right] \\
& =\lim _{k \rightarrow \infty}\left[\left\langle p_{n_{k}}-p^{*}, \nabla g_{1} p-\nabla g_{1} p^{*}\right\rangle+\left\langle q_{n_{k}}-q^{*}, \nabla g_{2} q-\nabla g_{2} q^{*}\right\rangle\right] . \tag{3.29}
\end{align*}
$$

It then follows that $p_{n_{k}} \rightharpoonup \hat{p}$ in E_{1} and $q_{n_{k}} \rightharpoonup \hat{q}$ in E_{1}. From (3.25) and (3.26) $x_{n_{k}} \rightharpoonup \hat{p}$ in E_{1} and $y_{n_{k}} \rightharpoonup \hat{q}$ in E_{2}, respectively. Next, we prove that $(\hat{p}, \hat{q}) \in S^{-1}(0) \times T^{-1}(0)$ and $A \hat{p}=B \hat{q}$. Suppose $z \in S w$. For the fact that $x_{n_{k}}=\operatorname{Res}_{S}^{g_{1}} a_{n_{k}}$, for each $\gamma>0$, that is,

$$
\begin{equation*}
\nabla g_{1} a_{n_{k}} \in\left(\nabla g_{1}+\lambda S\right) x_{n_{k}} \tag{3.30}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\nabla g_{1} a_{n_{k}}-\nabla g_{1} x_{n_{k}} \in \lambda S x_{n_{k}} . \tag{3.31}
\end{equation*}
$$

From (3.31) and the fact S is maximal monotone map, we get

$$
\begin{equation*}
\left\langle z-\frac{\nabla g_{1} a_{n_{k}}-\nabla g_{1} x_{n_{k}}}{\lambda}, w-x_{n_{k}}\right\rangle \geq 0 \tag{3.32}
\end{equation*}
$$

this implies

$$
\begin{equation*}
\left\langle z, w-x_{n_{k}}\right\rangle \geq\left\langle\frac{\nabla g_{1} a_{n_{k}}-\nabla g_{1} x_{n_{k}}}{\lambda}, w-x_{n_{k}}\right\rangle . \tag{3.33}
\end{equation*}
$$

From equation (3.25) and the fact that ∇g_{1} is uniformly continuous on E_{1}, we get $\lim _{k \rightarrow \infty}\left\|\nabla g_{1} x_{n_{k}}-\nabla g_{1} a_{n_{k}}\right\|=0$. Hence, inequality (3.33) implies that $\langle w-\hat{p}, z\rangle \geq 0$ as $k \rightarrow \infty$. Thus, by maximality of S, we get $0 \in S \hat{p}$. Similarly, we get that $0 \in T \hat{q}$. Moreover, from 2.9 , we obtain

$$
\begin{align*}
\|A \hat{p}-B \hat{q}\|^{2} & \leq \frac{1}{\alpha}\left\langle A \hat{p}-B \hat{q}, \nabla g_{3} A \hat{p}-\nabla g_{3} B \hat{q}\right\rangle \\
& =\frac{1}{\alpha}\left\langle A p_{n_{k}}-B q_{n_{k}}+A \hat{p}-A p_{n_{k}}+B q_{n_{k}}-B \hat{q}, \nabla g_{3} A \hat{p}-\nabla g_{3} B \hat{q}\right\rangle \\
& \left.\leq \frac{1}{\alpha}\left\|A p_{n_{k}}-B q_{n_{k}}\right\| \| \nabla g_{3} A \hat{p}-\nabla g_{3} B \hat{q}\right\rangle \|+\frac{1}{\alpha}\left[\left\langle A \hat{p}-A p_{n_{k}}+B q_{n_{k}}-B \hat{q}, \nabla g_{3} A \hat{p}-\nabla g_{3} B \hat{q}\right\rangle\right] \tag{3.34}
\end{align*}
$$

From 3.34, 3.20, and the fact that $A p_{n_{k}} \rightharpoonup \hat{p}$ and $B q_{n_{k}} \rightharpoonup \hat{q}$, we conclude that $A \hat{p}=B \hat{q}$. Consequently, $(\hat{p}, \hat{q}) \in \Omega$. It follows from Lemma 2.6 (i), that

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left[\left\langle p_{n}-p^{*}, \nabla g_{1} p-\nabla g_{1} p^{*}\right\rangle+\left\langle q_{n}-p^{*}, \nabla g_{2} q-\nabla g_{2} q^{*}\right\rangle\right] \\
& =\lim _{k \rightarrow \infty}\left[\left\langle p_{n_{k}}-p^{*}, \nabla g_{1} p-\nabla g_{1} p^{*}\right\rangle+\left\langle q_{n_{k}}-q^{*}, \nabla g_{2} q-\nabla g_{2} q^{*}\right\rangle\right] \\
& =\left\langle\hat{p}-p^{*}, \nabla g_{1} p-\nabla g_{1} p^{*}\right\rangle+\left\langle\hat{q}-q^{*}, \nabla g_{2} q-\nabla g_{2} q^{*}\right\rangle \leq 0 . \tag{3.35}
\end{align*}
$$

Therefore, from (3.19, (3.27), 3.28, (3.35) and Lemma 2.5 of 31 p. 243, we conclude that $\Gamma_{n} \rightarrow 0$ as $n \rightarrow \infty$. Hence, by Lemma 2.4 of [20] p. 15, $p_{n} \rightarrow p^{*}$ and $q_{n} \rightarrow q^{*}$ as $n \rightarrow \infty$.

Case 2. Suppose that there exists a subsequence $\left\{n_{i}\right\}$ of $\{n\}$ such that

$$
\begin{equation*}
\Gamma_{n_{i}}<\Gamma_{n_{i}+1}, \forall i \in \mathbb{N} . \tag{3.36}
\end{equation*}
$$

Then, by Lemma 3.1 of [17] p. 904, there exists a nondecreasing sequence $\left\{l_{m}\right\}$ in the set of natural numbers such that $l_{m} \rightarrow \infty$ as $m \rightarrow \infty, \Gamma_{l_{m}} \leq \Gamma_{l_{m}+1}$ and $\Gamma_{m} \leq \Gamma_{l_{m}+1}$ for all m element of the set of natural numbers. Thus, from (3.13), we obtain

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|A p_{l_{m}}-B q_{l_{m}}\right\|=0 \tag{3.37}
\end{equation*}
$$

Moreover, following the methods in Case 1, we get

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|p_{l_{m}}-u_{m_{l}+1}\right\|=\lim _{m \rightarrow \infty}\left\|q_{l_{m}}-v_{m_{l}+1}\right\|=0 \tag{3.38}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left[\left\langle p_{l_{m}}-p^{*}, \nabla g_{1} p-\nabla g_{1} p^{*}\right\rangle+\left\langle q_{l_{m}}-p^{*}, \nabla g_{2} q-\nabla g_{2} q^{*}\right\rangle\right] \leq 0 \tag{3.39}
\end{equation*}
$$

In addition, from (3.17) and (3.36), we obtain

$$
\begin{align*}
\Gamma_{l_{m}} \leq & \left\|p_{l_{m}}-p_{l_{m}+1}\right\|\left\|\nabla g_{1} p-\nabla g_{1} p^{*}\right\|+\left\|q_{l_{m}}-q_{l_{m}+1}\right\|\left\|\nabla g_{2} q-\nabla g_{2} q^{*}\right\| \\
& +\left\langle\nabla g_{1} p-\nabla g_{1} p^{*}, p_{l_{m}}-p^{*}\right\rangle+\left\langle\nabla g_{2} q-\nabla g_{2} q^{*}, q_{l_{m}}-q^{*}\right\rangle . \tag{3.40}
\end{align*}
$$

Therefore, from (3.38, (3.39) and (3.40), we get $\lim _{m \rightarrow \infty} \Gamma_{l_{m}}=0$. But from inequality (3.13), we obtain that $\lim _{m \rightarrow \infty} \Gamma_{l_{m}+1}=0$ and hence the fact that $\Gamma_{m} \leq \Gamma_{l_{m}+1}$ implies $\lim _{m \rightarrow \infty} \Gamma_{m}=0$. Thus, by Lemma 2.4 of [20] p. 15 $p_{m} \rightarrow p^{*}$ and $q_{m} \rightarrow q^{*}$ as $m \rightarrow \infty$.

If in Theorem 3.2, we assume $E_{2}=E_{3}$ and $B=I$, then SEMIP reduces to SMIP for maximal monotone mappings and the method of proof of Theorem 3.2 provides the following corollary for approximating a solution of SMIP for maximal monotone mappings in real reflexive Banach spaces.

Corollary 3.3. Suppose conditions $(C 1),(C 2)$, and $(C 5)-(C 6)$ hold with $B=I$ and $E_{2}=E_{3}$. Let $\Omega=\left\{\left(p^{*}, q^{*}\right) \in\right.$ $E_{1} \times E_{2}: p^{*} \in S^{-1}(0)$ and $q^{*} \in T^{-1}(0)$ such that $\left.A p^{*}=q^{*}\right\} \neq \emptyset$. For any $\left(p_{0}, q_{0}\right),(p, q) \in E_{1} \times E_{2}$, define an iterative algorithm by

$$
\left\{\begin{array}{l}
x_{n}=\operatorname{Res}_{S}^{g_{1}}\left(\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} q_{n}\right)\right]\right), \tag{3.41}\\
y_{n}=\operatorname{Res}_{T}^{g_{2}}\left(\nabla g_{2}^{*}\left[\nabla g_{2} q_{n}-\gamma_{n}\left(\nabla g_{3} q_{n}-\nabla g_{3} A p_{n}\right)\right]\right), \\
p_{n+1}=\nabla g_{1}^{*}\left(\alpha_{n} \nabla g_{1} p+\left(1-\alpha_{n}\right) \nabla g_{1} x_{n}\right) \\
q_{n+1}=\nabla g_{2}^{*}\left(\alpha_{n} \nabla g_{2} q+\left(1-\alpha_{n}\right) \nabla g_{2} y_{n}\right) .
\end{array}\right.
$$

Then, the sequence generated by Algorithm 3.41 converges strongly to an element $\left(p^{*}, q^{*}\right)=P_{\Omega}^{g}(p, q)$.
If in Theorem [3.2, we assume $E_{1}=E_{2}=E_{3}$ and $A=I=B$, then SEMIP reduces to common zero point of maximal monotone mappings in real reflexive Banach spaces and the method of proof of Theorem 3.2 provides the following corollary for approximating a solution of common zero point of maximal monotone mappings in real reflexive Banach spaces.

Corollary 3.4. Suppose conditions (C1), (C2) and (C5) - (C6) hold with $E_{1}=E_{2}=E_{3}, A=I=B$ and $\Omega=$ $\left\{\left(p^{*}, q^{*}\right) \in E_{1} \times E_{2}: p^{*} \in S^{-1}(0)\right.$ and $q^{*} \in T^{-1}(0)$ such that $\left.p^{*}=q^{*}\right\} \neq \emptyset$. For any $\left(p_{0}, q_{0}\right),(p, q) \in E_{1} \times E_{2}$, define an iterative algorithm by

$$
\left\{\begin{array}{l}
x_{n}=\operatorname{Res}_{S}^{g_{1}}\left(\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n}\left(\nabla g_{3} p_{n}-\nabla g_{3} q_{n}\right)\right]\right), \tag{3.42}\\
y_{n}=\operatorname{Res}_{T}^{g_{2}}\left(\nabla g_{2}^{*}\left[\nabla g_{2} q_{n}-\gamma_{n}\left(\nabla g_{3} q_{n}-\nabla g_{3} p_{n}\right)\right]\right), \\
p_{n+1}=\nabla g_{1}^{*}\left(\alpha_{n} \nabla g_{1} p+\left(1-\alpha_{n}\right) \nabla g_{1} x_{n}\right) \\
q_{n+1}=\nabla g_{2}^{*}\left(\alpha_{n} \nabla g_{2} q+\left(1-\alpha_{n}\right) \nabla g_{2} y_{n}\right)
\end{array}\right.
$$

Then, the sequence generated by Algorithm 3.42 converges strongly to an element $\left(p^{*}, q^{*}\right)=P_{\Omega}^{g}(p, q)$.

4 Application to Minimization Problem

In this section, we apply our main result Theorem 3.2 to approximate a solution of SEMPP for convex functions in real reflexive Banach spaces. Let $f: E \rightarrow \mathbb{R} \in \mathcal{G}(E)$ and $k: E \rightarrow \mathbb{R}$ be a convex smooth function. We consider the problem of approximating $p^{*} \in E_{1}$ and $q^{*} \in E_{2}$ such that

$$
\begin{equation*}
f\left(p^{*}\right)=\min _{p \in E_{1}}\{f(p)\}, h\left(q^{*}\right)=\min _{q \in E_{2}}\{h(q)\} \text { and } A p^{*}=B q^{*} . \tag{4.1}
\end{equation*}
$$

This problem is equivalent, by Fermat's rule, to the problem of finding $p^{*} \in E_{1}$ and $q^{*} \in E_{2}$ such that

$$
\begin{equation*}
0 \in \partial f\left(p^{*}\right) 0 \in \nabla k\left(q^{*}\right) \text { and } A p^{*}=B q^{*} \tag{4.2}
\end{equation*}
$$

where ∂f is a subdifferential of f and ∇k is a gradient of k. We remark that both ∇k and ∂g are maximal monotone mappings (see, e.g., 3, 27]). One way of solving problem 4.2 is finding a solution of SEMIP for maximal monotone mappings of $S=\nabla \partial f$ and $T=\nabla k$ as zero points of S and T are minimum point of f and k, respectively. Thus, Algorithm 3.16 in Theorem 3.2 reduces to Algorithm 4.3 in Theorem 4.1 given below.

The method of proof of Theorem 3.2 provides the following theorem for approximating a solution of split equality minimum pint problem (SEMPP) for convex functions in real reflexive Banach spaces.

Theorem 4.1. Suppose conditions $(C 1)$ and $(C 3)-\left(C 6\right.$ hold. Let $f: E_{1} \rightarrow \mathbb{R} \in \mathcal{G}\left(E_{1}\right)$ and $h: E_{2} \rightarrow \mathbb{R}$ be a Gâteaux differentiable function such that $\Omega=\left\{\left(p^{*}, q^{*}\right) \in E_{1} \times E_{2}: f\left(p^{*}\right)=\min _{p \in E_{1}}\{f(p)\}, k\left(q^{*}\right)=\min _{q \in E}\{k(q)\}\right.$ and $\left.A p^{*}=B q^{*}\right\} \neq$ \emptyset. For any $\left(p_{0}, q_{0}\right),(p, q) \in E_{1} \times E_{2}$, define an iterative algorithm by

$$
\left\{\begin{array}{l}
x_{n}=\operatorname{Res}_{\partial f}^{g_{1}}\left(\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} B q_{n}\right)\right]\right), \tag{4.3}\\
y_{n}=\operatorname{Res}_{\nabla k}^{g_{2}}\left(\nabla g_{2}^{*}\left[\nabla g_{2} q_{n}-\gamma_{n} B^{*}\left(\nabla g_{3} B q_{n}-\nabla g_{3} A p_{n}\right)\right]\right), \\
p_{n+1}=\nabla g_{1}^{*}\left(\alpha_{n} \nabla g_{1} p+\left(1-\alpha_{n}\right) \nabla g_{1} x_{n}\right) \\
q_{n+1}=\nabla g_{2}^{*}\left(\alpha_{n} \nabla g_{2} q+\left(1-\alpha_{n}\right) \nabla g_{2} y_{n}\right)
\end{array}\right.
$$

Then, the sequence generated by Algorithm 4.3 converges strongly to an element $\left(p^{*}, q^{*}\right)=P_{\Omega}^{g}(p, q)$.
Proof . Consider $S=\partial f$ and $T=\nabla k$. Then, we get that S and T are maximal monotone mappings and zero points of S and T are minimum points of g and k, respectively. Thus, Theorem 3.2 provides the conclusion of Theorem 4.1.

If in Theorem4.1, we assume $E_{2}=E_{3}$ and $B=I$, then SEMIP reduced to split minimum point problem (SMPP) for convex functions and the method of proof of Theorem 4.1 provides the following Corollary for approximating a solution of SMPP for convex functions in real reflexive Banach spaces.

Corollary 4.2. Suppose conditions $(C 1)$ and $(C 3)-(C 6)$ hold with $B=I$ and $E_{2}=E_{3}$. Let $f: E_{1} \rightarrow \mathbb{R} \in \mathcal{G}\left(E_{1}\right)$ and $k: E_{2} \rightarrow \mathbb{R}$ be a Gâteaux differentiable function such that $\Omega=\left\{\left(p^{*}, q^{*}\right) \in E_{1} \times E_{2}: f\left(p^{*}\right)=\min _{p \in E_{1}}\{f(p)\}, k\left(q^{*}\right)=\right.$ $\min _{q \in E}\{k(q)\}$ and $\left.A p^{*}=q^{*}\right\} \neq \emptyset$. For any $\left(p_{0}, q_{0}\right),(p, q) \in E_{1} \times E_{2}$, define an iterative algorithm by

$$
\left\{\begin{array}{l}
x_{n}=\operatorname{Res}_{\partial f}^{g_{1}}\left(\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} q_{n}\right)\right]\right), \tag{4.4}\\
y_{n}=\operatorname{Res}_{\nabla k}^{g_{2}}\left(\nabla g_{2}^{*}\left[\nabla g_{2} q_{n}-\gamma_{n}\left(\nabla g_{3} q_{n}-\nabla g_{3} A p_{n}\right)\right]\right), \\
p_{n+1}=\nabla g_{1}^{*}\left(\alpha_{n} \nabla g_{1} p+\left(1-\alpha_{n}\right) \nabla g_{1} x_{n}\right), \\
q_{n+1}=\nabla g_{2}^{*}\left(\alpha_{n} \nabla g_{2} q+\left(1-\alpha_{n}\right) \nabla g_{2} y_{n}\right) .
\end{array}\right.
$$

Then, the sequence generated by Algorithm 4.4 converges strongly to an element $\left(p^{*}, q^{*}\right)=P_{\Omega}^{g}(p, q)$.
If in Theorem 4.1 we assume $E_{1}=E_{2}=E_{3}$ and $A=I=B$, then SEMIP reduced tho a common minimum point problem (MPP) for convex functions and the method of proof of Theorem 4.1 provides the following corollary for approximating a solution of common minimum point problem for convex functions in Banach spaces.

Corollary 4.3. Suppose conditions $(C 1)$ and $(C 3)-(C 6)$ hold with $E_{1}=E_{2}=E_{3}$ and $A=I=B$. Let $f: E_{1} \rightarrow$ $\mathbb{R} \in \mathcal{F}\left(E_{1}\right)$ and $k: E_{2} \rightarrow \mathbb{R}$ be a Gâteaux differentiable function such that $\Omega=\left\{\left(p^{*}, q^{*}\right) \in E_{1} \times E_{2}: g\left(p^{*}\right)=\right.$ $\min _{p \in E_{1}}\{g(p)\}, k\left(q^{*}\right)=\min _{q \in E}\{k(q)\}$ and $\left.p^{*}=q^{*}\right\} \neq \emptyset$. For any $\left(p_{0}, q_{0}\right),(p, q) \in E_{1} \times E_{2}$, define an iterative algorithm by

$$
\left\{\begin{array}{l}
x_{n}=\operatorname{Res}_{\partial f}^{g_{1}}\left(\nabla g_{1}^{*}\left[\nabla g_{1} p_{n}-\gamma_{n} A^{*}\left(\nabla g_{3} A p_{n}-\nabla g_{3} q_{n}\right)\right]\right), \tag{4.5}\\
y_{n}=\operatorname{Res}_{\nabla k}^{g_{2}}\left(\nabla g_{2}^{*}\left[\nabla g_{2} q_{n}-\gamma_{n}\left(\nabla g_{3} q_{n}-\nabla g_{3} A p_{n}\right)\right]\right), \\
p_{n+1}=\nabla g_{1}^{*}\left(\alpha_{n} \nabla g_{1} p+\left(1-\alpha_{n}\right) \nabla g_{1} x_{n}\right), \\
q_{n+1}=\nabla g_{2}^{*}\left(\alpha_{n} \nabla g_{2} q+\left(1-\alpha_{n}\right) \nabla g_{2} y_{n}\right) .
\end{array}\right.
$$

Then, the sequence generated by Algorithm 4.5 converges strongly to an element $\left(p^{*}, q^{*}\right)=P_{\Omega}^{g}(p, q)$.

5 Numerical Examples

In this section, we provide numerical examples to illustrate the convergence of the sequence generated by the proposed scheme. The following numerical examples verify the conclusion of Theorem 3.2

Example 5.1. Let $E=\mathbb{R}^{2}$ with the standard topology. Define $g_{1}, g_{2}, g_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}$, by $g_{i}(x)=\frac{x^{2}}{2}$, then $g_{i}\left(x^{*}\right)=\frac{1}{2} x^{* 2}$ and $\nabla g_{i}(x)=x=\nabla g_{i}\left(x^{*}\right)=x^{*}$ for all $i=1,2,3$, where $x \in \mathbb{R}^{2}$. Let $S, T, A, B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $S(x)=$ $\left(2 x_{1}, 3 x_{2}\right)-(1,1), T(x)=\left(3 x_{1}, 2 x_{2}\right)+(1,1), A x=\left(2 x_{1}, 3 x_{2}\right)$ and $B x=-\left(3 x_{1}, 2 x_{2}\right)$ were $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, then S and T are maximal monotone mappings with $S^{-1}(0)=\left\{\left(\frac{1}{2}, \frac{1}{3}\right)\right\}, T^{-1}(0)=\left\{-\left(\frac{1}{3}, \frac{1}{2}\right)\right\}$ and $A\left(\frac{1}{2}, \frac{1}{3}\right)=(1,1)=B\left(\frac{1}{3}, \frac{1}{2}\right)$. Thus, $\Omega \neq \emptyset$. Now, if we assume $\lambda=1, \alpha=1,(p, q)=((0.5,1),(0.2,-1)), \alpha_{n}=\frac{1}{n+10^{5}}$ for all $n \geq 0$, and take different initial points $\left(p_{0}, q_{0}\right)=((0,1),(1,-1)),\left(p_{0}^{\prime}, q_{0}^{\prime}\right)=((-1,0),(0.5,1))$ and $\left(p_{0}^{\prime \prime}, q_{0}^{\prime \prime}\right)=((0.5,1),(0.4,0.5)$, then in all cases, the numerical experiment results using MATLAB provide that the sequence $\left\{\left(p_{n}, q_{n}\right)\right\}$ generated by Algorithm 3.16 converges strongly to $\left(p^{*}, q^{*}\right)=\left(\left(\frac{1}{2}, \frac{1}{3}\right),-\left(\frac{1}{3}, \frac{1}{2}\right)\right)$ (see, Figure 5.1 $)$.

Figure 1: The graph of $\left\|\left(p_{n}, q_{n}\right)-\left(p^{*}, q^{*}\right)\right\|$ versus number of iterations with different choices of $\left(p_{0}, q_{0}\right)$
In addition, we have sketched the difference term $\left\|A p_{n}-B q_{n}\right\|$ for each initial point. From the sketch we observe that $\left\|A p_{n}-B q_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ (see, Figure 5.1).

Figure 2: The graph of $\left\|A p_{n}-B q_{n}\right\|$ versus number of iterations with different choices of $\left(p_{0}, q_{0}\right)$

Example 5.2. Let $E=l_{2}$ with the standard topology. Define $g_{1}, g_{2}, g_{3}: l_{2} \rightarrow l_{2}$, by $g_{i}(x)=\frac{x^{2}}{2}$, then $g_{i}\left(x^{*}\right)=\frac{1}{2} x^{* 2}$ and $\nabla g_{i}(x)=x=\nabla g_{i}\left(x^{*}\right)=x^{*}$ for all $i=1,2,3$, where $x \in l_{2}$. Let $S, T, A, B: l_{2} \rightarrow l_{2}$ be defined by

$$
\begin{gathered}
S(x)=\left(\frac{2 x_{1}-1}{2}, \frac{3 x_{2}-1}{4}, \frac{4 x_{3}-1}{8}, \frac{x_{4}}{16}, \frac{x_{5}}{32}, \ldots\right), \\
T(x)=\left(\frac{x_{1}-2}{3}, \frac{2 x_{2}-3}{9}, \frac{3 x_{3}-4}{27}, \frac{x_{4}}{81}, \frac{x_{5}}{243}, \ldots\right), \\
A x=\left(2 x_{1}, 3 x_{2}, 4 x_{3}, 0,0, \ldots\right) \text { and } B x=\left(\frac{1}{2} x_{1}, \frac{2}{3} x_{2}, \frac{3}{4} x_{3}, 0,0 \ldots\right),
\end{gathered}
$$

were $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in l_{2}$, then the mappings S and T are maximal monotone with $S^{-1}(0)=\left\{\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 0,0 \ldots\right)\right\}$, $T^{-1}(0)=\left\{\left(2, \frac{3}{2}, \frac{4}{3}, 0,0 \ldots\right)\right\}$ and

$$
A\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 0,0 \ldots\right)=(1,1,1,0,0, \ldots)=B\left(2, \frac{3}{2}, \frac{4}{3}, 0,0 \ldots\right)
$$

Thus, $\Omega \neq \emptyset$. Now, if we assume $\lambda=1, \alpha=1,(p, q)=((0,0,0, \ldots),(0,0,0, \ldots))$, $\alpha_{n}=\frac{1}{n+10^{6}}$ for all $n \geq 0$, and take different initial points

$$
\begin{gathered}
\left(p_{0}, q_{0}\right)=((-1,-1,-2,0,0, \ldots),(-2,-1,3,0,0 \ldots)), \\
\left(p_{0}^{\prime}, q_{0}^{\prime}\right)=((2,1,-1,0,0, \ldots),(1,1,1,0,0, \ldots))
\end{gathered}
$$

and

$$
\left(p_{0}^{\prime \prime}, q_{0}^{\prime \prime}\right)=((1,0,-1,0,0, \ldots),(-1,2,0,0,0, \ldots)
$$

then in all cases, the numerical experiment result provide that the sequence $\left\{\left(p_{n}, q_{n}\right)\right\}$ generated by Algorithm 3.16 converges strongly to

$$
\left(p^{*}, q^{*}\right)=\left(\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 0,0 \ldots\right),\left(2, \frac{3}{2}, \frac{4}{3}, 0,0 \ldots\right)\right) \text { (see, Figure } 5.2
$$

Figure 3: The graph of $\left\|\left(p_{n}, q_{n}\right)-\left(p^{*}, q^{*}\right)\right\|$ versus number of iterations with different choices of $\left(p_{0}, q_{0}\right)$

6 Conclusion

In this paper, we have established an iterative algorithm for solving SEMIP of maximal monotone mappings in real reflexive Banach spaces. We also proved a strong convergence theorem without prior knowledge of norm operators of the bounded linear operators A and B. We gave some applications of our main results. Numerical examples which validate the conclusion of our main result were provided. Our result generalize and extend many results in the literature. In particular, Theorem 3.2 extends the results of Moudafi [19], Gua et al. [14] and Wega and Zegeye [30] from Hilbert spaces to real reflexive Banach spaces and Theorem 3.1 of Jolaoso et al. [15] from uniformly convex and uniformly smooth Banach spaces to real reflexive Banach spaces.

References

[1] H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, Alternative proximal algorithm for weakly coupled minimum problems, application to dynamic games and PDEs, J. Convex Anal. 15 (2008), 485-506.
[2] H. Attouch, A. Cabot, F. Frankel, and J. Peypouquet, Alternative proximal algorithm for constrained variational inequalities, Application to domain decomposition for PDEs, Nonlinear Anal. 74 (2011), 7455-7473.
[3] J.B. Baillon and G. Haddad, Quelques proprites des operateurs angle-bornes et cycliquement monontones, Isr. J. Math. 26 (1977), 137-150.
[4] H.H. Bauschke and J.M. Borwein, Legendre functions and the method of random Bregman projections, J. Convex Anal. 4 (1997), 27-67.
[5] H.H. Bauschke, J.M. Borwein, and P.L. combettes, Bregman monotone optimization algorithms, SIAM J. Control Optim. 42 (2003), 596-636.
[6] D. Butnariu and E. Resmerita, Bregman distance, totally convex functions and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal. 2006 (2006), 1-39.
[7] D. Butnariu and A.N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimentional Optimization, Vol. 40, Kluwer Academic, Dordrecht, The Netherlands, 2000.
[8] F.E. Browder, Nonlinear mappings of nonexpancive and accretive-type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
[9] J.F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problem, Springer, New York, 2000.
[10] S.S. Chang, L. Wang, and L.J. Qin, Split equality fixed point problem for quasi-pseudo-contractive mappings with applications, Fixed Point Theory Appl. 2015 (2015), 208.
[11] Y. Censor and A. Lent, An iterative row-action method for interval convex programming, J. Optim. Theory Appl. 34 (1981), no. 3, 321-353.
[12] C.E. Chidume, P. Ndambomve, and A.U. Bello, The split equality fixed point problem for demi-constractive mappings, J. Non. Ana. Optim. 6 (2015), no. 1, 61-69.
[13] K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374.
[14] H. Guo, H. He, and R. Chen, Convergence theorems for the split variational inclusion problem and fixed point problems in Hilbert spaces, Fixed Point Theory Appl. 2015 (2015), Art. ID 223.
[15] L.O. Jolaoso, F.U. Ogbuisi, and O.T. Mewomo, On split equality variational inclusion problems in Banach spaces without operator norms, Int. J. Nonlinear Anal. Appl. 12 (2021) 425-446.
[16] B. Liu, Fixed point of strong duality pseudocontractive mappings and applications, Abstr. Appl. Anal. 2012 (2012), Article ID 623625.
[17] P.E. Maingé, Strong convergence of projected subgradient method for nonsmooth and nonstrictily convex minimization, Set-Valued Anal. 16 (2008), no. 7-8, 899-912.
[18] B. Martinet, Regulation diequation variationelles par approximations successives, Rev. Francaise inf. Rech. Oper. (1970) 154-159.
[19] A. Moudafi, A relaxed alternating $C Q$ algorithm for convex feasibility problems, Nonlinear Anal. 79 (2013), 117121.
[20] E. Naraghirad and J.C. Yao, Bergman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Appl. 141 (2013).
[21] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Kluwer Academic Publishers, 2004.
[22] D. Pascali and S. Sburian, Nonlinear Mappings of Monotone Type, Editura Academia Bucuresti, Romania, 1978.
[23] R.P. Phelps, Convex Functions, Monotone Operators, and Differentiability, Lecture Notes in Mathematics, Vol. 1364, 2nd edn. Springer Verlag, Berlin, 1993.
[24] S. Reich and S. Sabach, Existence and approximation of fixed point of Bregman firmily nonexpansive mappings in reflexive Banach spaces, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Springer, New York, 2011, pp 301-316.
[25] S. Reich and S. Sabach, Two strong convergence theorem for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal. TMA 73 (2010), 122-135.
[26] S. Reich and S. Sabach, A projection method for solving nonlinear problems in reflexive Banach spaces, J. Fixed Point Theory Appl. 9 (2011), 101-116.
[27] R.T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pac. J. Math. 33 (1970), 209-216.
[28] P. Senakka and P. Cholamjiak, Approximation method for solving fixed point problem of Bregman strongly nonexpansive mappings in reflexive Banach spaces, Ric. Mat. 65 (2016), 209-220.
[29] G.B. Wega and H. Zegeye, Convergence results of Forward-Backward method for a zero of the sum of maximally monotone mappings in Banach spaces, Comp. Appl. Math. 39 (2020), 1-16.
[30] G.B. Wega and H. Zegeye, Split equality methods for a solution of monotone inclusion problems in Hilbert spaces, Linear Nonlinear Anal. 5 (2020), no. 3, 495-516.
[31] H.H. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), no. 1, 279-291.
[32] Y. Su and H.K. Xu, A duality fixed point theorem and applications, Fixed Point Theory 13 (2012), no.1, 259-265.
[33] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, USA, 2002.
[34] H. Zegeye and G.B. Wega, Approximation of a common f-fixed point of f-pseudo contractive mappings in Banach spaces, Rend. Circ. Mat. Palermo Ser. 270 (2021), no. 3, 1139-1162.
[35] H. Zegeye, Strongly convergence theorems for maximal monotone mappings in Banach spaces, J. Math. Anal. Appl. 343 (2008), 663-671.
[36] J. Zhao, Solving split equality fixed point problem of quasi-nonexpansive mappings without prior knowledeg of operators norms, Optimization 64 (2015), no. 12, 2619-2630.

[^0]: Email address: getahunbekele2012@gmail.com (Getahun Bekele Wega)

