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Abstract

A new iterative scheme for approximating a solution of the split equality monotone inclusion problem (SEMIP) of
maximal monotone mappings in the setting of Banach spaces is introduced. Strong convergence of the sequence
generated by the proposed scheme to a solution of the SEMIP is then derived without prior knowledge of operator
norms of the linear operators involved. In addition, we give some applications of our method and provide numerical
examples to illustrate the convergence of the proposed scheme. Our results generalize, improve and extend many
results in the literature.
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1 Introduction

Let E be a real Banach space with its dual E∗. A mapping S : E → 2E
∗
is is called monotone if

⟨p∗ − q∗, p− q⟩ ≥ 0, ∀(p, p∗), (q, q∗) ∈ Gph(S),

where Gph(S) = {(p, p∗) ∈ E × E∗ : p∗ ∈ Sp} is a graph of S. A monotone mapping is called maximal monotone
provided that its graph is not properly contained in a graph of any other monotone mapping. The resolvent of maximal
monotone mapping S denoted by ResgS , is defined as

ResgS(p) := (∇g + γS)−1∇g(p),

where ∇g is the gradient of a convex function g : E → (∞,∞] satisfies certain conditions. This resolvent operator
enjoys important properties such as single valued and Bregman firmly nonexpansive (see, [5] Prop. 3.8 (iv), pp. 604).
Let S : E → 2E

∗
be a monotone mapping. The problem of finding a point p∗ in E such that

0 ∈ Sp∗, (1.1)

is called monotone inclusion problem. This problem has been studied extensively by several authors (see, e.g., [8, 12,
13, 16, 18, 22, 32, 34, 35]). The solution set of the problem (1.1), above is denoted by S−1(0) and S−1(0) = F (ResgS),
where F (ResgS) is the set of fixed points of ResgS and S is maximal monotone mapping. One of the generalization of
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the problem (1.1) above is split equality monotone inclusion problem and formulated as the problem of finding p∗ and
q∗ with the property:

p∗ ∈ C, q∗ ∈ D, such that Ap∗ = Bq∗, (1.2)

where C and D are closed and convex subsets of H1 and H2, respectively, S : H1 → H1 and T : H2 → H2 are
nonlinear mappings and A : H1 → H3 and B : H2 → H3 are bounded linear operators. This problem was introduced
by Moudafi [19] and has received much attention of researchers due to its applications in many disciplines (see,
e.g., [1, 2]). Consequently, it has been studied by several authors in both Hilbert and Banach spaces (see, e.g.,
[10, 12, 14, 15, 19, 30, 36]).

In 2015, Gua et al. [14] established an iterative algorithm and proved strong convergence of a sequence proposed
in their method to a solution of problem (1.2) above in Hilbert spaces. In 2020, Wega and Zegeye [30] introduced
an iterative scheme for problem (1.2) and proved a sequence proposed in their algorithm convergence strongly to a
solution of the problem for the sum of two maximal monotone mappings in Hilbert spaces. Recently, in 2021 Jolaoso
et al. [15] constructed an scheme for problem (1.2) and proved strong convergence of a sequence proposed in their
scheme to a solution of the problem for maximal monotone mappings in p-uniformly convex and uniformly smooth
Banach spaces.

We note that if in problem (1.2), we take H2 = H3 and B = I, where I is identity map on H2, the SEMIP reduced
to split monotone inclusion problem (SMIP). The SMIP mathematically formulated as as the problem of finding p∗

with the property:
p∗ ∈ C such that q∗ = Ap∗ ∈ D. (1.3)

Now, we consider the following split equality monotone inclusion problem (SEMIP). Let S : E1 → 2E
∗
1 and

T : E2 → 2E
∗
be maximal monotone mappings, where E1, E2 and E3 are Banach spaces with their dual spaces

E∗
1 , E

∗
2 and E∗

3 , respectively. Let A : E1 → E3 and B : E2 → E3 be bounded linear operators with their adjoints
A : E∗

3 → E1 and B : E∗
3 → E2, respectively. The SEMIP in the setting of can be formulated as the problem of finding

(p∗, q∗) ∈ E1 × E2 such that

p∗ ∈ S−1(0) and q∗ ∈ T−1(0) such that Ap∗ = Bq∗. (1.4)

Question Can we introduce an iterative algorithm which converges strongly to a solution of SEMIP for maximal
monotone mappings in real reflexive Banach spaces?

Inspired and motivated by the research works of Moudafi [19], Gua et al. [14], Wega and Zegeye [30] and Jolaoso
et al. [15] it is our purpose in this paper to introduce and study new iterative scheme for solving SEMIP for maximal
monotone mappings in the setting of Banach spaces. Strong convergence of the sequence generated by the proposed
scheme to a solution of the SEMIP for maximal monotone mappings is proved without prior knowledge of operator
norms of the linear operators involved. Some applications of our main result is also provided. Numerical examples
are given to illustrate the convergency of the sequence generated by the proposed scheme. Our main result provide an
affirmative answer to our concern. Our result generalize, improve and extend many research works in the literature.

2 Preliminaries

In this section, we recall some useful results which will be used in the sequel. Hereafter, in this paper let E be a
real reflexive Banach space with its dual space E∗, C be a nonempty, convex and closed subset of E and let G be a
family of proper, lower semi-continuous and convex functions.

Let g be an element of G. The domain of g, dom g, is given by dom g = {p ∈ E : g(p) < ∞}, the Fenchel conjugate
of g at p∗, g∗(p∗), is given by g∗(p∗) = sup{⟨p∗, p⟩ − g(p) : p ∈ E and p∗ ∈ E∗}, the subdifferential of g at p, ∂g(p), is
given by ∂g(p) = {p∗ ∈ E∗ : g(q) ≥ g(p) + ⟨p∗, q − p⟩,∀p ∈ E}, the right hand derivative of g at u in the direction of
q, g′(p, q), is given by

g′(p, q) = lim
s→0+

g(p+ sq)− g(p)

s
, (2.1)

and the gradient of g, at p is a linear function, ∇ g, is given by ⟨∇g(p), q⟩ = g′(p, q).

Definition 2.1. The function g is called:

(i) Gâteaux differentiable at p element of E if the limit in (2.1) exists for any q in E as s → 0.
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(ii) Gâteaux differentiable if it is Gâteaux differentiable at every element u in int domg.

(iii) uniformity Fréchet differentiable on C if the limit as s → 0 in (2.1) attained uniformly for p ∈ C and ||q|| = 1.

(iv) Strongly coercive if lim||p||→∞
g(p)
||p|| = ∞.

Definition 2.2. Gâteaux differentiable function g is called Legendre if g∗ is Gâteaux differentiable, both int dom g
and int dom g∗ are nonempty, dom ∇ g = int dom g and dom ∇ g∗ = int dom g∗.

Remark 2.3. ∇ g∗ = (∇ g)−1 (see, [9]) provided that g is Legendre function and the gradient of Legendre function

g defined by g(u) = ||u||p
p is coincides with the generalized duality map, that is, ∇g = Jp, where (1 < p, q < ∞) and

q is a conjugate of p (see, e.g., [4]).

Definition 2.4. The Bregman distance with respect to g (see, e.g., [11]) is a functionDg : dom g×int dom g → [0,∞)
defined by

Dg(q, p) = g(q)− g(p)− ⟨∇g(p), q − p⟩, (2.2)

where g is Gâteaux differentiable. The Bregman projection with respect to g at u in int dom g onto C is denoted by
P g
Cp defined by Dg(P

g
Cp, p) = inf{Dg(q, p) : ∀q ∈ C}.

Remark 2.5. We note that the Bregiman distance is not distance in the usual sense. However, it has the following
properties (see, e.g., [7, 25, 26]):

(i) The three point identity:

Dg(p, q) +Dg(q, w)−Dg(p, w) = ⟨∇ g(w)−∇ g(q), p− q⟩ (2.3)

for all q ∈ dom g and p, w ∈ int dom g.

(ii) The four point identity:

Dg(q, p) +Dg(q, z)−Dg(w, p) +Dg(w, z)− ⟨∇ g(z)−∇ g(p), q − w⟩, (2.4)

for all q, w ∈ dom g and p, z ∈ int dom g.

Lemma 2.6. [6] Let g be a totally convex and Gáteaux differentiable on int domg. Let p ∈ int domg. Then, the P g
c

from E onto C is a unique point with the following properties:

(i) ⟨∇ g(p)−∇ g(z), q − z ≤ 0 if and only if z = P g
Cp, ∀q ∈ C.

(ii) Dg(p, q) ≥ Dg(q, P
g
Cp) +Dg(P

g
Cp, p), ∀q ∈ C.

Let g be a Legendre and Vg : E × E∗ → [0,∞) be a function defined by

Vg(p, p
∗) = g(p)− ⟨p∗, p⟩+∇ g∗(q∗),∀p ∈ E, p∗ ∈ E∗. (2.5)

Then, Vg is nonnegative which satisfies (see, e.g., [28])

Vg(p, p
∗) = Dg(p,∇ g∗(p∗)) (2.6)

and
Vg(p, p

∗) ≤ Vg(p, p
∗ + q∗)− ⟨q∗,∇ g∗(p∗)− p⟩, (2.7)

for all p ∈ E and p∗ ∈ E∗.

Lemma 2.7. [23] If g is lower, convex, semi-convex proper function, then g∗ is a weak∗ lower semi-convex and proper
function and hence, we have

Dg

(
w,∇ g∗

( N∑
i=1

si∇g(pi)
))

≤
N∑
i=1

siDg(w, pi),

for all w in E, where {pi} ⊆ E and {si} ⊆ (0, 1) with
∑N

i=1 si = 1.

Definition 2.8. A Gâteaux differentiable function g is called
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(i) uniformly convex function (see, [33]), provided that for all p and q dom g and s ∈ [0, 1], we have

g(sp+ (1− s)q) ≤ sg(p) + (1− s)g(p)− (1− s)sϕ(||p− q||), (2.8)

where ϕ is a function that is increasing and vanishes only at zero.
(ii) strongly convex with constant α > 0 for all u and q elements of domg (see, [21])

⟨∇ g(p)−∇ g(p), p− q⟩ ≥ α||p− q||2. (2.9)

(iii) totaly convex if νg(p, s) = inf
{p∈E:||p−q||=s}

Dg(q, p) > 0, for all p ∈ E and s > 0.

We note that g is uniformly convex if and only if g is totally convex on bounded subsets of E (see, [6], Theorem
2.10 p. 9). Moreover, the class of uniformly convex function functions contains the class of strongly convex functions.

Definition 2.9. A mapping T : C → E with F̂ (T ) ̸= ∅ is said to be

(i) Bregman strongly nonexpansive [25] with respect to F̂ (T ), if

Dg(p
∗, Tp) ≤ Dg(p

∗, p), ∀ p ∈ C, p∗ ∈ F̂ (T )

and, whenever {pn} ⊆ C is bounded p∗ ∈ F̂ (T ), and

lim
n→∞

(Dg(p
∗, pn)−Dg(p

∗, Tpn)) = 0,

it follow that limn→∞ Dg(pn, Tpn) = 0.
(ii) Bregman firmly nonexpansive [24] if for each p, q ∈ C

⟨∇ g(Tp)−∇ g(Tq), Tp− Tq⟩ ≤ ⟨∇ g(p)−∇ g(q), Tp− Tq⟩.

We remark that if T is a Bregman firmly nonexpansive map and g is a Legender function which is bounded
uniformly Frèchet differentiable and totaly convex on bounded subset of E, then it is knowen that F (T ) = F̂ (T )
and F (T ) is closed and convex (see, [24]) and hence every Bregman firmly nonexpansive map is Bregman strongly

nonexpansive with respect to F (T ) = F̂ (T ).

3 Main results

Hereafter, let E1, E2 and E3 be real reflexive Banach spaces with its dual E∗
1 , E

∗
2 and E∗

3 , respectively. In the
sequel, we shall make the following conditions.

Conditions:

(C1) Let g1 : E1 → (−∞,+∞] ∈ G(E1), g2 : E2 → (−∞,+∞] ∈ G(E2) and g3 : E3 → (−∞,+∞] ∈ G(E3) be
bounded, strongly coercive, uniformly Fréchet differentiable Legendre function on bounded subsets of E1, E2

and E3, respectively and strongly convex with constants α1, α2 and α3, respectively, and α = min{α1, α2, α3}.
(C2) Let S : E1 → 2E

∗
1 and T : E2 → 2E

∗
be maximal monotone mappings with Resg1S := (∇g1 + λS)−1∇g1 and

Resg2T := (∇g2 + λT )−1∇g2, respectively, where λ > 0.
(C3) Let A : E1 → E3 and B : E2 → E3 be bounded linear operators with adjoints A : E∗

3 → E1 and B : E∗
3 → E2,

respectively.
(C4) Let Ω = {(p, q) : p ∈ S−1(0) and q ∈ T−1(0) such that Ap = Bq} ≠ ∅.
(C5) Let {αn} ⊂ (0, ϵ) ⊂ (0, 1), for some constant ϵ > 0, be such that

limn→∞ αn = 0 and
∑∞

n=1 αn = ∞.

(C6) Let 0 < µ ≤ γn ≤ α2||Apn−Bqn||2
2[||A∗(∇ g3Apn−∇ g3Bqn)||2+||B∗(∇ g3Apn−∇ g3Bqn)||2] for n ∈ Υ = {n ∈ N : Apn − Bqn ̸= 0},

otherwise γn = γ > 0.

Theorem 3.1. Suppose conditions (C1)-(C6) hold. For any (p0, q0), (p, q) ∈ E1 × E2 , define an iterative algorithm
by 

xn = Resg1S
(
∇ g∗1 [∇ g1pn − γnA

∗(∇ g3Apn −∇ g3Bqn)]
)
,

yn = Resg2T
(
∇ g∗2 [∇ g2qn − γnB

∗(∇ g3Bqn −∇ g3Apn)]
)
,

pn+1 = ∇ g∗1(αn∇ g1p+ (1− αn)∇ g1xn),

qn+1 = ∇ g∗2(αn∇ g2q + (1− αn)∇ g2yn).

(3.1)

Then, the sequence generated by Algorithm 3.1 is bounded in E1 × E2.
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Proof . Let (p∗, q∗) ∈ Ω. Then, p∗ ∈ S−1(0), q∗ ∈ T−1(0) and Ap∗ = Bq∗. Hence, from (3.1) and Lemma 2.7, we get

Dg1(p
∗, pn+1) = Dg1(p

∗,∇ g∗1(αn∇ g1p+ (1− αn)∇ g1xn))

≤ αnDg1(p
∗, p) + (1− αn)Dg1(p

∗, xn). (3.2)

Similarly, we get

Dg2(q
∗, qn+1) = Dg2(q

∗,∇ g∗2(αn∇ g2q + (1− αn)∇ g2yn))

≤ αnDg2(q
∗, q) + (1− αn)Dg2(q

∗, yn). (3.3)

Now, denote an = ∇ g∗1 [∇ g1pn − γnA
∗(∇ g3Apn −∇ g3Bqn)] and

bn = ∇ g∗2 [∇ g2qn − γnB
∗(∇ g3Bqn −∇ g3Apn)]. Then, from Lemma 2.6 and (2.6), we obtain

Dg1(p
∗, xn) = Dg1(p

∗, Resg1S
(
∇ g∗1 [∇ g1pn − γn(∇ g3Apn −∇ g3Bqn)]

)
≤ Vg1(p

∗,∇ g1pn − γnA
∗(∇ g3Apn −∇ g3Bqn))

≤ Dg1(p
∗, pn)− γn⟨Aan −Ap∗,∇ g3Apn −∇ g3Bqn⟩. (3.4)

Similarly, we get that

Dg2(q
∗, yn) ≤ Dg2(q

∗, qn)− γn⟨Bbn −Bq∗,∇ g3Bqn −∇ g3Apn⟩. (3.5)

Now, from (3.2) and (3.4), we obtain

Dg1(p
∗, pn+1) ≤ αnDg1(p

∗, p) + (1− αn)αnDg1(p
∗, xn)

≤ αnDg1(p
∗, p) + (1− αn)Dg1(p

∗, pn)

−(1− αn)γn⟨Aan −Ap∗,∇ g3Apn −∇ g3Bqn⟩ (3.6)

Similarly, from (3.3) and (3.5), we get

Dg2(q
∗, qn+1) ≤ αnDg2(q

∗, q) + (1− αn)Dg2(q
∗, qn)− (1− αn)γn⟨Bbn −Bq∗,∇ g3Bqn −∇ g3Apn⟩. (3.7)

Denote Γn = Dg1(p
∗, un) + Dg2(q

∗, vn) and Γ = Dg1(p
∗, p) + Dg2(q

∗, q). Then by adding inequalities (3.6) and
(3.7), we get

Γn+1 ≤ αnΓ + (1− αn)Γn − (1− αn)γn⟨Aan −Ap∗ +Bq∗ −Bbn,∇ g3Apn −∇ g3Bqn⟩
= αnΓ + (1− αn)Γn − (1− αn)γn⟨Aan −Bbn,∇ g3Apn −∇ g3Bqn⟩ (3.8)

Observe that,

−γn⟨Aan −Bbn,∇g3Apn −∇g3Bqn⟩ =− γn⟨Apn −Bqn,∇g3Apn −∇g3Bqn⟩ − γn⟨an − pn, A
∗(∇ g3Apn −∇g3Bqn)⟩

− γn⟨qn − bn, B
∗(∇ g3Apn −∇ g3Bqn)⟩

≤ − α||Apn −Bqn||2 + ||an − pn||||A∗(∇ g3Apn −∇ g3Bqn)||
+ ||bn − qn||||B∗(∇ g3Apn −∇ g3Bqn)|| (3.9)

Moreover, from definitions of g1 and an, we obtain

||pn − an|| = ||∇ g∗1(∇ g1pn)−∇ g∗1 [∇ g1pn − γnA
∗(∇ g3Apn −∇ g3Bqn)]||

≤ γn
α
||A∗(∇ g3Apn −∇ g3Bqn)||. (3.10)

Similarly, from definitions of g2 and bn, we get

||qn − bn|| ≤ γn
α
||B∗(∇ g3Apn −∇ g3Bqn)||. (3.11)
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Hence, from (3.9), (3.10) and (3.11), we get

−γn⟨Aan −Bbn,∇ g3Apn −∇ g3Bqn⟩ ≤ − γnα||Apn −Bqn||2 +
γ2
n

α
||A∗(∇ g3Apn −∇ g3Bqn)||2

+
γ2
n

α
||B∗(∇ g3Apn −∇ g3Bqn)||2

≤− µα

2
||Apn −Bqn||2 − γn

[α
2
||Apn −Bqn||2

− γn
α

(
||A∗(∇ g3Apn −∇ g3Bqn)||2 + ||B∗(∇ g3Apn −∇ g3Bqn)||2

)]
≤− µα

2
||Apn −Bqn||2. (3.12)

Finally, from (3.8) and (3.12), we get

Γn+1 ≤ αnΓ + (1− αn)Γn − (1− αn)
µα

2
||Apn −Bqn||2 (3.13)

≤ αnΓ + (1− αn)Γn (3.14)

and hence by induction we get

Γn ≤ max{Γ0,Γ}. (3.15)

Hence, the sequence {Γn} is bounded. Thus, by Lemma 7 in [29], {pn} and {qn} are bounded and hence the
sequences {xn}, {yn}, {Sxn}, {Tyn} are bounded. 2

Theorem 3.2. Suppose conditions (C1)-(C6) hold. For any (p0, q0), (p, q) ∈ E1 × E2 , define an iterative algorithm
by 

xn = Resg1S
(
∇ g∗1 [∇ g1pn − γnA

∗(∇ g3Apn −∇ g3Bqn)]
)
,

yn = Resg2T
(
∇ g∗2 [∇ g2qn − γnB

∗(∇ g3Bqn −∇ g3Apn)]
)
,

pn+1 = ∇ g∗1(αn∇ g1p+ (1− αn)∇ g1xn),

qn+1 = ∇ g∗2(αn∇ g2q + (1− αn)∇ g2yn).

(3.16)

Then, the sequence generated by Algorithm 3.16 converges strongly to an element (p∗, q∗) = P g
Ω(p, q).

Proof . Let (p∗, q∗) ∈ Ω such that (p∗, q∗) = P g
Ω(p, q). From Theorem 3.1, we have that the sequence {(pn, qn)} is

bounded. Then, using the same techniques of Theorem 2 of [34], we obtain

Dg1(p
∗, pn+1) ≤ (1− αn)Dg1(p

∗, pn) + αn||pn − pn+1||||∇ g1p−∇ g1p
∗||+ αn⟨∇ g1p−∇ g1p

∗, pn − p∗⟩(3.17)

and

Dg2(q
∗, qn+1) ≤ (1− αn)Dg2(q

∗, qn) + αn||qn − qn+1||||∇ g2q −∇ g2q
∗||+ αn⟨∇ g2q −∇ g2q

∗, qn − q∗⟩.(3.18)

Thus, by adding inequalities (3.17) and (3.18), we obtain

Γn+1 ≤(1− αn)Γn + αn||qn − pn+1||||∇ g1p−∇ g1p
∗||+ αn||qn − qn+1||||∇ g2q −∇ g2q

∗||
+ αn⟨∇ g1p−∇ g1p

∗, pn − p∗⟩+ αn⟨∇ g2q −∇ g2q
∗, vn − q∗⟩, (3.19)

where Γn = Dg1(p
∗, pn) +Dg2(q

∗, qn). Now, to complete our proof we consider the following two cases.

Case 1. Suppose there exists n0 ∈ N such that the sequence of real numbers Γn is decreasing for all n ≥ n0. Thus,
the sequence Γn is convergence and hence Γn − Γn+1 → 0 as n → ∞. Hence, from (3.13) and the conditions on the
sequence {αn}, we get

lim
n→∞

||Apn −Bqn|| = 0, (3.20)
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and the fact that ∇ g∗1 is uniformly continuous on bounded subset of E∗
1 (see, [33]) yields

lim
n→∞

||pn+1 − xn|| = 0. (3.21)

Similarly, we obtain
lim
n→∞

||qn+1 − yn|| = 0. (3.22)

In addition, from Lemma 2.6, we obtain

Dg1(pn, xn) =Dg1(pn, Resg1S
(
∇ g∗1 [∇ g1pn − γnA

∗(∇ g3Apn −∇ g3Bqn)]
)

≤Vg1(pn,∇ g1pn − γnA
∗(∇ g3Apn −∇ g3Bqn))

≤Vg1(pn,∇ g1pn)− ⟨γnA∗(∇ g3Apn −∇ g3Bqn),∇ g∗1 [∇ g1pn − γnA
∗(∇ g3Apn −∇ g3Bqn)]− pn⟩

≤Dg1(pn, pn) +
γ2
n

α
||A||2||Apn −Bqn||2. (3.23)

Thus, from (3.20) and (3.23), we get
lim

n→∞
Dg1(pn, xn) = 0, (3.24)

which implies
lim

n→∞
||pn − xn|| = 0. (3.25)

Similarly, we get
lim
n→∞

||qn − yn|| = 0. (3.26)

Consequently, from (3.21) and (3.25), we get

||pn+1 − pn|| ≤ ||pn+1 − xn||+ ||xn − pn|| → 0 as n → ∞. (3.27)

Similarly, from (3.22) and (3.26), we get

||qn+1 − qn|| ≤ ||qn+1 − yn||+ ||yn − qn|| → 0 as n → ∞. (3.28)

Denote an = ∇ g∗1 [∇ g1pn − γnA
∗(∇ g3Apn − ∇ g3Bqn)] and bn = ∇ g∗2 [∇ g2qn − γnB

∗(∇ g3Bqn − ∇ g3Apn)].
Now, since the sequence {(pn, qn)} is bounded in E1×E2, there exists (p̂, q̂) ∈ E1×E2 and a subsequence {(pnk

, qnk
)}

of (pn, qn) such that {(pnk
, qnk

)} ⇀ (p̂, q̂) and

lim sup
n→∞

[⟨pn − p∗,∇ g1p−∇ g1p
∗⟩+ ⟨qn − p∗,∇ g2q −∇ g2q

∗⟩]

= lim
k→∞

[⟨pnk
− p∗,∇ g1p−∇ g1p

∗⟩+ ⟨qnk
− q∗,∇ g2q −∇ g2q

∗⟩]. (3.29)

It then follows that pnk
⇀ p̂ in E1 and qnk

⇀ q̂ in E1. From (3.25) and (3.26) xnk
⇀ p̂ in E1 and ynk

⇀ q̂ in
E2, respectively. Next, we prove that (p̂, q̂) ∈ S−1(0) × T−1(0) and Ap̂ = Bq̂. Suppose z ∈ Sw. For the fact that
xnk

= Resg1S ank
, for each γ > 0, that is,

∇ g1ank
∈ (∇ g1 + λS)xnk

, (3.30)

and hence
∇ g1ank

−∇ g1xnk
∈ λSxnk

. (3.31)

From (3.31) and the fact S is maximal monotone map, we get

⟨z − ∇ g1ank
−∇ g1xnk

λ
,w − xnk

⟩ ≥ 0, (3.32)

this implies

⟨z, w − xnk
⟩ ≥ ⟨∇ g1ank

−∇ g1xnk

λ
,w − xnk

⟩. (3.33)



18 Wega

From equation (3.25) and the fact that∇ g1 is uniformly continuous on E1, we get limk→∞ ||∇ g1xnk
−∇ g1ank

|| = 0.
Hence , inequality (3.33) implies that ⟨w − p̂, z⟩ ≥ 0 as k → ∞. Thus, by maximality of S, we get 0 ∈ Sp̂. Similarly,
we get that 0 ∈ T q̂. Moreover, from (2.9), we obtain

||Ap̂−Bq̂||2 ≤ 1

α
⟨Ap̂−Bq̂,∇ g3Ap̂−∇ g3Bq̂⟩

=
1

α
⟨Apnk

−Bqnk
+Ap̂−Apnk

+Bqnk
−Bq̂,∇ g3Ap̂−∇ g3Bq̂⟩

≤ 1

α
||Apnk

−Bqnk
||||∇ g3Ap̂−∇ g3Bq̂⟩||+ 1

α
[⟨Ap̂−Apnk

+Bqnk
−Bq̂,∇ g3Ap̂−∇ g3Bq̂⟩] (3.34)

From (3.34), (3.20), and the fact that Apnk
⇀ p̂ and Bqnk

⇀ q̂, we conclude that Ap̂ = Bq̂. Consequently,
(p̂, q̂) ∈ Ω. It follows from Lemma 2.6 (i), that

lim sup
n→∞

[⟨pn − p∗,∇ g1p−∇ g1p
∗⟩+ ⟨qn − p∗,∇ g2q −∇ g2q

∗⟩]

= lim
k→∞

[⟨pnk
− p∗,∇ g1p−∇ g1p

∗⟩+ ⟨qnk
− q∗,∇ g2q −∇ g2q

∗⟩]

= ⟨p̂− p∗,∇ g1p−∇ g1p
∗⟩+ ⟨q̂ − q∗,∇ g2q −∇ g2q

∗⟩ ≤ 0. (3.35)

Therefore, from (3.19), (3.27), (3.28), (3.35) and Lemma 2.5 of [31] p. 243, we conclude that Γn → 0 as n → ∞.
Hence, by Lemma 2.4 of [20] p. 15, pn → p∗ and qn → q∗ as n → ∞.

Case 2. Suppose that there exists a subsequence {ni} of {n} such that

Γni
< Γni+1,∀i ∈ N. (3.36)

Then, by Lemma 3.1 of [17] p. 904, there exists a nondecreasing sequence {lm} in the set of natural numbers such
that lm → ∞ as m → ∞, Γlm ≤ Γlm+1 and Γm ≤ Γlm+1 for all m element of the set of natural numbers. Thus, from
(3.13), we obtain

lim
m→∞

||Aplm −Bqlm || = 0. (3.37)

Moreover, following the methods in Case 1, we get

lim
m→∞

||plm − uml+1|| = lim
m→∞

||qlm − vml+1|| = 0 (3.38)

and
lim

m→∞
[⟨plm − p∗,∇ g1p−∇ g1p

∗⟩+ ⟨qlm − p∗,∇ g2q −∇ g2q
∗⟩] ≤ 0. (3.39)

In addition, from (3.17) and (3.36), we obtain

Γlm ≤ ||plm − plm+1||||∇ g1p−∇ g1p
∗||+ ||qlm − qlm+1||||∇ g2q −∇ g2q

∗||
+⟨∇ g1p−∇ g1p

∗, plm − p∗⟩+ ⟨∇ g2q −∇ g2q
∗, qlm − q∗⟩. (3.40)

Therefore, from (3.38), (3.39) and (3.40), we get limm→∞ Γlm = 0. But from inequality (3.13), we obtain that
limm→∞ Γlm+1 = 0 and hence the fact that Γm ≤ Γlm+1 implies limm→∞ Γm = 0. Thus, by Lemma 2.4 of [20] p. 15
pm → p∗ and qm → q∗ as m → ∞. 2

If in Theorem 3.2, we assume E2 = E3 and B = I, then SEMIP reduces to SMIP for maximal monotone mappings
and the method of proof of Theorem 3.2 provides the following corollary for approximating a solution of SMIP for
maximal monotone mappings in real reflexive Banach spaces.

Corollary 3.3. Suppose conditions (C1), (C2), and (C5)− (C6) hold with B = I and E2 = E3. Let Ω = {(p∗, q∗) ∈
E1 × E2 : p∗ ∈ S−1(0) and q∗ ∈ T−1(0) such that Ap∗ = q∗} ≠ ∅. For any (p0, q0), (p, q) ∈ E1 × E2 , define an
iterative algorithm by

xn = Resg1S
(
∇ g∗1 [∇ g1pn − γnA

∗(∇ g3Apn −∇ g3qn)]
)
,

yn = Resg2T
(
∇ g∗2 [∇ g2qn − γn(∇ g3qn −∇ g3Apn)]

)
,

pn+1 = ∇ g∗1(αn∇ g1p+ (1− αn)∇ g1xn),

qn+1 = ∇ g∗2(αn∇ g2q + (1− αn)∇ g2yn).

(3.41)
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Then, the sequence generated by Algorithm 3.41 converges strongly to an element (p∗, q∗) = P g
Ω(p, q).

If in Theorem 3.2,, we assume E1 = E2 = E3 and A = I = B, then SEMIP reduces to common zero point of
maximal monotone mappings in real reflexive Banach spaces and the method of proof of Theorem 3.2 provides the
following corollary for approximating a solution of common zero point of maximal monotone mappings in real reflexive
Banach spaces.

Corollary 3.4. Suppose conditions (C1), (C2) and (C5) − (C6) hold with E1 = E2 = E3, A = I = B and Ω =
{(p∗, q∗) ∈ E1 × E2 : p∗ ∈ S−1(0) and q∗ ∈ T−1(0) such that p∗ = q∗} ≠ ∅. For any (p0, q0), (p, q) ∈ E1 × E2 , define
an iterative algorithm by

xn = Resg1S
(
∇ g∗1 [∇ g1pn − γn(∇ g3pn −∇ g3qn)]

)
,

yn = Resg2T
(
∇ g∗2 [∇ g2qn − γn(∇ g3qn −∇ g3pn)]

)
,

pn+1 = ∇ g∗1(αn∇ g1p+ (1− αn)∇ g1xn),

qn+1 = ∇ g∗2(αn∇ g2q + (1− αn)∇ g2yn).

(3.42)

Then, the sequence generated by Algorithm 3.42 converges strongly to an element (p∗, q∗) = P g
Ω(p, q).

4 Application to Minimization Problem

In this section, we apply our main result Theorem 3.2 to approximate a solution of SEMPP for convex functions
in real reflexive Banach spaces. Let f : E → R ∈ G(E) and k : E → R be a convex smooth function. We consider the
problem of approximating p∗ ∈ E1 and q∗ ∈ E2 such that

f(p∗) = min
p∈E1

{f(p)}, h(q∗) = min
q∈E2

{h(q)} and Ap∗ = Bq∗. (4.1)

This problem is equivalent, by Fermat’s rule, to the problem of finding p∗ ∈ E1 and q∗ ∈ E2 such that

0 ∈ ∂f(p∗) 0 ∈ ∇ k(q∗) and Ap∗ = Bq∗, (4.2)

where ∂f is a subdifferential of f and ∇ k is a gradient of k. We remark that both ∇ k and ∂g are maximal monotone
mappings (see, e.g., [3, 27]). One way of solving problem (4.2) is finding a solution of SEMIP for maximal monotone
mappings of S = ∇ ∂f and T = ∇ k as zero points of S and T are minimum point of f and k, respectively. Thus,
Algorithm 3.16 in Theorem 3.2 reduces to Algorithm 4.3 in Theorem 4.1 given below.

The method of proof of Theorem 3.2 provides the following theorem for approximating a solution of split equality
minimum pint problem (SEMPP) for convex functions in real reflexive Banach spaces.

Theorem 4.1. Suppose conditions (C1) and (C3)−(C6 hold. Let f : E1 → R ∈ G(E1) and h : E2 → R be a Gâteaux
differentiable function such that Ω = {(p∗, q∗) ∈ E1×E2 : f(p∗) = min

p∈E1

{f(p)}, k(q∗) = min
q∈E

{k(q)} and Ap∗ = Bq∗} ≠

∅. For any (p0, q0), (p, q) ∈ E1 × E2 , define an iterative algorithm by
xn = Resg1∂f

(
∇ g∗1 [∇ g1pn − γnA

∗(∇ g3Apn −∇ g3Bqn)]
)
,

yn = Resg2∇k

(
∇ g∗2 [∇ g2qn − γnB

∗(∇ g3Bqn −∇ g3Apn)]
)
,

pn+1 = ∇ g∗1(αn∇ g1p+ (1− αn)∇ g1xn),

qn+1 = ∇ g∗2(αn∇ g2q + (1− αn)∇ g2yn).

(4.3)

Then, the sequence generated by Algorithm 4.3 converges strongly to an element (p∗, q∗) = P g
Ω(p, q).

Proof . Consider S = ∂f and T = ∇ k. Then, we get that S and T are maximal monotone mappings and zero points
of S and T are minimum points of g and k, respectively. Thus, Theorem 3.2 provides the conclusion of Theorem 4.1.
2

If in Theorem 4.1, we assume E2 = E3 and B = I, then SEMIP reduced to split minimum point problem (SMPP)
for convex functions and the method of proof of Theorem 4.1 provides the following Corollary for approximating a
solution of SMPP for convex functions in real reflexive Banach spaces.
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Corollary 4.2. Suppose conditions (C1) and (C3) − (C6) hold with B = I and E2 = E3. Let f : E1 → R ∈ G(E1)
and k : E2 → R be a Gâteaux differentiable function such that Ω = {(p∗, q∗) ∈ E1 ×E2 : f(p∗) = min

p∈E1

{f(p)}, k(q∗) =

min
q∈E

{k(q)} and Ap∗ = q∗} ≠ ∅. For any (p0, q0), (p, q) ∈ E1 × E2 , define an iterative algorithm by


xn = Resg1∂f

(
∇ g∗1 [∇ g1pn − γnA

∗(∇ g3Apn −∇ g3qn)]
)
,

yn = Resg2∇k

(
∇ g∗2 [∇ g2qn − γn(∇ g3qn −∇ g3Apn)]

)
,

pn+1 = ∇ g∗1(αn∇ g1p+ (1− αn)∇ g1xn),

qn+1 = ∇ g∗2(αn∇ g2q + (1− αn)∇ g2yn).

(4.4)

Then, the sequence generated by Algorithm 4.4 converges strongly to an element (p∗, q∗) = P g
Ω(p, q).

If in Theorem 4.1, we assume E1 = E2 = E3 and A = I = B, then SEMIP reduced tho a common minimum
point problem (MPP) for convex functions and the method of proof of Theorem 4.1 provides the following corollary
for approximating a solution of common minimum point problem for convex functions in Banach spaces.

Corollary 4.3. Suppose conditions (C1) and (C3) − (C6) hold with E1 = E2 = E3 and A = I = B. Let f : E1 →
R ∈ F(E1) and k : E2 → R be a Gâteaux differentiable function such that Ω = {(p∗, q∗) ∈ E1 × E2 : g(p∗) =
min
p∈E1

{g(p)}, k(q∗) = min
q∈E

{k(q)} and p∗ = q∗} ≠ ∅. For any (p0, q0), (p, q) ∈ E1 × E2 , define an iterative algorithm by


xn = Resg1∂f

(
∇ g∗1 [∇ g1pn − γnA

∗(∇ g3Apn −∇ g3qn)]
)
,

yn = Resg2∇k

(
∇ g∗2 [∇ g2qn − γn(∇ g3qn −∇ g3Apn)]

)
,

pn+1 = ∇ g∗1(αn∇ g1p+ (1− αn)∇ g1xn),

qn+1 = ∇ g∗2(αn∇ g2q + (1− αn)∇ g2yn).

(4.5)

Then, the sequence generated by Algorithm 4.5 converges strongly to an element (p∗, q∗) = P g
Ω(p, q).

5 Numerical Examples

In this section, we provide numerical examples to illustrate the convergence of the sequence generated by the
proposed scheme. The following numerical examples verify the conclusion of Theorem 3.2.

Example 5.1. Let E = R2 with the standard topology. Define g1, g2, g3 : R2 → R, by gi(x) =
x2

2 , then gi(x
∗) = 1

2x
∗2

and ∇ gi(x) = x = ∇ gi(x
∗) = x∗ for all i = 1, 2, 3, where x ∈ R2. Let S, T,A,B : R2 → R2 be defined by S(x) =

(2x1, 3x2)− (1, 1), T (x) = (3x1, 2x2) + (1, 1), Ax = (2x1, 3x2) and Bx = −(3x1, 2x2) were x = (x1, x2) ∈ R2, then S
and T are maximal monotone mappings with S−1(0) = {( 12 ,

1
3 )}, T

−1(0) = {−( 13 ,
1
2 )} and A( 12 ,

1
3 ) = (1, 1) = B( 13 ,

1
2 ).

Thus, Ω ̸= ∅. Now, if we assume λ = 1, α = 1, (p, q) = ((0.5, 1), (0.2,−1)), αn = 1
n+105 for all n ≥ 0, and take different

initial points (p0, q0) = ((0, 1), (1,−1)), (p
′

0, q
′

0) = ((−1, 0), (0.5, 1)) and (p
′′

0 , q
′′

0 ) = ((0.5, 1), (0.4, 0.5), then in all cases,
the numerical experiment results using MATLAB provide that the sequence {(pn, qn)} generated by Algorithm 3.16
converges strongly to (p∗, q∗) = ((12 ,

1
3 ),−( 13 ,

1
2 )) (see, Figure 5.1).
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Figure 1: The graph of ||(pn, qn)− (p∗, q∗)|| versus number of iterations with different choices of (p0, q0)

In addition, we have sketched the difference term ||Apn −Bqn|| for each initial point. From the sketch we observe
that ||Apn −Bqn|| → 0 as n → ∞ (see, Figure 5.1).
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Figure 2: The graph of ||Apn −Bqn|| versus number of iterations with different choices of (p0, q0)

Example 5.2. Let E = l2 with the standard topology. Define g1, g2, g3 : l2 → l2, by gi(x) =
x2

2 , then gi(x
∗) = 1

2x
∗2

and ∇ gi(x) = x = ∇ gi(x
∗) = x∗ for all i = 1, 2, 3, where x ∈ l2. Let S, T,A,B : l2 → l2 be defined by

S(x) = (
2x1 − 1

2
,
3x2 − 1

4
,
4x3 − 1

8
,
x4

16
,
x5

32
, ...),

T (x) = (
x1 − 2

3
,
2x2 − 3

9
,
3x3 − 4

27
,
x4

81
,
x5

243
, ...),

Ax = (2x1, 3x2, 4x3, 0, 0, ...) and Bx = (
1

2
x1,

2

3
x2,

3

4
x3, 0, 0...),

were x = (x1, x2, x3, ...) ∈ l2, then the mappings S and T are maximal monotone with S−1(0) = {( 12 ,
1
3 ,

1
4 , 0, 0...)},

T−1(0) = {(2, 3
2 ,

4
3 , 0, 0...)} and

A(
1

2
,
1

3
,
1

4
, 0, 0...) = (1, 1, 1, 0, 0, ...) = B(2,

3

2
,
4

3
, 0, 0...).

Thus, Ω ̸= ∅. Now, if we assume λ = 1, α = 1, (p, q) = ((0, 0, 0, ...), (0, 0, 0, ...)),
αn = 1

n+106 for all n ≥ 0, and take different initial points

(p0, q0) = ((−1,−1,−2, 0, 0, ...), (−2,−1, 3, 0, 0...)),

(p
′

0, q
′

0) = ((2, 1,−1, 0, 0, ...), (1, 1, 1, 0, 0, ...))

and
(p

′′

0 , q
′′

0 ) = ((1, 0,−1, 0, 0, ...), (−1, 2, 0, 0, 0, ...),

then in all cases, the numerical experiment result provide that the sequence {(pn, qn)} generated by Algorithm 3.16
converges strongly to

(p∗, q∗) = ((
1

2
,
1

3
,
1

4
, 0, 0...), (2,

3

2
,
4

3
, 0, 0...)) (see, Figure 5.2).
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Figure 3: The graph of ||(pn, qn)− (p∗, q∗)|| versus number of iterations with different choices of (p0, q0)
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6 Conclusion

In this paper, we have established an iterative algorithm for solving SEMIP of maximal monotone mappings in real
reflexive Banach spaces. We also proved a strong convergence theorem without prior knowledge of norm operators
of the bounded linear operators A and B. We gave some applications of our main results. Numerical examples
which validate the conclusion of our main result were provided. Our result generalize and extend many results in the
literature. In particular, Theorem 3.2 extends the results of Moudafi [19], Gua et al. [14] and Wega and Zegeye [30]
from Hilbert spaces to real reflexive Banach spaces and Theorem 3.1 of Jolaoso et al. [15] from uniformly convex and
uniformly smooth Banach spaces to real reflexive Banach spaces.
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