Int. J. Nonlinear Anal. Appl. 15 (2024) 12, 369–384 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2024.28045.3793



# Fixed point for $\alpha_* - \psi - \beta_i$ -contractive set-valued mappings on Branciari $S_b$ -metric space

Minoo Vatani<sup>a</sup>, Jalal Hassanzadeh Asl<sup>a,\*</sup>, Madjid Eshaghi Gordji<sup>b</sup>, Mohammad Jahangiri Rad<sup>a</sup>

<sup>a</sup>Department of Mathematics, Faculty of Science, Tabriz Branch, Islamic Azad University, Tabriz, Iran <sup>b</sup>Department of Mathematics, Semnan University, Semnan, Iran

(Communicated by Mohammad Bagher Ghaemi)

## Abstract

In 1984, Khan et al. established some fixed point theorems in complete and compact metric spaces by altering distance functions. In 2020, Lotfy et al. introduced the  $\alpha_*$ - $\psi$ -common rational type mappings on generalized metric spaces applied to fractional integral equations. In 2022, Roy et al. described the notion of Branciari  $S_b$ -metric space and related fixed point theorems with an application. In this paper, we introduce the notion of fixed point theorems for  $\alpha_*$ - $\psi$ - $\beta_i$ -contractive set-valued mappings on Branciari  $S_b$ -metric space with application to fractional integral equations.

Keywords:  $\alpha_* - \psi - \beta_i$ -contractive, Branciari  $S_b$ -metric space, Fixed points, Fractional integral equations 2020 MSC: Primary 47H10; Secondary 47H10

# 1 Introduction

We know that the fixed point theory has many applications and was extended by several authors from different views (see for example [1]-[22]). Samet et al [20] introduced the notion of  $\alpha$ - $\psi$ -contractive type mappings. Hassanzadeh Asl et al [11, 12] introduced the notion of common fixed point theorems for  $\alpha_*$ - $\psi$ -contractive multifunction. Farajzadeh et al [8] introduced the fixed point theorems for  $(\xi, \alpha, \eta)$ -expansive mappings in complete metric spaces. Gungor et al established fixed point theorems on orthogonal metric spaces via altering distance functions. Lotfy et al [16] introduced the notion of  $\alpha_*$ - $\psi$ -common rational type mappings on generalized metric spaces with application to fractional integral equations. Roy et al [18] described the notion of Branciari  $S_b$ -metric space and related fixed point theorems with an application. This paper aims to introduce the notion of fixed point theorems for  $\alpha_*$ - $\psi$ - $\beta_i$ -contractive set-valued mappings on Branciari  $S_b$ -metric space with application to fractional integral equations.

## 2 Preliminaries

In this section, we list some fundamental definitions that are useful tool in consequent analysis. Let  $2^X$  denote the family of all nonempty subsets of X.

<sup>\*</sup>Corresponding author

Email addresses: vataniminoo@yahoo.com (Minoo Vatani), jalal.hasanzadeh1720gmail.com & j\_hasanzadeh@iaut.ac.ir (Jalal Hassanzadeh Asl), madjid.eshaghi@gmail.com & meshaghi@semnan.ac.ir (Madjid Eshaghi Gordji), jahangir28340gmail.com & jahangir@iaut.ac.ir (Mohammad Jahangiri Rad)

**Definition 2.1.** ([15]) A function  $\psi : [0, +\infty) \to [0, +\infty)$  is called an altering distance function if the following properties are satisfied:

 $(\psi_1) \ \psi(0) = 0 \text{ and } \psi(t) > 0 \text{ for all } t \in (0, +\infty);$ 

 $(\psi_2) \ \psi$  is continuous and no-decreasing;

 $(\psi_3) \sum_{n=1}^{+\infty} \psi^n(t) < \infty;$ 

 $(\psi_4) \ \psi(t_1 + t_2) \le \psi(t_1) + \psi(t_2);$ 

for all  $t_1, t_2 \in (0, +\infty)$ .

These functions are known in the literature as (c)-comparison functions. It is easily proved that if  $\psi$  is a (c)-comparison function, then  $\psi(t) \leq t$  for all t > 0. We denote  $\Psi$  as the set of altering distance function  $\psi$ . The extended line is the ordered space  $[-\infty; +\infty]$ , considering of all points of the number line  $\mathbb{R}$  and two points, denoted by  $-\infty, +\infty$  with the usual order relation for points of  $\mathbb{R}$ .

**Definition 2.2.** ([4, 7]) Let X be a nonempty set and  $\rho: X \times X \to [0, \infty]$  be a mapping. Then  $\rho$  is said to be a rectangular metric if it satisfies the following conditions, for all  $x, y \in X$  and all distinct  $u, v \in X$  each of which is different from x and y:

 $(GMS1) \rho(x, y) = 0$  if and if x = y;

(GMS2)  $\rho(x, y) = \rho(y, x)$  for any points  $x, y \in X$ ;

 $(GMS3) \ \rho(x,y) \leq \rho(x,u) + \rho(u,v) + \rho(v,y)$  for any points  $x, y, u\&v \in X$  considering that if  $d(x,u) = \infty$  or  $\rho(u,v) = \infty$  or  $d(v,y) = \infty$  then  $\rho(x,u) + \rho(u,v) + d(v,y) = \infty$ .

In this case the map  $\rho$  is called a generalized and abbreviated as GM. Here, the pair  $(X, \rho)$  is called a rectangular metric space and abbreviated as GMS. There are several rectangular metric spaces which are not usual metric spaces. Let us recall the following example.

In the above definition, if  $\rho$  satisfies only GMS1 and GMS2, then it is called a semi-metric.

**Example 2.3.** ([13]) Let  $U = \{0, 2\}$ ,  $V = \{\frac{1}{n} : n \ge 1 \text{ and } X = U \cup V\}$ . Define  $\rho : X^2 \to [0, \infty]$  by

$$\rho(x,y) = \begin{cases}
0 & \text{if } x = y, \\
1 & \text{if } x \neq y \text{ and either } x, y \in U \text{ or } x, y \in V, \\
y & \text{if } x \in U \text{ and } y \in V, \\
x & \text{if } x \in V \text{ and } y \in U.
\end{cases}$$

Then  $\rho$  is a rectangular metric on X but not an usual metric space.

$$\rho(0,2) = 1 > \rho(0,\frac{1}{3}) + \rho(\frac{1}{3},2) = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

Sedghi et al. [21] introduced a new type of metric structure consisting of three variables known as S-metric. Subsequently Souayah and Mlaiki [22] investigated the notion of  $S_b$ -metric spaces which generalized the concept of S-metric spaces.

**Definition 2.4.** ([19, 21]) Let X be a nonempty set. An S-metric on X is a function  $S: X^3 \to [0, \infty)$  that satisfies the following conditions, for all  $x, y, z, t \in X$ :

(i) S(x, y, z) = 0 if and if x = y = z;

(*ii*)  $S(x, y, z) \le S(x, x, t) + S(y, y, t) + S(z, z, t).$ 

The pair (X, S) is called an S-metric space.

#### Example 2.5. ([21])

(1) Let  $\mathbb{R}$  be the real line and  $X = \mathbb{R}^n$  and ||.|| a norm on X. Then S(x, y, z) = ||y + z - 2x|| + ||y - z|| is an S-metric on X.

(2) Let  $\mathbb{R}$  be the real line. Then S(x, y, z) = |x - z| + |y - z| for all  $x, y, z \in \mathbb{R}$  is an S-metric on  $\mathbb{R}$ . This S-metric on  $\mathbb{R}$  is called the usual S-metric on  $\mathbb{R}$ .

**Definition 2.6.** ([17, 22]) Let X be a nonempty set and let  $s \ge 1$  be a given real number. A function  $S_b : X^3 \to [0, \infty)$  is said to be  $S_b$ -metric if and if for all  $x, y, z, t \in X$ : the following conditions hold:

(*i*)  $S_b(x, y, z) = 0$  if and if x = y = z;

$$(ii) S_b(x, y, z) \le s[S_b(x, x, t) + S_b(y, y, t) + S_b(z, z, t)].$$

The pair  $(X, S_b)$  is called an  $S_b$ -metric space.

**Example 2.7.** ([22]) Let X be a nonempty set and  $card(X) \ge 5$ . suppose  $X = X_1 \cup X_2$  a partition of X such that  $card(X_1) \ge 4$ . Let  $s \ge 1$ , then

$$S_b(x, y, z) = \begin{cases} 0 & \text{if } x = y = z, \\ 5 & \text{if } x = 1 = y & \text{and} & z = 2, \\ \frac{1}{n+1} & \text{if } x = 1 = y & \text{and} & z \ge 3, \\ \frac{1}{n+2} & \text{if } x = 2 = y & \text{and} & z \ge 3, \\ 3 & \text{otherwise.} \end{cases}$$

for all  $x, y, z, t \in X$ . Then  $S_b$  is an  $S_b$ -metric on X with coefficient s.

**Definition 2.8.** ([18]) Let X be a nonempty set and  $\lambda : X^3 \to \mathbb{R}^+_0$  be a function. Then  $\lambda$  is said to be Branciari  $S_b$ -metric if it satisfies the following condition:

(i)  $\lambda(x, y, z) = 0$  if and if x = y = z;

(*ii*) for any  $x, y, z \in X$  and for  $a, b \in X \setminus \{x, y, z\}$  with  $a \neq b$  we have

$$\lambda(x, y, z) \le k[\lambda(x, x, a) + \lambda(y, y, a) + \lambda(z, z, b) + \lambda(a, b, b)]$$

$$(2.1)$$

where  $k \geq 1$ . The pair  $(X, \lambda)$  is called Branciari  $S_b$ -metric space.

**Definition 2.9.** ([18]) A Branciari  $S_b$ -metric on a nonempty set X is said to be symmetric if  $\lambda(x, x, y) = \sigma(y, y, x)$  for all  $x, y \in X$ .

**Proposition 2.10.** ([18]) (*i*) Let (X, S) be an S-metric spaces (see definition (2.4)). The X is also a Branciari  $S_b$ -metric space for k = 2.

(*ii*) Let  $(X, S_b)$  be an  $S_b$ -metric space with coefficient  $s \ge 1$  (see definition (2.8)). The X is also a Branciari  $S_b$ -metric space for  $k = 2s^2$ .

**Proposition 2.11.** ([18]) Any S-metric space or  $S_b$ -metric space is also a Branciari  $S_b$ -metric space but there are several Branciari  $S_b$ -metric spaces which are neither S-metric spaces nor  $S_b$ -metric spaces.

**Example 2.12.** ([18]) Let  $X = \mathbb{N}$  and  $\lambda : X^3 \to \mathbb{R}^+_0$  be defined by

$$\lambda(x, y, z) = \begin{cases} 0 & \text{if } x = y = z, \\ 5 & \text{if } x = 1 = y & \text{and} & z = 2, \\ \frac{1}{n+1} & \text{if } x = 1 = y & \text{and} & z \ge 3, \\ \frac{1}{n+2} & \text{if } x = 2 = y & \text{and} & z \ge 3, \\ 3 & \text{otherwise.} \end{cases}$$

for all  $x, y, z, t \in X$ . Also we take  $\lambda(x, x, y) = \lambda(y, y, x)$  for all  $x, y \in X$ . Then  $\lambda$  is a symmetric  $S_b$ -metric space on X for  $k = \frac{5}{3}$  but it is nether an S-metric nor an  $S_b$ -metric for any  $k \ge 1$ .

**Definition 2.13.** ([18]) Let  $(X, \lambda)$  be a Branciari  $S_b$ -metric space. Then

(i) A sequence  $\{x_n\}$  in X is said to be Branciari convergent to some  $z \in X$  if  $\lambda(x_n, x_n, z) \to 0$  as  $n \to \infty$ .

(*ii*) A sequence  $\{x_n\}$  in X is said to be Branciari cauchy if  $\lambda(x_n, x_n, x_m) \to 0$  as  $n, m \to \infty$ .

(*ii*) X is said to be Branciari complete if every Branciari cauchy sequence in X is Branciari convergent to some element in X.

**Definition 2.14.** We say that  $(X, \lambda)$  has the property  $\alpha$ -regular Branciari  $S_b$ -metric space if, either

(i)  $\{x_n\}$  is a monotone Branciari sequences in X such that  $\alpha(x_n, x_n, x_{n+1}) \ge 1$  for all n and  $x_n \to x \in X$  as  $n \to \infty$ , then there exists a Branciari subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that  $\alpha(x_{n_k}, x_{n_k}, x) \ge 1$  for all k.

(*ii*)  $\{x_n\}$  is a monotone Branciari sequences in X such that  $\alpha(x_{n+1}, x_{n+1}, x_n) \ge 1$  for all n and  $x_n \to x \in X$  as  $n \to \infty$ , then there exists a Branciari subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that  $\alpha(x, x, x_{n_k}) \ge 1$  for all k.

or

**Definition 2.15.** Let  $(X, \lambda)$  be a Branciari  $S_b$ -metric spaces. If  $T: X \to 2^X$  is a set-valued mapping, then  $x \in X$  is called fixed point for T if and only if  $x \in F(x)$ . The set

$$Fix(T) := \{x \in X \text{ such that } x \in Tx\}$$

is called the fixed point set of T.

**Proposition 2.16.** ([14, 7]) Suppose that  $\{x_n\}$  is a Branciari Cauchy sequence in a  $(X, \lambda)$  be a Branciari  $S_b$ -metric space with  $\lim_{n\to\infty} \lambda(x_n, x_n, u) = 0$  where  $u \in X$ . Then

$$\lim_{n \to \infty} \lambda(x_n, x_n, z) = \lambda(u, u, z)$$

for all  $z \in X$ . In particular, the Branciari sequence  $\{x_n\}$  dose not Branciari converge to z if  $z \neq u$ .

**Definition 2.17.** Let  $(X, \lambda)$  be a Branciari  $S_b$ -metric space. A set-valued mapping  $T: X \to 2^X$  is called Branciari order closed if for monotone Branciari sequences  $x_n \in X$  and  $y_n \in Tx_n$ , with  $x_n \to x$  and  $y_n \to y$ , implies  $y \in Tx$ .

**Definition 2.18.** Let  $(X, \lambda)$  be a Branciari  $S_b$ -metric space and  $T: X \to 2^X$  with given set-valued,  $\alpha: X \times X \times X \to [0, +\infty), \ \alpha_*: 2^X \times 2^X \times 2^X \to [0, +\infty), \ \alpha_*(A, A, B) = \inf\{\alpha(a, a, b) : a \in A, b \in B\}, \ \psi \in \Psi, \ \Lambda(s, s, Ts) = \inf\{\lambda(s, s, z)/z \in Ts\}, \ H_{\lambda}$  is the Hausdorff metric

$$H_{\lambda}(Tx,Tx,Ty) = \max\{\sup_{a \in Tx} \Lambda(a,a,Ty), \sup_{b \in Ty} \Lambda(Tx,Tx,b)\}$$

 $\beta_i : \mathbb{R}^+ - \{0\} \to [0,1)$  be four decreasing functions such that  $\sum_{i=1}^4 \beta_i(t) \leq 1$  for every t > 0. One says that T is  $\alpha_* - \psi - \beta_i$ -contractive set-valued mappings whenever

$$\alpha_*(Tx, Tx, Ty)\psi(H_\lambda(Tx, Tx, Ty)) \leq \beta_1(\lambda(x, x, y))\psi(\lambda(x, x, y)) + \beta_2(\lambda(x, x, y))\psi(\Lambda(x, x, Tx)) + \beta_3(\lambda(x, x, y))\psi(\Lambda(y, y, Ty)) + \beta_4(\lambda(x, x, y))\min\{\psi(\Lambda(x, x, Ty), \psi(\Lambda(y, y, Tx))\}, (2.2)\}$$

One says that T are an  $\alpha_*$  admissible if

$$\alpha(x, x, y) \ge 1 \Rightarrow \alpha_*(Tx, Tx, Ty) \ge 1 \tag{2.3}$$

for all  $x, y \in X$ .

**Definition 2.19.** A subset  $B \subseteq X$  is said to be an approximation if for each given  $y \in X$ , there exists  $z \in B$  such that  $\Lambda(B, B, y) = \lambda(z, z, y)$ .

**Definition 2.20.** A set-valued mapping  $T : X \longrightarrow 2^X$  is said to have an approximate values in X if Tx is an approximation for each  $x \in X$ .

## 3 Main result

Some fixed point theorems in symmetric Branciari  $S_b$ -metric space.

**Theorem 3.1.** Let  $(X, \lambda)$  be a complete symmetric Branciari  $S_b$ -metric space (not necessarily complete metric space),  $T: X \to 2^X$  is  $\alpha_* \cdot \psi \cdot \beta_i$ -Branciari contractive set-valued mappings satisfies the following conditions:

(i) T is  $\alpha_*$ -admissible;

(*ii*) there exists  $x_0 \in X$  such that

$$\alpha_*(\{x_0\}, \{x_0\}, T\{x_0\}) \ge 1, \alpha_*(\{x_0\}, \{x_0\}, T^2\{x_0\}) \ge 1;$$

(*iii*)  $(X, \lambda)$  has the property  $\alpha$ -regular Branciari  $S_b$ -metric space.

Then T has fixed point  $x^* \in X$ . Further, for each  $x_0 \in X$ , the iterated Branciari sequences  $\{x_n\}$  with  $x_{n+1} \in Tx_n$ Branciari converges to the fixed point of T. **Proof**. Let  $x_0 \in X$  such that  $\alpha_*(\{x_0\}, \{x_0\}, Tx_0) \ge 1$ . Define the sequence  $\{x_n\}$  in X by  $x_{n+1} \in Tx_n$  for all  $n \in \mathbb{N}_0$ . If  $x_{n_0} = x_{n_0+1}$  for some  $n_0 > 1$ , then  $x^* = x_{n_0}$  are a fixed point for T. So, we can assume that  $x_n \notin Tx_n$  for all  $n \in \mathbb{N}_0$ . Since T is  $\alpha_*$ -admissible, we have

$$\alpha(x_0, x_0, x_1) \ge \alpha_*(\{x_0\}, \{x_0\}, Tx_0) \ge 1 \Rightarrow \alpha_*(Tx_0, Tx_0, Tx_1) \ge 1;$$
  

$$\alpha(x_1, x_1, x_2) \ge \alpha_*(Tx_0, Tx_0, Tx_1) \ge 1 \Rightarrow \alpha_*(Tx_1, Tx_1, Tx_2) \ge 1;$$
  

$$\alpha(x_2, x_2, x_3) \ge \alpha_*(Tx_1, Tx_1, Tx_2) \ge 1 \Rightarrow \alpha_*(Tx_2, Tx_2, Tx_3) \ge 1.$$

Inductively, we have

$$\alpha(x_n, x_n, x_{n+1}) \ge 1 \Rightarrow \alpha_*(Tx_n, Tx_n, Tx_{n+1}) \ge 1$$

### for all $n \in \mathbb{N}_0$ . Similarly, we have

$$\begin{aligned} \alpha(x_0, x_0, x_2) &\geq \alpha_*(\{x_0\}, \{x_0\}, T^2 x_0) \geq 1 \Rightarrow \alpha_*(T x_0, T x_0, T x_2) \geq 1; \\ \alpha(x_1, x_1, x_3) &\geq \alpha_*(T x_0, T x_0, T x_2) \geq 1 \Rightarrow \alpha_*(T x_1, T x_1, T x_3) \geq 1; \\ \alpha(x_2, x_2, x_4) &\geq \alpha_*(T x_1, T x_1, T x_3) \geq 1 \Rightarrow \alpha_*(T x_2, T x_2, T x_4) \geq 1. \end{aligned}$$

Inductively, we have

...

-

$$\alpha(x_n, x_n, x_{n+2}) \ge 1 \Rightarrow \alpha_*(Tx_n, Tx_n, Tx_{n+2}) \ge 1$$

for all  $n \in \mathbb{N}_0$ . Without loss of generality, we may assume that  $T: X \to 2^X$  be a  $\alpha_* - \psi - \beta_i$ -contractive set-valued mappings. Consider equation (2.2), with  $x = x_{2n+1}$  and  $y = x_{2n+2}$ . Clearly, we have

Then

$$(1 - \beta_3(\lambda(x_{2n+1}, x_{2n+1}, x_{2n+2}))\psi(\lambda(x_{2n+1}, x_{2n+1}, x_{2n+2})) \le \\ \beta_1(\lambda(x_{2n}, x_{2n}, x_{2n+1})) + \beta_2(\lambda(x_{2n}, x_{2n}, x_{2n+1}))\psi(\lambda(x_{2n}, x_{2n}, x_{2n+1}))$$

$$(3.2)$$

-

and

$$\psi(\lambda(x_{2n+1}, x_{2n+1}, x_{2n+2})) \le \frac{(\beta_1(\lambda(x_{2n}, x_{2n}, x_{2n+1})) + \beta_2(\lambda(x_{2n}, x_{2n}, x_{2n+1})))}{(1 - \beta_3(\lambda(x_{2n+1}, x_{2n+1}, x_{2n+2}))}\psi(\lambda(x_{2n}, x_{2n}, x_{2n+1}))$$
(3.3)

Thus

$$\psi(\lambda(x_{2n+1}, x_{2n+1}, x_{2n+2})) \le \psi(\lambda(x_{2n}, x_{2n}, x_{2n+1})).$$
(3.4)

for all  $n \in \mathbb{N}_0$ . Similarly,

$$\psi(\lambda(x_{2n}, x_{2n}, x_{2n+1})) \le \psi(\lambda(x_{2n-1}, x_{2n-1}, x_{2n})).$$
(3.5)

for all  $n \in \mathbb{N}_0$ . We have

$$\psi(\lambda(x_{n+1}, x_{n+1}, x_{n+2})) \le \psi(\lambda(x_n, x_n, x_{n+1})) \le \dots \le \psi^n(\lambda(x_0, x_0, x_1)),$$
(3.6)

for all  $n \in \mathbb{N}$ . From the property of  $\psi$ , we conclude that

$$\lambda(x_n, x_n, x_{n+1}) \le \lambda(x_{n-1}, x_{n-1}, x_n), \tag{3.7}$$

for all  $n \in \mathbb{N}$ , it is clear that

$$\lim_{n \to \infty} \lambda(x_{n+1}, x_{n+1}, x_{n+2}) = 0.$$
(3.8)

Consider equation (2.2), with  $x = x_{2n-1}$  and  $y = x_{2n+1}$ . Clearly, we have

Define  $a_{2n} = \lambda(x_{2n-1}, x_{2n-1}, x_{2n+1})$  and  $b_{2n} = \lambda(x_{2n}, x_{2n}, x_{2n+1})$ . Then

$$\psi(a_{2n}) \le \beta_1(a_{2n-1})\psi(a_{2n-1}) + \beta_2(b_{2n-1})\psi(b_{2n-1}) + \beta_3(b_{2n})\psi(b_{2n}) + \beta_4(a_{2n})\min\{\psi(\lambda(x_{2n-2}, x_{2n-2}, x_{2n+1}), \psi(b_{2n-1})\}.$$
(3.10)

From the (3.8)  $\lim_{n\to\infty} b_{2n} = \lim_{n\to\infty} \lambda(x_{2n}, x_{2n}, x_{2n+1}) = 0$ . We get

$$\psi(a_{2n}) \le \beta_1(a_{2n-1})\psi(a_{2n-1}) \le \psi(a_{2n-1}) \tag{3.11}$$

and hence,

$$\lim_{n \to \infty} a_{2n} = \lim_{n \to \infty} d(x_{2n-1}, x_{2n+1}) = 0 \Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} \lambda(x_{n-1}, x_{n-1}, x_{n+1}) = 0.$$

Now, we shall prove that  $x_n \neq x_m$  for all  $n \neq m$ . Assume on the contrary that  $x_n = x_m$  for some  $m, n \in \mathbb{N}$  with  $n \neq m$ . Since  $d(x_p, x_{p+1}) > 0$  for each  $p \in \mathbb{N}$ , without loss of generality, we may assume that m > n + 1, m = 2k and n = 2l for  $k, l \in \mathbb{N}$ . Substitute again  $x = x_{2l} = x_{2k}$  and  $y = x_{2l+1} = x_{2k+1}$  in (2.2), (3.7) which yields

$$\begin{split} \psi(\lambda(x_{2l}, x_{2l}, x_{2l+1})) &= \psi(\lambda(x_{2k}, x_{2k}, x_{2k+1})) \\ &\leq \alpha_*(H_\lambda(Tx_{2k-1}, Tx_{2k-1}, Tx_{2k}))\psi(H_\lambda(Tx_{2k-1}, Tx_{2k-1}, Tx_{2k})) \\ &\leq \beta_1(\lambda(x_{2k-1}, x_{2k-1}, x_{2k}))\psi(\lambda(x_{2k-1}, x_{2k-1}, Tx_{2k-1})) \\ &+ \beta_2(\Lambda(x_{2k}, x_{2k}, Tx_{2k-1}))\psi(\Lambda(x_{2k}, x_{2k}, Tx_{2k-1})) \\ &+ \beta_3(\Lambda(x_{2k}, x_{2k}, Tx_{2k}))\psi(\Lambda(x_{2k}, x_{2k}, Tx_{2k-1}), \psi(\Lambda(x_{2k-1}, x_{2k-1}, Tx_{2k}))) \\ &\beta_4(H_\lambda(Tx_{2k}, Tx_{2k}, Tx_{2k-1}, x_{2k-1}))\min\{\psi(\Lambda(x_{2k}, x_{2k}, Tx_{2k-1}), \psi(\Lambda(x_{2k-1}, x_{2k-1}, Tx_{2k})))\} \\ &\leq \beta_1(\lambda(x_{2k-1}, x_{2k-1}, x_{2k}))\psi(\lambda(x_{2k-1}, x_{2k-1}, x_{2k})) \\ &+ \beta_2(\lambda(x_{2k-1}, x_{2k-1}, x_{2k}))\psi(\lambda(x_{2k}, x_{2k}, x_{2k}, x_{2k})) \\ &+ \beta_3(\lambda(x_{2k}, x_{2k}, x_{2k}, x_{2k+1}))\psi(\lambda(x_{2k}, x_{2k}, x_{2k}), \psi(\lambda(x_{2k-1}, x_{2k-1}, x_{2k+1}))) \\ &\leq \beta_1(\lambda(x_{2k-1}, x_{2k-1}, x_{2k}))\psi(\lambda(x_{2k-1}, x_{2k-1}, x_{2k})) \\ &+ \beta_2(\lambda(x_{2k-1}, x_{2k-1}, x_{2k}))\psi(\lambda(x_{2k-1}, x_{2k-1}, x_{2k}))\psi(\lambda(x_{2k}, x_{2k}, x_{2k}, x_{2k}, x_{2k})) \\$$

which is impossible. From this it follows that  $x_n \neq x_m$  for all  $n, m \quad (n \neq m) \in \mathbb{N}$ .

Case I: Suppose that  $S_n = \lambda(x_n, x_n, x_{n+1}), \ \psi(S_n) = \alpha_n S_n$  and  $\alpha \in (0, \frac{1}{\sqrt{k}})$ . Then

$$S_{n} = \lambda(x_{n}, x_{n}, x_{n+1}) \leq \psi(\lambda(x_{n-1}, x_{n-1}, x_{n})) = \alpha_{n-1}\lambda(x_{n-1}, x_{n-1}, x_{n})$$
  
$$\leq \alpha_{n-1}\psi(\lambda(x_{n-2}, x_{n-2}, x_{n-1})) \leq \dots \leq \alpha_{n-1}\alpha_{n-2}\dots\alpha_{1}\alpha_{0}\lambda(x_{0}, x_{0}, x_{1}) = \alpha^{n}S_{0}$$
(3.13)

Similarly, we have

$$S_{n}^{*} = \lambda(x_{n}, x_{n}, x_{n+2}) \leq \psi(\lambda(x_{n-1}, x_{n-1}, x_{n+1})) = \alpha_{n-1}\lambda(x_{n-1}, x_{n-1}, x_{n+1})$$
  
$$\leq \alpha_{n-1}\psi(\lambda(x_{n-2}, x_{n-2}, x_{n})) \leq \dots \leq \alpha_{n-1}\alpha_{n-2}\dots\alpha_{1}\alpha_{0}\lambda(x_{0}, x_{0}, x_{1}) = \alpha^{n}S_{0}^{*}$$
(3.14)

for all  $n \ge 1$  and  $\alpha = \max_{0 \le i \le n-1} \{\alpha_i\}$ . Now, we shall prove that  $\{x_n\}$  is a Branciari Cauchy sequence, that is,

$$\lim_{n \to \infty} \lambda(x_n, x_n, x_{n+l}) = 0$$

for all  $l \in \mathbb{N}$ . We have already proved the cases for l = 1 and l = 2 in (3.7) and (3.10), respectively. Now for l = 2m + 1, where  $m \ge 1$ . Using the inequality (2.1), we have

$$\begin{aligned} \lambda(x_{n}, x_{n}, x_{n+1}) &\leq k[\lambda(x_{n}, x_{n}, x_{n+1}) + \lambda(x_{n}, x_{n}, x_{n+1}) + \lambda(x_{n+1}, x_{n+1}, x_{n+2}) \\ &+\lambda(x_{n+1}, x_{n+1}, x_{n+2})] \\ &= 2k\lambda(x_{n}, x_{n}, x_{n+1}) + k\lambda(x_{n+1}, x_{n+2}) + k\lambda(x_{n+1}, x_{n+1}, x_{n+2})] \\ & Symmetric} 2k\lambda(x_{n}, x_{n}, x_{n+1}) + k\lambda(x_{n+1}, x_{n+1}, x_{n+2}) + k\lambda(x_{n+2}, x_{n+2}, x_{n+1}) \\ &\leq 2k\lambda(x_{n}, x_{n}, x_{n+1}) + k\lambda(x_{n+1}, x_{n+1}, x_{n+2}) + k(k[\lambda(x_{n+2}, x_{n+2}, x_{n+3}) \\ &+\lambda(x_{n+2}, x_{n+2}, x_{n+3}) + \lambda(x_{n+1}, x_{n+1}, x_{n+4}) + \lambda(x_{n+3}, x_{n+3}, x_{n+4})]) \\ & Symmetric} 2k\lambda(x_{n}, x_{n}, x_{n+1}) + k\lambda(x_{n+1}, x_{n+1}, x_{n+2}) + 2k^{2}\lambda(x_{n+2}, x_{n+2}, x_{n+3}) \\ &+k^{2}\lambda(x_{n+3}, x_{n+3}, x_{n+4}) + k^{2}\lambda(x_{n+4}, x_{n+4}, x_{n+2m+1}) \\ &\leq \cdots \\ &\vdots \\ &\leq 2k[\lambda(x_{n}, x_{n}, x_{n+1}) + \lambda(x_{n+1}, x_{n+1}, x_{n+2})] + 2k^{2}[\lambda(x_{n+2}, x_{n+2}, x_{n+3}) \\ &+\lambda(x_{n+3}, x_{n+3}, x_{n+4})] \\ &+\cdots + 2k^{m}[\lambda(x_{n+2m-2}, x_{n+2m-2}, x_{n+2m-1}) + \lambda(x_{n+2m-1}, x_{n+2m-1}, x_{n+2m})] \\ &+k^{m}\lambda(x_{n+2m}, x_{n+2m}, x_{n+2m+1}) \\ &\leq 2[\{k(\alpha_{0}^{n} + \alpha_{0}^{n+1}) + k^{2}(\alpha_{0}^{n+2} + \alpha_{0}^{n+3}) + \cdots + k^{m}(\alpha_{0}^{n+2m-2} + \alpha_{0}^{n+2m-1})] \\ &+k^{m}\alpha_{0}^{n+2m}]S_{0} = 2k(1 + \alpha_{0})\alpha_{0}^{n}[1 + k\alpha_{0}^{2} + \cdots + k^{m}\alpha_{0}^{2m}]S_{0} = \frac{2k(1 + \alpha_{0}}{1 + k\alpha_{0}^{2}}\alpha_{0}^{n}S_{0} \end{aligned}$$

for all  $n \ge 1$ . Also for l = 2m we get

$$\lambda(x_n, x_n, x_{n+2m}) \le \dots \le \frac{2k(1+\alpha_0)}{1+k\alpha_0^2} \alpha_0^n S_0 + \alpha_0^n (k\alpha^2)^{m-1} S_0^*$$
(3.16)

for all  $n \ge 1$ . Thus we proved that  $\{x_n\}$  is a Branciari Cauchy sequence in the complete metric space  $(X, \lambda)$ , there exists  $x^* \in X$  such that

$$\lim_{n \to \infty} \lambda(x_n, x_n, x^*) = 0$$

by  $(X, \lambda)$  has the property  $\alpha$ -regular Branciari  $S_b$ -metric space. There exists a subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  such that

$$\alpha_*(\{x_{2n_k+1}\}, \{x_{2n_k+1}\}, \{x^*\}) \ge \alpha_*(Tx_{2n_k}, Tx_{2n_k}, Tx^*) \ge 1 \text{ for all } k.$$
(3.17)

Thus

$$\begin{split} \psi(\Lambda(x^*, x^*, Tx^*)) &\leq \psi(\lambda(x^*, x^*, x_{2n_k+1})) + \psi(\Lambda(x_{2n_k+1}, x_{2n_k}, Tx^*)) \\ &\leq \psi(\lambda(x^*, x^*, x_{2n_k+1})) + \alpha_*(Tx_{2n_k}, Tx_{2n_k}, Tx^*)\psi(H_\lambda(Tx_{2n_k}, Tx_{2n_k}, Tx^*)) \\ &\leq \psi(\lambda(x^*, x^*, x_{2n_k+1})) + \beta_1(\lambda(x_{2n_k}, x_{2n_k}, x^*))\psi(\lambda(x_{2n_k}, x_{2n_k}, x^*)) \\ &+ \beta_2(\lambda(x_{2n_k}, x_{2n_k}, x^*))\psi(\Lambda(x_{2n_k}, x_{2n_k}, Tx_{2n_k})) + \beta_3(\lambda(x_{2n_k}, x_{2n_k}, x^*))\psi(\Lambda(x^*, x^*, Tx^*)) \\ &\beta_4(\lambda(x_{2n_k}, x_{2n_k}, x^*))\min\{\psi(\Lambda(x_{2n_k}, x_{2n_k}, Tx^*), \psi(\Lambda(x^*, x^*, Tx_{2n_k}))\} \\ &\leq \psi(\lambda(x^*, x^*, x_{2n_k+1})) + \beta_1(\lambda(x_{2n_k}, x_{2n_k}, Tx^*))\psi(\lambda(x_{2n_k}, x_{2n_k}, x^*)) \\ &+ \beta_2(\lambda(x_{2n_k}, x_{2n_k}, x_{2n_k+1}))\psi(\lambda(x_{2n_k}, x_{2n_k}, x_{2n_k+1})) + \beta_3(\lambda(x_{2n_k}, x_{2n_k}, x^*))\psi(\Lambda(x^*, x^*, Tx^*)) \\ &\beta_4(\lambda(x_{2n_k}, x_{2n_k}, x^*))\min\{\psi(\Lambda(x_{2n_k}, x_{2n_k}, Tx^*), \psi(\lambda(x^*, x^*, x_{2n_k+1})))\} \\ &\leq \psi(0) + \beta_1(\lambda(x_{2n_k}, x_{2n_k}, x^*))\psi(0) + \beta_2(\lambda(x_{2n_k}, x_{2n_k}, x_{2n_k}, x^*))\min\{\psi(\Lambda(x_{2n_k}, x_{2n_k}, x_{2n_k}, x^*))\min\{\psi(\Lambda(x_{2n_k}, x_{2n_k}, x_{2n_k}, x^*), \psi(0)\} \\ &\leq \beta_3(\lambda(x_{2n_k}, x_{2n_k}, x^*))\psi(\Lambda(x^*, x^*, Tx^*))\beta_4(\lambda(x_{2n_k}, x_{2n_k}, x^*))\min\{\psi(\Lambda(x_{2n_k}, x_{2n_k}, x^*), \psi(0)\} \\ &\leq \psi(\Lambda(x^*, x^*, Tx^*)) \end{split}$$
(3.18)

for all k, which is impossible. Hence,  $\Lambda(x^*, x^*, Tx^*) = \Lambda(Tx^*, Tx^*, x^*) = 0$  and so  $x^* \in Tx^*$ .

Case-(*II*):  $\alpha \in [\frac{1}{\sqrt{k}}, 1)$ . Then there exists  $N \in \mathbb{N}$  such that  $\alpha^N \in (\frac{1}{\sqrt{k}}, 1)$ . Now due to the contractive condition (2.2) we see that also satisfies the contractive condition (2.2) for the Lipschitz constant therefore by Case-(*I*)  $T^N$  has a fixed point in X and thus in this case also T has a fixed point.  $\Box$ 

**Example 3.2.** ([18]) Let  $X = \mathbb{N}$  and  $\lambda : X^3 \to \mathbb{R}^+_0$  be defined  $\lambda(x, x, x) = 0$  and  $\lambda(x, x, y) = \lambda(y, y, x)$  for all  $x, y \in X$  with

$$\lambda(x, y, z) = \begin{cases} 10 & \text{if } x = 1 = y & \text{and} & z = 2, \\ \frac{1}{2(n+1)} & \text{if } x = 1 = y & \text{and} & z \ge 3, \\ \frac{1}{n+2} & \text{if } x = 2 = y & \text{and} & z \ge 3, \\ 5 & \text{otherwise.} \end{cases}$$

Then  $\lambda$  is a complete symmetric Branciari  $S_b$ -metric space on X for k = 4 but it is nether an S-metric nor an  $S_b$ -metric for any  $k \ge 1$ . Let  $T: X \to 2^X$  be

$$Tx = \begin{cases} \{3,4\} & \text{if } x \in \{1,2\}, \\ \{5,6\} & \text{otherwise.} \end{cases}$$

Then  $T^2$  satisfies the contractive condition (2.2) for any  $\psi(x) = \frac{x^2}{1+x^2}$  and thus  $T^2$  has a fixed point in X. Therefore T has a fixed point x = 5 in X.

**Corollary 3.3.** ([18]) (Analogue to Banach Contraction Theorem) Let  $(X, \lambda)$  be a complete symmetric Branciari  $S_b$ -metric space and  $T: X \to X$  satisfies

$$\lambda(Tx, Tx, Ty) \le \alpha(\lambda(x, x, y))$$

for all  $x, y \in X$ , where  $\alpha \in (0, 1)$ . Then T has a unique fixed point in X.

**Example 3.4.** Let  $X = \mathbb{Z}$  and  $Y \subseteq X$  be a finite set defined as  $Y = \{1, 2, 4, 8\}$ . Define  $\lambda : Y \times Y \times Y \to [0, \infty)$  as:  $\lambda(1, 1, 1) = \lambda(2, 2, 2) = \lambda(4, 4, 4) = \lambda(8, 8, 8) = 0,$   $\lambda(1, 1, 2) = \lambda(2, 2, 1) = 3,$   $\lambda(2, 2, 8) = \lambda(8, 8, 2) = \lambda(1, 1, 8) = \lambda(8, 8, 1) = 1$  and  $\lambda(1, 1, 4) = \lambda(4, 4, 1) = \lambda(2, 2, 4) = \lambda(4, 4, 2) = \lambda(8, 8, 4) = \lambda(4, 4, 8) = \frac{1}{2}.$ The function  $\lambda$  is not a metric on Y. Indeed, note

$$3 = \lambda(1, 1, 2) \ge \lambda(1, 1, 8) + \lambda(8, 8, 2) = 1 + 1 = 2,$$

that is, the triangle inequality is not satisfied. However,  $\lambda$  is a Branciari S<sub>b</sub>-metric on Y and moreover  $(Y, \lambda)$  is a complete Branciari S<sub>b</sub>-metric space. Define  $T: Y \to 2^Y$  as:  $T1 = T2 = T8 = \{2, 4\}, T4 = \{1, 8\}$  and  $T1 = T2 = T4 = \{2, 8\}, T8 = \{1, 2\}, \alpha: Y \times Y \times Y \to [0, +\infty), \alpha_* = \inf \alpha$  as  $\alpha(x, x, y) = \alpha(y, y, x) = 1$   $\psi(t) = \frac{2}{3}t$ . Clearly, T satisfies the conditions of Theorem (3.1) and has a fixed point x = 2.

#### 3.1 Analogue to Kannan fixed point theorem

**Theorem 3.5.** (Analogue to Kannan fixed point theorem) Let  $(X, \lambda)$  be complete symmetric Branciari S<sub>b</sub>-metric space and  $T: X \to 2^X$  satisfies

$$\alpha_*(Tx, Tx, Ty)H_{\lambda}(Tx, Tx, Ty) \le \beta_1(\lambda(x, x, y))\psi_1(\Lambda(x, x, Tx)) + \beta_2(\lambda(y, y, x))\psi_2(\Lambda(y, y, Ty))$$
(3.19)

for all  $x, y \in X$  where  $\psi_i \in \Psi$  and  $\sum_{i=1}^2 \beta_i(\lambda(x, x, y)) \in (0, \frac{1}{2})$ . Then T has a fixed point in X.

**Proof**. Let  $x_0 \in X$  be taken as arbitrary and let us construct the sequence  $\{x_n\}$  in X by  $x_{n+1} \in Tx_n$  for all  $n \in \mathbb{N}_0$ . If  $x_{n_0} = x_{n_0+1}$  for some  $n_0 > 1$ , then  $x^* = x_{n_0}$  are a fixed point for T. So, we can assume that  $x_n \notin Tx_n$  for all  $n \in \mathbb{N}_0$ . Here we show that  $\{x_n\}$  is Cauchy sequence in X.

Case-I:  $\sum_{i=1}^{2} \beta_i(\lambda(x, x, y)) \in (0, \frac{1}{k+1})$ . From the contraction condition (3.19), we get

$$\begin{aligned} \lambda(x_n, x_n, x_{n+1}) &\leq \alpha_*(Tx_{n-1}, Tx_{n-1}, Tx_n)H_\lambda(Tx_{n-1}, Tx_{n-1}, Tx_n) \\ &\leq \beta_1(\lambda(x_{n-1}, x_{n-1}, x_n))\psi_1(\Lambda(x_{n-1}, x_{n-1}, Tx_{n-1})) + \beta_2(\lambda(x_n, x_n, x_{n-1}))\psi_2(\Lambda(x_n, x_n, Tx_n)) \\ &\leq \beta_1(\lambda(x_{n-1}, x_{n-1}, x_n))\psi_1(\lambda(x_{n-1}, x_{n-1}, x_n)) + \beta_2(\lambda(x_n, x_n, x_{n-1}))\psi_2(\lambda(x_n, x_n, x_{n+1})) \\ &\leq \beta_1(\lambda(x_{n-1}, x_{n-1}, x_n))\lambda(x_{n-1}, x_{n-1}, x_n) + \beta_2(\lambda(x_n, x_n, x_{n-1}))\lambda(x_n, x_n, x_{n+1}) \end{aligned}$$

for all  $n \ge 1$ . From which we get

$$S_n = \lambda(x_n, x_n, x_{n+1}) \le \frac{\beta_1}{1 - \beta_2} \lambda(x_{n-1}, x_{n-1}, x_n) = \gamma \lambda(x_{n-1}, x_{n-1}, x_n) = \gamma S_{n-1} \le \dots \le \gamma^n S_0$$

for all  $n \in \mathbb{N}$ , where  $\gamma = \frac{\beta_1}{1-\beta_2} < \frac{1}{k}$ . Also we have,

$$\begin{split} S_n^* &= \lambda(x_n, x_n, x_{n+2}) \leq \alpha_* (Tx_{n-1}, Tx_{n-1}, Tx_{n+1}) H_\lambda(Tx_{n-1}, Tx_{n-1}, Tx_{n+1}) \\ &\leq \beta_1(\lambda(x_{n-1}, x_{n-1}, x_{n+1})) \psi_1(\Lambda(x_{n-1}, x_{n-1}, Tx_{n-1})) \\ &+ \beta_2(\lambda(x_{n+1}, x_{n+1}, x_{n-1})) \psi_2(\Lambda(x_{n+1}, x_{n+1}, Tx_{n+1})) \\ &\leq \beta_1(\lambda(x_{n-1}, x_{n-1}, x_{n+1})) \psi_1(\lambda(x_{n-1}, x_{n-1}, x_n)) \\ &+ \beta_2(\lambda(x_{n+1}, x_{n-1}, x_{n+1})) \psi_2(\lambda(x_{n+1}, x_{n+1}, x_{n+2})) \\ &\leq \beta_1(\lambda(x_{n-1}, x_{n-1}, x_{n+1})) \lambda(x_{n-1}, x_{n-1}, x_n) + \beta_2(\lambda(x_{n+1}, x_{n+1}, x_{n-1})) \lambda(x_{n+1}, x_{n+1}, x_{n+2}) \\ &\leq \beta_1(\lambda(x_{n-1}, x_{n-1}, x_{n+1})) S_{n-1} + \beta_2(\lambda(x_{n+1}, x_{n+1}, x_{n-1})) S_{n+1} \\ &\leq \beta_1(\lambda(x_{n-1}, x_{n-1}, x_{n+1})) \gamma^{n-1} S_0 + \beta_2(\lambda(x_{n+1}, x_{n+1}, x_{n-1})) \gamma^{n+1} S_0 \\ &\leq \beta(\lambda(x_{n-1}, x_{n-1}, x_{n+1})) [\gamma^{n-1} + \gamma^{n+1}] S_0 \\ &= \beta(\lambda(x_{n-1}, x_{n-1}, x_{n+1})) [1 + \gamma^2] \gamma^{n-1} S_0 \end{split}$$

for all  $n \in \mathbb{N}$ , where

$$\beta(\lambda(x_{n-1}, x_{n-1}, x_{n+1})) = \max\{\beta_1(\lambda(x_{n-1}, x_{n-1}, x_{n+1})), \beta_2(\lambda(x_{n+1}, x_{n+1}, x_{n-1}))\}$$

Show that  $x_n$  is Cauchy sequence in X and therefore due to the completeness of X there exist a  $u \in X$  such that  $x_n \to u$  as  $n \to \infty$ . Now,

$$\begin{split} \Lambda(x_{n+1}, x_{n+1}, Tu) &\leq \alpha_*(Tx_n, Tx_n, Tu) H_{\lambda}(Tx_n, Tx_n, Tu) \\ &\leq \beta_1(\lambda(x_n, x_n, u))\psi_1(\Lambda(x_n, x_n, Tx_n)) + \beta_2(\lambda(u, u, x_n))\psi_2(\Lambda(u, u, Tu)) \\ &= \beta_1(\lambda(x_n, x_n, u))\psi_1(\lambda(x_n, x_n, x_{n+1})) + \beta_2(\lambda(u, u, x_n))\psi_2(\Lambda(u, u, Tu)) \\ &\leq \beta_1(\lambda(x_n, x_n, u))\lambda(x_n, x_n, x_{n+1}) + \beta_2(\lambda(u, u, x_n))\Lambda(u, u, Tu) \\ &\leq \beta_1(\lambda(x_n, x_n, u))\lambda(x_n, x_n, x_{n+1}) + \beta_2(\lambda(u, u, x_n))k[2\lambda(u, u, x_n) + \lambda(Tu, Tu, x_{n+1}) + \lambda(x_n, x_n, x_{n+1})] \\ &\leq \beta(\lambda(x_n, x_n, u))\lambda(x_n, x_n, x_{n+1}) + \beta(\lambda(u, u, x_n))k[2\lambda(u, u, x_n) + \lambda(Tu, Tu, x_{n+1}) + \lambda(x_n, x_n, x_{n+1})], \end{split}$$

for all  $n \ge 1$ . Therefore

$$\Lambda(x_{n+1}, x_{n+1}, Tu) \le \frac{\beta(\lambda(x_n, x_n, u))(1+k)\lambda(x_n, x_n, x_{n+1}) + 2k\beta(\lambda(x_n, x_n, u))\lambda(x_n, x_n, u)}{1-k\beta(\lambda(x_n, x_n, u))} \to 0$$

as  $n \to \infty$  and  $\beta(\lambda(x_n, x_n, u)) = \max\{\beta_1(\lambda(x_n, x_n, u)), \beta_2(\lambda(x_n, x_n, u))\}$ . Hence  $u \in Tu$  and u is a fixed point of T.

Case-II:  $\beta = \max\{\beta_1, \beta_2\} \in [\frac{1}{k+1}, \frac{1}{2}]$ . Then there exists  $N \in \mathbb{N}$  such that  $\beta \gamma^{N-1} \in (0, \frac{1}{k+1})$ .  $\Box$ 

**Example 3.6.** Let  $X = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$  and  $\lambda : X^3 \to [0, \infty)$  be defined by  $\lambda(x, x, x) = 0$  and  $\lambda(x, x, y) = \lambda(y, y, x)$  for all  $x, y \in X$  with

$$\lambda(x, y, z) = \begin{cases} |n - m| & \text{if } x = \frac{1}{n} = y \quad , z = \frac{1}{m} \quad \text{and} \quad |n - m| > 1, \\ \frac{1}{3} & \text{if } x = \frac{1}{n} = y \quad , z = \frac{1}{m} \quad \text{and} \quad |n - m| = 1, \\ 1 & \text{otherwise.} \end{cases}$$

Then  $\lambda$  is a complete symmetric Branciari  $S_b$ -metric space for k = 3 but not an S-metric, since

$$\lambda(\frac{1}{2}, \frac{1}{2}, \frac{1}{4}) = 2 > 2\lambda(\frac{1}{2}, \frac{1}{2}, \frac{1}{3}) + \lambda(\frac{1}{4}, \frac{1}{4}, \frac{1}{3}) = 1.$$

Let  $T: X \to 2^X$  be given by

$$Tx = \begin{cases} \left\{ \frac{1}{3}, \frac{1}{4} \right\} & \text{if } x = \frac{1}{2}, \\ \left\{ \frac{1}{5}, \frac{1}{6} \right\} & \text{if } x \le \frac{1}{3}. \end{cases}$$

Then T satisfies the contractive condition (3.19) for  $\sum_{i=1}^{2} \beta_i = \frac{1}{6}$  and thus T has a fixed point  $x = \frac{1}{5}$  in X.

In this section we give some consequences of the main results presented above. Specifically, we apply our results to complete symmetric Branciari  $S_b$ -metric space endowed with a partial order.

# 3.2 Fixed point theorems for weakly increasing on X has the property $\alpha$ -regular Branciari S<sub>b</sub>-metric space

In the following we provide set-valued versions of the preceding theorem. The results are related to those in ([9]). Let X be a topological space and  $\leq$  be a partial order on X.

**Definition 3.7.** ([3]). Let A, B be two nonempty subsets of X, the relations between A and B are definers follows:

 $(r_1)$  If for every  $a \in A$ , there exists  $b \in B$  such that  $a \preceq b$ , then  $A \prec_1 B$ .

 $(r_2)$  If for every  $b \in B$  there exists  $a \in A$ , such that  $a \preceq b$ , then  $A \prec_2 B$ .

 $(r_3)$  If  $A \prec_1 B$  and  $A \prec_2 B$ , then  $A \prec B$ .

**Definition 3.8.** ([5], [6]). Let  $(X, \preceq)$  be a partially ordered set. Two mappings  $f, g: X \to X$  are said to be weakly increasing if  $fx \preceq gfx$  and  $gx \preceq fgx$  hold for all  $x \in X$ .

**Definition 3.9.** ([2]) Let  $(X, \preceq)$  be a partially ordered set. Two mapping  $F, G : X \to 2^X$  are said to be weakly increasing with respect to  $\prec_1$  if for any  $x \in X$  we have  $Fx \prec_1 Gy$  for all  $y \in Fx$  and  $Gx \prec_1 Fy$  for all  $y \in Gx$ . Similarly two maps  $F, G : X \to 2^X$  are said to be weakly increasing with respect to  $\prec_2$  if for any  $x \in X$  we have  $Gy \prec_2 Fx$  for all  $y \in Fx$  and  $Fy \prec_2 Gx$  for all  $y \in Gx$ .

Now we give some examples.

**Example 3.10.** ([2]) Let  $X = [1, \infty)$  and  $\leq$  be usual order on X. Consider two mappings  $F, G : X \to 2^X$  defined by  $Fx = [1, x^2]$  and Gx = [1, 2x] for all  $x \in X$ . Then the pair of mappings F and G are weakly increasing with respect to  $\prec_2$  but not  $\prec_1$ . Indeed, since  $Gy = [1, 2y] \prec_2 [1, x^2] = Fx$  for all  $y \in Fx$ 

and

$$Fy = [1, y^2] \prec_2 [1, 2x] = Gx$$
 for all  $y \in Gx$ 

so F and G are weakly increasing with respect to  $\prec_2$  but  $F2 = [1,4] \not\prec_1 [1,2] = G1$  for  $1 \in F2$ , so F and G are not weakly increasing with respect to  $\prec_1$ .

**Example 3.11.** ([2]) Let  $X = [1, \infty)$  and  $\leq$  be usual order on X. Consider two mappings  $F, G : X \to 2^X$  defined by Fx = [0, 1] and Gx = [x, 1] for all  $x \in X$ . Then the pair of mappings F and G are weakly increasing with respect to  $\prec_1$  but not  $\prec_2$ . Indeed, since

$$Fx = [0,1] \prec_1 [y,1] = Gy \text{ for all } y \in Fx$$

and

$$Gx = [x, 1] \prec_1 [0, 1] = Fy$$
 for all  $y \in Gx$ 

so F and G are weakly increasing with respect to  $\prec_1$  but  $G1 = 1 \not\prec_2 0, 1 = F1$  for  $1 \in F1$ , so F and G are not weakly increasing with respect to  $\prec_2$ .

**Theorem 3.12.** Let  $(X, \leq, \lambda)$  be a partially ordered complete symmetric Branciari  $S_b$ -metric space. Suppose that  $T: X \to 2^X$  are set-valued mappings and satisfies the following conditions: (i)

$$H_{\lambda}(Tx, Tx, Ty) \leq \beta_1(\lambda(x, x, y))\psi(\lambda(x, x, y)) + \beta_2(\lambda(x, x, y))\psi(\Lambda(x, x, Tx)) + \beta_3(\lambda(x, x, y))\psi(\Lambda(y, y, Ty)) + \beta_4(\lambda(x, x, y))\min\{\psi(\Lambda(x, x, Ty), \psi(\Lambda(y, y, Tx)))\}.$$
(3.20)

(*ii*) T and  $i_x$  be a weakly increasing pair on X w.r.t  $\prec_1$ ;

(*iii*) there exists  $x_0 \in X$  such that  $\{x_0\} \prec_1 Tx_0$  and  $\{x_0\} \prec_1 T^2x_0$ ;

(iv)X has the property  $\alpha$ -regular generalized metric space.

Then T has fixed point  $x^* \in X$ . Further, for each  $x_0 \in X$ , the iterated sequence  $\{x_n\}$  with  $x_{n+1} \in Tx_n$  converges to the fixed point of T.

**Proof**. Define the sequence  $x_n$  in X by  $x_{n+1} \in Tx_n$  for all  $n \in \mathbb{N}_0$ . If  $x_n = x_{n+1}$  for some  $n \in \mathbb{N}_0$ , then  $x^* = x_n$  is a fixed point for T. Using that the pair of set-valued mappings T and  $i_x$  is weakly increasing and by define  $\alpha : X \times X \times X \to [0, +\infty)$ 

$$\alpha(x, x, y) = \begin{cases} 1 & ifx \leq y \\ 0 & ifx \succ y. \end{cases}$$

It can be easily shown that the sequence  $x_n$  is nondecreasing w.r.t,  $\leq$  i.e; and

$$\alpha_*(\{x_0\}, \{x_0\}, Tx_0) \ge 1 \Rightarrow \exists x_1 \in Tx_0, \text{ such that } \alpha(x_0, x_0, x_1) \ge 1 \Rightarrow x_0 \preceq x_1$$

Now since T and  $i_x$  is weakly increasing with respect to  $\prec_1$ , we have  $x_1 \in Tx_0 \prec_1 Tx_1$ . Thus there exist some  $x_2 \in Tx_1$  such that  $x_1 \preceq x_2$ . Again since T and  $i_x$  is weakly increasing with respect to  $\prec_1$ , we have  $x_2 \in Tx_1 \prec_1 Tx_2$ . Thus there exist some  $x_3 \in Tx_2$  such that  $x_2 \preceq x_3$ . Continue this process, we will get a nondecreasing sequence  $\{x_n\}_{n=1}^{\infty}$  which satisfies  $x_{n+1} \in Tx_n, n = 0, 1, 2, 3, \cdots$  We get

$$x_0 \leq x_1 \leq x_2 \leq \cdots \leq x_n \leq x_{n+1} \leq x_{n+2} \leq \cdots$$

In particular  $x_n, x_{n+j}$  are comparable for all  $j \in \mathbb{N}$ .  $\alpha(x_n, x_{n+j}) \geq 1$  for all  $n \in \mathbb{N}_0$  and by equation (2.1) and (2.3) we have  $\lim_{n\to\infty} \lambda(x_n, x_n, x_{n+j}) = 0$ . Following the proof of Theorem (3.1), we know that  $\{x_n\}$  is a Cauchy sequence in the partially ordered complete symmetric Branciari  $S_b$ -metric space  $(X, \leq, \lambda)$ . There exists  $x^* \in X$  such that  $\lim_{n\to+\infty} \lambda(x_n, x_n, x^*) = 0$ . and condition (iv), there exists a subsequence  $\{x_{n_j}\}$  of  $\{x_n\}$  such that  $\alpha(x_{n_j+1}, x_{n_j+1}, x^*) \geq \alpha_*(Tx_{n_j}, Tx_{n_j}, Tx^*) \geq 1$  for all j. Thus,

$$\begin{split} \Lambda(x^*, x^*, Tx^*) &\leq k[\lambda(x^*, x^*, x_{nj+1}) + \lambda(x^*, x^*, x_{nj+1}) + \Lambda(Tx^*, Tx^*, x_{nj+2}) + \lambda(x_{nj+1}, x_{nj+1}, x_{nj+2})] \\ &= 2k\lambda(x^*, x^*, x_{nj+1}) + k\Lambda(Tx^*, Tx^*, x_{nj+2}) + k\lambda(x_{nj+1}, x_{njk+1}, x_{njk+2}) \\ &= 2k\lambda(x^*, x^*, x_{nj+1}) + j\lambda(x_{nj+1}, x_{nj+1}, x_{nj+2}) + k\Lambda(Tx^*, Tx^*, Tx_{nj+1}) \\ &\leq 2k\lambda(x^*, x^*, x_{nj+1}) + k\lambda(x_{nj+1}, x_{njk+1}, x_{njk+2}) + k[\beta_1(\lambda(x^*, x^*, x_{nj+1}))\psi(\lambda(x^*, x^*, x_{nj+1})) \\ &+ \beta_2(\lambda(x^*, x^*, x_{nj+1})) + k\lambda(x_{nj+1}, x_{njk+1}, x_{njk+2}) + k[\beta_1(\lambda(x^*, x^*, x_{nj+1}))\psi(\Lambda(x^*, x^*, x_{nj+1})) \\ &+ \beta_4(\lambda(x^*, x^*, x_{nj+1})) \min\{\psi(\Lambda(x^*, x^*, Tx^*)) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))\psi(\Lambda(x^*, x^*, x_{nj+1})) \\ &+ \beta_4(\lambda(x^*, x^*, x_{nj+1})) \min\{\psi(\Lambda(x^*, x^*, Tx_{nj+2}) + k[\beta_1(\lambda(x^*, x^*, x_{nj+1}))\psi(\Lambda(x^*, x^*, x_{nj+1})) \\ &+ \beta_2(\lambda(x^*, x^*, x_{nj+1})) \min\{\psi(\Lambda(x^*, x^*, Tx^*)) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))\psi(\Lambda(x^*, x^*, Tx^*)) \\ &+ \beta_4(\lambda(x^*, x^*, x_{nj+1})) \min\{\psi(\lambda(x^*, x^*, x_{nj+2})), \psi(\Lambda(x_{nj+1}, x_{nj+1}, Tx^*))\}] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) \min\{\psi(\lambda(x^*, x^*, Tx^*)) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))\psi(\Lambda(x^*, x^*, Tx^*)) \\ &+ \beta_4(\lambda(x^*, x^*, x_{nj+1})) \min\{\psi(\lambda(x^*, x^*, x_{nj+2})), \psi(\Lambda(x_{nj+1}, x_{nj+1}, Tx^*))\}] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{nj+1})) + \beta_3(\lambda(x^*, x^*, x_{nj+1}))$$

for all  $j \in \mathbb{N}$  and  $k \geq 1$ . Hence,  $\Lambda(x^*, x^*, Tx^*) = 0$  and so  $x^* \in Tx^*$ .  $\Box$ 

**Theorem 3.13.** Let  $(X, \leq, \lambda)$  be a partially ordered complete symmetric Branciari  $S_b$ -metric space. Suppose that  $T: X \to 2^X$  are set-valued mappings and satisfies the following conditions: (i)

$$H_{\lambda}(Tx, Tx, Ty) \leq \beta_1(\lambda(x, x, y))\psi(\lambda(x, x, y)) + \beta_2(\lambda(x, x, y))\psi(\Lambda(x, x, Tx)) + \beta_3(\lambda(x, x, y))\psi(\Lambda(y, y, Ty)) + \beta_4(\lambda(x, x, y))\min\{\psi(\Lambda(x, x, Ty), \psi(\Lambda(y, y, Tx)))\}.$$
(3.21)

(*ii*) T and  $i_x$  be a weakly increasing pair on X w.r.t  $\prec_2$ ;

(*iii*) there exists  $x_0 \in X$  such that  $Tx_0 \prec_2 \{x_0\}$  and  $T^2x_0 \prec_2 \{x_0\}$ ;

(iv)X has the property  $\alpha$ -regular generalized metric space.

Then T has fixed point  $x^* \in X$ . Further, for each  $x_0 \in X$ , the iterated sequence  $\{x_n\}$  with  $x_{n+1} \in Tx_n$  converges to the fixed point of T.

**Proof**. Define the sequence  $x_n$  in X by  $x_{n+1} \in Tx_n$  for all  $n \in \mathbb{N}_0$ . If  $x_n = x_{n+1}$  for some  $n \in \mathbb{N}_0$ , then  $x^* = x_n$  is a fixed point for T. Using that the pair of set-valued mappings T and  $i_x$  is weakly increasing and by define  $\alpha : X \times X \times X \to [0, +\infty)$ 

$$\alpha(x,x,y) = \begin{cases} 1 & ifx \succeq y \\ 0 & ifx \prec y. \end{cases}$$

It can be easily shown that the sequence  $x_n$  is non-increasing w.r.t,  $\leq$  i.e; and

$$\alpha_*(Tx_0, Tx_0, \{x_0\}) \ge 1 \Rightarrow \exists x_1 \in Tx_0$$
, such that  $\alpha(x_1, x_1, x_0) \ge 1 \Rightarrow x_1 \preceq x_0$ ;

Now since T and  $i_x$  are weakly increasing with respect to  $\prec_2$ , we have  $Tx_1 \prec_2 Tx_0$ . Thus there exist some  $x_2 \in Tx_1$ such that  $x_2 \preceq x_1$ . Again since T and  $i_x$  are weakly increasing with respect to  $\prec_2$ , we have  $Tx_2 \preceq_2 Tx_1$ . Thus there exist some  $x_3 \in Tx_2$  such that  $x_3 \preceq x_2$ . Continue this process, we will get a non-increasing sequence  $\{x_n\}_{n=1}^{\infty}$  which satisfies  $x_{n+1} \in Tx_n$  and  $x_{n+2} \in Tx_{n+1}$ ,  $n = 0, 1, 2, 3, \cdots$  We get

$$x_0 \succeq x_1 \succeq x_2 \succeq \cdots \succeq x_n \succeq x_{n+1} \succeq x_{n+2} \succeq \cdots$$

In particular  $x_{n+j}, x_n$  are comparable for all  $k \in \mathbb{N}$ ,  $\alpha(x_{n+j}, x_n) \geq 1$  for all  $j \in \mathbb{N}_0$  and by equation (2.1) and (2.3) we have  $\lim_{n\to\infty} \lambda(x_{n+j}, x_{n+j}, x_n) = 0$ . Following the proof of Theorem (3.1), we know that  $\{x_n\}$  is a Cauchy sequence in the partially ordered complete symmetric Branciari  $S_b$ -metric space.  $(X, \prec, \lambda)$ . There exists  $x^* \in X$  such that  $\lim_{n\to+\infty} \lambda(x_n, x_n, x^*) = 0$ . Following the proof of Theorem (3.1), we know that  $\{x_n\}$  is a Cauchy sequence in the partially ordered complete symmetric Branciari  $S_b$ -metric space  $(X, \preceq, \lambda)$ . There exists  $x^* \in X$  such that  $\lim_{n\to+\infty} \lambda(x_n, x_n, x^*) = 0$ . and condition (iv), there exists a subsequence  $\{x_{n_j}\}$  of  $\{x_n\}$  such that  $\alpha(x_{n_j+1}, x_{n_j+1}, x^*) \geq \alpha_*(Tx_{n_j}, Tx_{n_j}, Tx^*) \geq 1$  for all j. Thus,

$$\begin{split} \Lambda(x^*, x^*, Tx^*) &\leq k[\lambda(x^*, x^*, x_{n_j+1}) + \lambda(x^*, x^*, x_{n_j+1}) + \Lambda(Tx^*, Tx^*, x_{n_j+2}) + \lambda(x_{n_j+1}, x_{n_j+1}, x_{n_j+2})] \\ &= 2k\lambda(x^*, x^*, x_{n_j+1}) + k\Lambda(Tx^*, Tx^*, x_{n_j+2}) + k\lambda(x_{n_j+1}, x_{n_{jk}+1}, x_{n_{jk}+2}) \\ &= 2k\lambda(x^*, x^*, x_{n_j+1}) + j\lambda(x_{n_j+1}, x_{n_j+1}, x_{n_j+2}) + k\Lambda(Tx^*, Tx^*, Tx_{n_j+1}) \\ &\leq 2k\lambda(x^*, x^*, x_{n_j+1}) + k\lambda(x_{n_j+1}, x_{n_j+1}, x_{n_{jk}+2}) + k[\beta_1(\lambda(x^*, x^*, x_{n_j+1}))\psi(\lambda(x^*, x^*, x_{n_j+1})) \\ &\quad + \beta_2(\lambda(x^*, x^*, x_{n_j+1}))\psi(\Lambda(x^*, x^*, Tx^*)) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))\psi(\Lambda(x^*, x^*, x_{n_j+1})) \\ &\quad + \beta_4(\lambda(x^*, x^*, x_{n_j+1}))\min\{\psi(\Lambda(x^*, x^*, Tx_{n_j+2}) + k[\beta_1(\lambda(x^*, x^*, x_{n_j+1}))\psi(\lambda(x^*, x^*, x_{n_j+1})) \\ &\quad + \beta_2(\lambda(x^*, x^*, x_{n_j+1}))\min\{\psi(\Lambda(x^*, x^*, Tx_{n_j+2}) + k[\beta_1(\lambda(x^*, x^*, x_{n_j+1}))\psi(\lambda(x^*, x^*, x_{n_j+1})) \\ &\quad + \beta_2(\lambda(x^*, x^*, x_{n_j+1}))\psi(\Lambda(x^*, x^*, Tx^*)) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))\psi(\Lambda(x^*, x^*, Tx^*)) \\ &\quad + \beta_4(\lambda(x^*, x^*, x_{n_j+1}))\psi(\Lambda(x^*, x^*, Tx^*)) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))\psi(\Lambda(x^*, x^*, Tx^*)) \\ &\quad + \beta_4(\lambda(x^*, x^*, x_{n_j+1}))\psi(\Lambda(x^*, x^*, Tx^*)) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))\psi(\Lambda(x^*, x^*, Tx^*)) \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1}))\Lambda(x^*, x^*, Tx^*)) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))\lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))]\Lambda(x^*, x^*, Tx^*)] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))] \\ &\leq k[\beta_2(\lambda(x^*, x^*, x_{n_j+1})) + \beta_3(\lambda(x^*, x^*, x_{n_j+1}))] \\ &\leq k[\beta_2($$

for all  $j \in \mathbb{N}$  and  $k \ge 1$ . Hence,  $\Lambda(x^*, x^*, Tx^*) = 0$  and so  $x^* \in Tx^*$ .  $\Box$ 

### 3.3 Coupled fixed point

**Definition 3.14.** ([10]) Let  $F : X \times X \to X$  be a mapping, where  $(X, \lambda)$  is a symmetric Branciari  $S_b$ -metric space. We say that  $(x, y) \in X \times X$  is a coupled fixed point of F if

$$x = F(x, y) \quad y = F(y, x).$$

Note that if (x, y) is a coupled fixed point of F then (y, x) are coupled fixed points of F too. Our results are based on the following simple lemma.

**Lemma 3.15.** ([20]) Let  $F : X \times X \to X$  be a given mapping. Define the mapping  $T_F : X \times X \to X \times X$  by  $T_F(x,y) = (F(x,y), F(y,x))$  for all  $(x,y) \in X \times X$ . Then, (x,y) is a coupled fixed point of F if and only if (x,y) is a fixed point of  $T_F$ .

**Theorem 3.16.** Let  $(X, \lambda)$  be a complete symmetric Branciari  $S_b$ -metric space and  $F : X \times X \to X$  be a given mapping. Assume there are exist nondecreasing functions  $\psi_i : [0, +\infty) \to [0, +\infty)$ , i = 1, 2, such that  $\psi = \psi_1 + \psi_2$  is convex,  $\psi(0) = 0$ ,  $\lim_{n \to +\infty} \psi^n(t) = 0$  for all t > 0, a function  $\alpha : X^2 \times X^2 \times X^2 \to [0, +\infty)$  and satisfies the following conditions:

(i) for all  $(x, y), (u, v) \in X \times X$ ,

$$\alpha((x,y),(x,y),(u,v))\lambda(F(x,y),F(x,y),F(u,v)) \le \psi_1(\lambda(x,x,u)) + \psi_2(\lambda(y,y,v));$$

(*ii*) if for all (x, x, y),  $(u, u, v) \in X \times X \times X$ ,

$$\alpha((x, x, y), (u, u, v)) \ge 1 \Rightarrow \alpha(T_F(x, y), T_F(x, y), T_F(u, v)) \ge 1;$$

(*iii*) there exists  $(x_0, x_0, y_0) \in X \times X \times X$  such that

$$\alpha((x_0, x_0, y_0), T_F(x_0, x_0, y_0)) \ge 1$$
 and  $\alpha(T_F(y_0, x_0), T_F(y_0, x_0), (y_0, x_0) \ge 1;$  or

 $(iii)^*$  there exists  $(x_0, x_0, y_0) \in X \times X \times X$  such that

$$\alpha(T_F(x_0, x_0, y_0), (x_0, x_0, y_0)) \ge 1$$
 and  $\alpha((y_0, y_0, x_0), T_F(y_0, y_0, x_0)) \ge 1;$ 

(iv) if  $\{x_n\}$  and  $\{y_n\}$  are sequences in X such that  $\alpha(x_n, x_{n+1}) \ge 1$ ,  $\alpha(y_n, y_n, y_{n+1}) \ge 1$ , for all  $n, x_n \to x \in X$ ,  $y_n \to y \in X$  as  $n \to \infty$ , then there are exist subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  and  $\{y_{n_k}\}$  of  $\{y_n\}$  such that  $\alpha(x_{n_k}, x_{n_k}, x) \ge 1$  and  $\alpha(y_{n_k}, y_{n_k}, y) \ge 1$  for all k; or

 $(iv)^*$  if  $\{x_n\}$  and  $\{y_n\}$  are sequences in X such that  $\alpha(x_{n+1}, x_{n+1}, x_n) \ge 1$ ,  $\alpha(y_{n+1}, y_{n+1}, y_n) \ge 1$ , for all n,  $x_n \to x \in X$ ,  $y_n \to y \in X$  as  $n \to \infty$ , then there are exist subsequence  $\{x_{n_k}\}$  of  $\{x_n\}$  and  $\{y_{n_k}\}$  of  $\{y_n\}$  such that  $\alpha(x, x, x_{n_k}) \ge 1$  and  $\alpha(y, y, y_{n_k}) \ge 1$  for all k.

Then, F has a coupled fixed point, that is, there exists  $(x^*, x^*, y^*) \in X \times X \times X$  such that  $x^* = F(x^*, x^*, y^*)$  and  $y^* = F(y^*, y^*, x^*)$ .

**Proof**. The idea consists in transporting the problem to the complete symmetric Branciari  $S_b$ -metric space  $(Y, \delta)$ , where  $Y = X \times X$  and  $\delta((x, y), (x, y), (u, v)) = \lambda(x, x, u) + \lambda(y, y, v)$ , for all  $(x, y), (u, v) \in X \times X$ . From condition (i), we have

$$\alpha((x,y),(x,y),(u,v))\lambda(F(x,y),F(x,y),F(u,v)) \le \psi_1(\lambda(x,x,u)) + \psi_2(\lambda(y,y,v))$$
(3.22)

and

$$\alpha((v, u), (v, u), (y, x))\lambda(F(v, u), F(v, u), F(y, x)) \le \psi_1(\lambda(v, v, y)) + \psi_2(\lambda(u, u, x))$$
(3.23)

for all  $x, y, u, v \in X$ . Adding (3.22) to (3.23), we get (note that  $\psi$  is super-additive)

$$\beta(\xi,\xi,\eta)\delta(T_F\xi,T_F\xi,T_F\eta) \leq \psi_1(\lambda(\xi_1,\xi_1,\eta_1)) + \psi_2(\lambda(\xi_2,\xi_2,\eta_2)) + \psi_1(\lambda(\eta_2,\eta_2,\xi_2)) + \psi_2(\lambda(\eta_1,\eta_1,\xi_1)) \\ \leq \psi_1(\lambda(\xi_1,\xi_1,\eta_1) + \lambda(\eta_2,\eta_2,\xi_2)) + \psi_2(\lambda(\xi_2,\xi_2,\eta_2) + \lambda(\eta_1,\eta_1,\xi_1)) \\ = \psi(\lambda(\xi_1,\xi_1,\eta_1) + d(\eta_2,\eta_2,\xi_2)) \\ = \psi(\delta(\xi,\xi,\eta))$$
(3.24)

for all  $\xi = (\xi_1, \xi_1, \xi_2), \eta = (\eta_1, \eta_1, \eta_2) \in Y$ , where  $\beta : Y \times Y \to [0, +\infty)$  is the function defined by

$$\beta((\xi_1,\xi_1,\xi_2),(\eta_1,\eta_1,\eta_2)) = \min\{\alpha((\xi_1,\xi_1,\xi_2),(\eta_1,\eta_1,\eta_2)),\alpha((\eta_2,\eta_2,\eta_1),(\xi_2,\xi_2,\xi_1))\}$$
(3.25)

and  $T_F: Y \to Y$  is given by lemma (3.15). Let  $\{(x_n, x_n, y_n)\}$  be a sequence in  $Y = X \times X \times X$  such that

$$\beta((x_n, x_n, y_n), (x_{n+1}, x_{n+1}, y_{n+1})) \ge 1$$
 and  $(x_n, x_n, y_n) \to (x, x, y)$ 

as  $n \to +\infty$ . Using the condition (*iv*), we obtain easily there exists a subsequence  $\{(x_{n_k}, x_{n_k}, y_{n_k})\}$  of  $\{(x_n, x_n, y_n)\}$  such that  $\beta((x_{n_k}, x_{n_k}, y_{n_k}), (x, x, y)) \ge 1$  for all k. Then all the hypotheses of Theorem (3.1) are satisfied. We deduce the existence of a fixed point of  $T_F$  that gives us from Lemma (3.15) the existence of a coupled fixed point of F.  $\Box$ 

#### 3.4 Application

In this section, an existence result for a fractional integral equation

$$y(t) = \frac{f(t, x(t), y(t))}{\Gamma(\alpha)} \int_0^t \frac{h'(s)g(s, x(s), y(s))}{(h(t) - h(s))^{1-\alpha}} ds, \quad t \in [0, T],$$
(3.26)

where T > 0,  $\alpha \in (0,1)$  and  $h: [0,T] \to \mathbb{R}$ . We suppose that the following conditions are satisfied.

(i) The function  $f: [0,T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  is continuous.

(*ii*) There exists an upper semi-continuous function  $\psi_i : [0, +\infty) \to [0, +\infty)$ , i = 1, 2, are nondecreasing functions such that  $\psi = \psi_1 + \psi_2$  is convex,  $\psi(0) = 0$ , and  $\lim_{n \to \infty} \psi^n(t) = 0$  for each t > 0,

$$|f(t, x(t), y(t)) - f(t, u(t), v(t))| \le \psi_1(x - u) + \psi_2(y - v),$$
(3.27)

for all (t, x(t), y(t)) and  $(t, u(t), v(t)) \in [0, T] \times \mathbb{R} \times \mathbb{R}$ .

(*iii*) The function  $h: [0,T] \to \mathbb{R}$  is  $C^1$  and nondecreasing.

(*iv*) The function  $g: [0,T] \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$  is continuous and there exists a nondecreasing function  $\omega: [0,\infty) \to [0,\infty)$  such that

$$|g(t, x(t), y(t))| \le \omega(|(x(t), y(t))|) \quad (t, x(t), y(t)) \in [0, T] \times \mathbb{R} \times \mathbb{R}.$$

(v) There exists  $r_0 > 0$  such that

$$(\psi(r_0) + F_0)\omega(r_0)(g(T) - g(0)))^{\alpha} \le r_0\Gamma(\alpha + 1) \text{ and } \frac{\omega(r_0)}{\Gamma(\alpha + 1)} \times (g(T) - g(0))^{\alpha} \le 1$$
(3.28)

where  $F_0 = \frac{1}{2} \max\{|f(t, 0, 0)| : t \in [0, T]\}.$ 

**Example 3.17.** Let  $X = C([0,T], \mathbb{R}), \lambda : X^3 \to \mathbb{R}_0^+$  and  $\lambda(x, y, z) = |x(t) - y(t)| + |x(t) - z(t)| + |y(t) - z(t)|$  is a complete symmetric Branciari  $S_b$ -metric space for all  $x, y, z \in X$  and  $t \in [0,T]$ .

$$\lambda(x, x, y) = |x(t) - x(t)| + |x(t) - y(t)| + |x(t) - y(t)| = \lambda(y, y, x)$$
(3.29)

$$|x - y| \le |x - a| + |a - b| + |b - y| \tag{3.30}$$

$$|x - y| \le |x - b| + |b - a| + |a - y|.$$
(3.31)

Adding (3.30) to (3.31), we get

$$\lambda(x, x, y) = |x - y| + |x - y| \le |x - a| + |a - b| + |b - y| + |x - b| + |b - a| + |a - y|$$

$$\le 4k|x - a| + 2k|y - b| + 2k|a - b| + |x - b|$$
(3.32)

$$=k[\lambda(x,x,a) + \lambda(x,x,a) + \lambda(y,y,b) + \lambda(a,a,b)]$$
(3.33)

for all  $x, y, z \in X$  and  $a, b \in X \setminus \{x, y, z\}, a \neq b, k \ge 1$ .

**Theorem 3.18.** Consider fractional integral equation (3.26) with  $g \in C([0,T] \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$  is  $C^1$  and nondecreasing in the third variables. Suppose that for  $x \ge u$  and  $y \ge v$ , we have

$$0 \le g(t, x, y) - g(t, u, v) \le \frac{\Gamma(\alpha + 1)}{F_0(h(t) - h(s))^{\alpha}} (\psi_1(x - u) + \psi_2(y - v)).$$
(3.34)

Then the fractional integral equation (3.26) with the assumptions (i-v) has at least one solution  $y^* \in C([0,T],\mathbb{R})$ .

**Proof**. Let  $X = C([0,T],\mathbb{R})$  is partially ordered if we define the following order relation in X:

$$x, y \in X, x \leq y \Leftrightarrow x(t) \leq y(t), \text{ for all } t \in [0, T].$$

It is well-known that  $(X, \lambda)$  is a complete symmetric Branciari  $S_b$ -metric space with the metric

$$\lambda(x, y, z) = |x(t) - y(t)| + |x(t) - z(t)| + |y(t) - z(t)|.$$

Suppose  $\{x_n\}$  is a nondecreasing sequence in X that converges to  $x \in X$ . Then for every  $t \in [0, T]$ , the sequence of the real numbers

$$x_1(t) \leq x_2(t) \leq \cdots \leq x_n(t) \leq \cdots$$
,

converges to x(t). Therefore, for all  $t \in I$  and  $n \in \mathbb{N}$ , we have  $x_n(t) \leq x(t)$ . Hence  $x_n \leq x$ , for all  $n \in \mathbb{N}$ . Also,  $X \times X$  is a partially ordered set if we define the following order relation in  $X \times X$ :

$$(x,y) \leq_r (u,v) \Leftrightarrow x(t) \leq u(t) \text{ and } y(t) \leq v(t), \text{ for all } t \in [0,T],$$

for all (x, y),  $(u, v) \in X \times X$ . For any  $x, y \in X$ ,  $\max\{x(t), u(t)\}$  for all  $t \in [0, T]$  is in X and is the upper bound of x, u. Therefore, for every (x, y) and  $(u, v) \in X \times X \max\{x(t), u(t)\}, \max\{y(t), v(t)\}, \text{ in } X \times X \text{ for all } t \in [0, T] \text{ is comparable to } (x, y) \text{ and } (u, v)$ . Define  $F: X \times X \to X$  by

$$F(x,y)(t) = \frac{f(t,x(t),y(t))}{\Gamma(\alpha)} \int_0^t \frac{h'(s)g(s,x(s),y(s))}{(h(t)-h(s))^{1-\alpha}} ds, \text{ for all } t \in [0,T]$$

Since f is nondecreasing in the second and third of its variables then F is nondecreasing in each of its variables. Now, for  $x \ge u$ ,  $y \ge v$ , that is,  $x(t) \ge u(t)$ ,  $y(t) \ge v(t)$  for all  $t \in [0, T]$ . we have

$$\begin{split} \lambda(F(x,y),F(x,y),F(u,v)) &= |F(x,y)(t) - F(x,y)(t)| + |F(x,y)(t) - F(u,v)(t)| + |F(x,y)(t) - F(u,v)(t)| \\ &= 2\left\{\frac{f(t,x(t),y(t))}{\Gamma(\alpha)} \int_{0}^{t} \frac{h'(s)g(s,x(s),y(s))}{(h(t) - h(s))^{1-\alpha}} ds\right\} \\ &\leq 2\left\{\frac{F_{1}}{\Gamma(\alpha)} \int_{0}^{t} \frac{h'(s)}{(h(t) - h(s))^{1-\alpha}} (g(s,x(s),y(s)) - g(s,u(s),v(s))ds\right\} \\ &\leq \left\{\frac{F_{0}}{\Gamma(\alpha)} \times \frac{\Gamma(\alpha+1)}{F_{0}(h(t) - h(s))^{\alpha}} (\psi_{1}(x-u) + \psi_{2}(y-v)) \int_{0}^{t} \frac{h'(s)}{(h(t) - h(s))^{1-\alpha}} ds\right\} \\ &\leq \left\{\frac{F_{0}}{\Gamma(\alpha)} \times \frac{\Gamma(\alpha+1)}{F_{1}(h(t) - h(s))^{\alpha}} (\psi_{1}(x-u) + \psi_{2}(y-v)) \frac{(h(t) - h(0))^{\alpha}}{\alpha}\right\} \\ &\leq \left\{\frac{F_{0}}{\Gamma(\alpha)} \times \frac{\Gamma(\alpha+1)}{F_{1}(h(t) - h(s))^{\alpha}} \times \frac{(h(t) - h(0))^{\alpha}}{\alpha} (\psi_{1}(x-u) + \psi_{2}(y-v))\right\} \\ &\leq \psi_{1}(d(x,u)) + \psi_{2}(d(y,v)). \end{split}$$

$$(3.35)$$

Thus F satisfies the condition of Theorem (3.16). Now, let  $(x^*, y^*)$  be a coupled lower solution of the fractional integral equation problem (3.26) then we have  $x^* \leq F(x^*, y^*)$  and  $y^* \leq F(y^*, x^*)$ . Then, Theorem (3.16) gives that F has a unique coupled fixed point  $(x^*, y^*)$  with  $x^* = y^*$ . Then  $x^*(t)$  is the solution of the integral equation (3.26).  $\Box$ 

#### References

- M. Abbas, T. Nazir, and S. Radenovic, Common fixed points of four maps in partially ordered metric spaces, Appl. Math. Lett. 24 (2011), 1520–1526.
- [2] I. Altun and V. Rakocevic, Ordered cone metric spaces and fixed point results, Comput. Math. Appl. 60 (2010), no. 5, 1145–1151.
- [3] M. Asadi, H. Soleimani, and S.M. Vaezpour, An order on subsets of cone metric spaces and fixed points of set-valued contractions, Fixed Point Theory Appl. 2009 (2009), Article ID 723203, 8 pages.
- [4] A. Branclari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Pub. Math. Debrecen 57 (2000), no. 1-2, 31–37.
- [5] B.C. Dhage, Condensing mappings and applications to existence theorems for common solution of differential equations, Bull. Korean Math. Soc. 36 (2000), no. 3, 565–578.
- [6] B.C. Dhage, D. Oregan, and R.P. Agarwal, Common fixed theorems for a pair of countably condensing mappings in ordered Banach spaces, J. Apple. Math Stoch. Anal. 16 (2003), no. 3, 243–248.
- [7] M. Eshaghi Gordji, M. Ramezani, M. De La Sen, and Y.J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017), no. 2, 569–578.
- [8] A. Farajzadeh, A. Kaewcharoen, and P. Lahawech, On Fixed point theorems for  $(\xi, \alpha, \eta)$ -Expansive mappings in complete metric spaces, Int. J. Pure Appl. Math. **102** (2015), no. 1, 129.
- [9] Y. Feng and S. Liu, Fixed point theorems for multi-valued increasing operators in partially ordered spaces, Soochow J. Math. 30 (2004), no. 4, 461–469.
- [10] D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal.: Theory Meth. Appl. 11 (1987), 623–632.
- [11] J. Hassanzadeh Asl, Common fixed point theorems for  $\alpha$ - $\psi$ -contractive type mappings, Int. J. Anal. **2013** (2013), 1--7.
- [12] J. Hassanzadeh Asl, Sh. Rezapour, and N. Shahzad, On fixed points of α-ψ-contractive multifunctions, Fixed Point Theory Appl. 2012 (2012), 1–6.
- [13] Z. Kadelburg and S. Radenović, On generalized metric spaces, A survey, TWMS J. Pure Appl. Math. 5 (2014), 3—13.

- [14] W.A. Kirk and N. Shahzad, Generalized metrics and Caristi's theorem, Fixed Point Theory Appl. 2013 (2013), Article ID 129.
- [15] M.S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust. Math. Soc. 30 (1984), no. 1, 1–9.
- [16] F. Lotfy and J. Hassanzadeh Asl, Some fixed point theorems for  $\alpha_*$ - $\psi$ -common rational type mappings on generalized metric spaces with application to fractional integral equations, Int. J. Nonlinear Anal. Appl. **12** (2021), no. 1, 245–260.
- [17] Y. Rohen, T. Došenović, and S. Radenović, A fixed point theorems in  $S_b$ -metric spaces, Filomat 31 (2017), no. 11, 3335–3346.
- [18] K. Royy and M. Saha, Branciari S<sub>b</sub>-metric space and related fixed point theorems with an application, Appl. Math. E-Notes 22 (2022), 8–17.
- [19] S. Sedghi and N.V. Dung, Fixed point theorems on S-metric spaces, Mat. Vesnik 66 (2014), 113–124.
- [20] B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for  $\alpha$ - $\psi$ -contractive type mappings, Nonlinear Anal. **75** (2012), 2154–2165.
- [21] S. Sedghi, N. Shobe, and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik 64 (2012), 258–266.
- [22] N. Souayah and N. Mlaiki, A fixed point theorem in  $S_b$ -metric spaces, J. Math. Comput. Sci. 16 (2016), 131–139.