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Abstract

In 1984, Khan et al. established some fixed point theorems in complete and compact metric spaces by altering distance
functions. In 2020, Lotfy et al. introduced the α∗-ψ-common rational type mappings on generalized metric spaces
applied to fractional integral equations. In 2022, Roy et al. described the notion of Branciari Sb-metric space and
related fixed point theorems with an application. In this paper, we introduce the notion of fixed point theorems for α∗-
ψ-βi-contractive set-valued mappings on Branciari Sb-metric space with application to fractional integral equations.
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1 Introduction

We know that the fixed point theory has many applications and was extended by several authors from different
views (see for example [1]-[22]). Samet et al [20] introduced the notion of α-ψ-contractive type mappings. Hassanzadeh
Asl et al [11, 12] introduced the notion of common fixed point theorems for α∗-ψ-contractive multifunction. Farajzadeh
et al [8] introduced the fixed point theorems for (ξ, α, η)-expansive mappings in complete metric spaces. Gungor et al
established fixed point theorems on orthogonal metric spaces via altering distance functions. Lotfy et al [16] introduced
the notion of α∗-ψ-common rational type mappings on generalized metric spaces with application to fractional integral
equations. Roy et al [18] described the notion of Branciari Sb-metric space and related fixed point theorems with an
application. This paper aims to introduce the notion of fixed point theorems for α∗-ψ-βi-contractive set-valued
mappings on Branciari Sb-metric space with application to fractional integral equations.

2 Preliminaries

In this section, we list some fundamental definitions that are useful tool in consequent analysis. Let 2X denote the
family of all nonempty subsets of X.
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Definition 2.1. ([15]) A function ψ : [0,+∞) → [0,+∞) is called an altering distance function if the following
properties are satisfied:
(ψ1) ψ(0) = 0 and ψ(t) > 0 for all t ∈ (0,+∞);
(ψ2) ψ is continuous and no-decreasing;
(ψ3)

∑+∞
n=1 ψ

n(t) <∞;
(ψ4) ψ(t1 + t2) ≤ ψ(t1) + ψ(t2);

for all t1, t2 ∈ (0,+∞).

These functions are known in the literature as (c)-comparison functions. It is easily proved that if ψ is a (c)-
comparison function, then ψ(t) ≤ t for all t > 0. We denote Ψ as the set of altering distance function ψ. The extended
line is the ordered space [−∞; +∞], considering of all points of the number line R and two points, denoted by −∞,+∞
with the usual order relation for points of R.

Definition 2.2. ([4, 7]) Let X be a nonempty set and ρ : X × X → [0,∞] be a mapping. Then ρ is said to be a
rectangular metric if it satisfies the following conditions, for all x, y ∈ X and all distinct u, v ∈ X each of which is
different from x and y:
(GMS1) ρ(x, y) = 0 if and if x = y ;
(GMS2) ρ(x, y) = ρ(y, x) for any points x, y ∈ X;
(GMS3) ρ(x, y) ≤ ρ(x, u) + ρ(u, v) + ρ(v, y) for any points x, y, u&v ∈ X considering that if d(x, u) = ∞ or

ρ(u, v) = ∞ or d(v, y) = ∞ then ρ(x, u) + ρ(u, v) + d(v, y) = ∞.

In this case the map ρ is called a generalized and abbreviated as GM . Here, the pair (X, ρ) is called a rectangular
metric space and abbreviated as GMS. There are several rectangular metric spaces which are not usual metric spaces.
Let us recall the following example.

In the above definition, if ρ satisfies only GMS1 and GMS2, then it is called a semi-metric.

Example 2.3. ([13]) Let U = {0, 2}, V = { 1
n : n ≥ 1 and X = U ∪ V }.

Define ρ : X2 → [0,∞] by

ρ(x, y) =


0 if x = y,
1 if x ̸= y and either x, y ∈ U or x, y ∈ V,
y if x ∈ U and y ∈ V,
x if x ∈ V and y ∈ U.

Then ρ is a rectangular metric on X but not an usual metric space.

ρ(0, 2) = 1 > ρ(0,
1

3
) + ρ(

1

3
, 2) =

1

3
+

1

3
=

2

3
.

Sedghi et al. [21] introduced a new type of metric structure consisting of three variables known as S-metric.
Subsequently Souayah and Mlaiki [22] investigated the notion of Sb-metric spaces which generalized the concept of
S-metric spaces.

Definition 2.4. ([19, 21]) Let X be a nonempty set. An S-metric on X is a function S : X3 → [0,∞) that satisfies
the following conditions, for all x, y, z, t ∈ X :
(i) S(x, y, z) = 0 if and if x = y = z ;
(ii) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).

The pair (X,S) is called an S-metric space.

Example 2.5. ([21])
(1) Let R be the real line and X = Rn and ||.|| a norm on X. Then S(x, y, z) = ||y+ z−2x||+ ||y− z|| is an S-metric

on X.
(2) Let R be the real line. Then S(x, y, z) = |x − z| + |y − z| for all x, y, z ∈ R is an S-metric on R. This S-metric

on R is called the usual S-metric on R.

Definition 2.6. ([17, 22]) LetX be a nonempty set and let s ≥ 1 be a given real number. A function Sb : X
3 → [0,∞)

is said to be Sb-metric if and if for all x, y, z, t ∈ X : the following conditions hold:
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(i) Sb(x, y, z) = 0 if and if x = y = z ;
(ii) Sb(x, y, z) ≤ s[Sb(x, x, t) + Sb(y, y, t) + Sb(z, z, t)].

The pair (X,Sb) is called an Sb-metric space.

Example 2.7. ([22]) Let X be a nonempty set and card(X) ≥ 5. suppose X = X1 ∪X2 a partition of X such that
card(X1) ≥ 4. Let s ≥ 1, then

Sb(x, y, z) =


0 if x = y = z,
5 if x = 1 = y and z = 2,

1
n+1 if x = 1 = y and z ≥ 3,
1

n+2 if x = 2 = y and z ≥ 3,

3 otherwise.

for all x, y, z, t ∈ X. Then Sb is an Sb-metric on X with coefficient s.

Definition 2.8. ([18]) Let X be a nonempty set and λ : X3 → R+
0 be a function. Then λ is said to be Branciari

Sb-metric if it satisfies the following condition:
(i) λ(x, y, z) = 0 if and if x = y = z;
(ii) for any x, y, z ∈ X and for a, b ∈ X \ {x, y, z} with a ̸= b we have

λ(x, y, z) ≤ k[λ(x, x, a) + λ(y, y, a) + λ(z, z, b) + λ(a, b, b)] (2.1)

where k ≥ 1. The pair (X,λ) is called Branciari Sb-metric space.

Definition 2.9. ([18]) A Branciari Sb-metric on a nonempty set X is said to be symmetric if λ(x, x, y) = σ(y, y, x)
for all x, y ∈ X.

Proposition 2.10. ([18]) (i) Let (X,S) be an S-metric spaces (see definition (2.4)). The X is also a Branciari
Sb-metric space for k = 2.
(ii) Let (X,Sb) be an Sb-metric space with coefficient s ≥ 1 (see definition (2.8)). The X is also a Branciari Sb-metric

space for k = 2s2.

Proposition 2.11. ([18]) Any S-metric space or Sb-metric space is also a Branciari Sb-metric space but there are
several Branciari Sb-metric spaces which are neither S-metric spaces nor Sb-metric spaces.

Example 2.12. ([18]) Let X = N and λ : X3 → R+
0 be defined by

λ(x, y, z) =


0 if x = y = z,
5 if x = 1 = y and z = 2,

1
n+1 if x = 1 = y and z ≥ 3,
1

n+2 if x = 2 = y and z ≥ 3,

3 otherwise.

for all x, y, z, t ∈ X. Also we take λ(x, x, y) = λ(y, y, x) for all x, y ∈ X. Then λ is a symmetric Sb-metric space on X
for k = 5

3 but it is nether an S-metric nor an Sb-metric for any k ≥ 1.

Definition 2.13. ([18]) Let (X,λ) be a Branciari Sb-metric space. Then
(i) A sequence {xn} in X is said to be Branciari convergent to some z ∈ X if λ(xn, xn, z) → 0 as n→ ∞.
(ii) A sequence {xn} in X is said to be Branciari cauchy if λ(xn, xn, xm) → 0 as n,m→ ∞.
(ii) X is said to be Branciari complete if every Branciari cauchy sequence in X is Branciari convergent to some

element in X.

Definition 2.14. We say that (X,λ) has the property α−regular Branciari Sb-metric space if, either

(i) {xn} is a monotone Branciari sequences in X such that α(xn, xn, xn+1) ≥ 1 for all n and xn → x ∈ X as
n→ ∞, then there exists a Branciari subsequence {xnk

} of {xn} such that α(xnk
, xnk

, x) ≥ 1 for all k.

or

(ii) {xn} is a monotone Branciari sequences in X such that α(xn+1, xn+1, xn) ≥ 1 for all n and xn → x ∈ X as
n→ ∞, then there exists a Branciari subsequence {xnk

} of {xn} such that α(x, x, xnk
) ≥ 1 for all k.
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Definition 2.15. Let (X,λ) be a Branciari Sb-metric spaces. If T : X → 2X is a set-valued mapping, then x ∈ X is
called fixed point for T if and only if x ∈ F (x). The set

Fix(T ) := {x ∈ X such that x ∈ Tx}

is called the fixed point set of T .

Proposition 2.16. ([14, 7]) Suppose that {xn} is a Branciari Cauchy sequence in a (X,λ) be a Branciari Sb-metric
space with limn→∞ λ(xn, xn, u) = 0 where u ∈ X. Then

lim
n→∞

λ(xn, xn, z) = λ(u, u, z)

for all z ∈ X. In particular, the Branciari sequence {xn} dose not Branciari converge to z if z ̸= u.

Definition 2.17. Let (X,λ) be a Branciari Sb-metric space. A set-valued mapping T : X → 2X is called Branciari
order closed if for monotone Branciari sequences xn ∈ X and yn ∈ Txn, with xn → x and yn → y, implies y ∈ Tx.

Definition 2.18. Let (X,λ) be a Branciari Sb-metric space and T : X → 2X with given set-valued, α : X×X×X →
[0,+∞), α∗ : 2X × 2X × 2X → [0,+∞), α∗(A,A,B) = inf{α(a, a, b) : a ∈ A, b ∈ B}, ψ ∈ Ψ, Λ(s, s, Ts) =
inf{λ(s, s, z)/z ∈ Ts}, Hλ is the Hausdorff metric

Hλ(Tx, Tx, Ty) = max{ sup
a∈Tx

Λ(a, a, Ty), sup
b∈Ty

Λ(Tx, Tx, b)}.

βi : R+ − {0} → [0, 1) be four decreasing functions such that
∑4

i=1 βi(t) ≤ 1 for every t > 0. One says that T is
α∗-ψ-βi-contractive set-valued mappings whenever

α∗(Tx, Tx, Ty)ψ(Hλ(Tx, Tx, Ty)) ≤β1(λ(x, x, y))ψ(λ(x, x, y)) + β2(λ(x, x, y))ψ(Λ(x, x, Tx))

+ β3(λ(x, x, y))ψ(Λ(y, y, Ty)) + β4(λ(x, x, y))min{ψ(Λ(x, x, Ty), ψ(Λ(y, y, Tx))}.
(2.2)

One says that T are an α∗ admissible if

α(x, x, y) ≥ 1 ⇒ α∗(Tx, Tx, Ty) ≥ 1 (2.3)

for all x, y ∈ X.

Definition 2.19. A subset B ⊆ X is said to be an approximation if for each given y ∈ X, there exists z ∈ B such
that Λ(B,B, y) = λ(z, z, y) .

Definition 2.20. A set-valued mapping T : X −→ 2X is said to have an approximate values in X if Tx is an
approximation for each x ∈ X.

3 Main result

Some fixed point theorems in symmetric Branciari Sb-metric space.

Theorem 3.1. Let (X,λ) be a complete symmetric Branciari Sb-metric space (not necessarily complete metric space),
T : X → 2X is α∗-ψ-βi-Branciari contractive set-valued mappings satisfies the following conditions:

(i) T is α∗-admissible;

(ii) there exists x0 ∈ X such that

α∗({x0}, {x0}, T{x0}) ≥ 1, α∗({x0}, {x0}, T 2{x0}) ≥ 1;

(iii) (X,λ) has the property α−regular Branciari Sb-metric space.

Then T has fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated Branciari sequences {xn} with xn+1 ∈ Txn
Branciari converges to the fixed point of T .
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Proof . Let x0 ∈ X such that α∗({x0}, {x0}, Tx0) ≥ 1. Define the sequence {xn} in X by xn+1 ∈ Txn for all n ∈ N0.
If xn0

= xn0+1 for some n0 > 1, then x∗ = xn0
are a fixed point for T . So, we can assume that xn /∈ Txn for all

n ∈ N0. Since T is α∗−admissible, we have

α(x0, x0, x1) ≥ α∗({x0}, {x0}, Tx0) ≥ 1 ⇒ α∗(Tx0, Tx0, Tx1) ≥ 1;

α(x1, x1, x2) ≥ α∗(Tx0, Tx0, Tx1) ≥ 1 ⇒ α∗(Tx1, Tx1, Tx2) ≥ 1;

α(x2, x2, x3) ≥ α∗(Tx1, Tx1, Tx2) ≥ 1 ⇒ α∗(Tx2, Tx2, Tx3) ≥ 1.

Inductively, we have
α(xn, xn, xn+1) ≥ 1 ⇒ α∗(Txn, Txn, Txn+1) ≥ 1

for all n ∈ N0. Similarly, we have

α(x0, x0, x2) ≥ α∗({x0}, {x0}, T 2x0) ≥ 1 ⇒ α∗(Tx0, Tx0, Tx2) ≥ 1;

α(x1, x1, x3) ≥ α∗(Tx0, Tx0, Tx2) ≥ 1 ⇒ α∗(Tx1, Tx1, Tx3) ≥ 1;

α(x2, x2, x4) ≥ α∗(Tx1, Tx1, Tx3) ≥ 1 ⇒ α∗(Tx2, Tx2, Tx4) ≥ 1.

Inductively, we have
α(xn, xn, xn+2) ≥ 1 ⇒ α∗(Txn, Txn, Txn+2) ≥ 1

for all n ∈ N0. Without loss of generality, we may assume that T : X → 2X be a α∗-ψ-βi-contractive set-valued
mappings. Consider equation (2.2), with x = x2n+1 and y = x2n+2. Clearly, we have

ψ(λ(x2n+1, x2n+1, x2n+2)) ≤α∗(Tx2n, Tx2n, Tx2n+1)ψ(Hλ(Tx2n, Tx2n, Tx2n+1))

≤β1(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1)) + β2(Λ(x2n, x2n, Tx2n))ψ(Λ(x2n, x2n, Tx2n))

+ β3(Λ(x2n+1, x2n+1, Tx2n+1))ψ(Λ(x2n+1, x2n+1, Tx2n+1))

β4(Hλ(Tx2n, Tx2n, Tx2n+1))min{ψ(Λ(x2n, x2n, Txn+1), ψ(Λ(x2n+1, x2n+1, Tx2n))}
≤β1(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1)) + β2(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1))

+ β3(λ(x2n+1, x2n+1, x2n+2))ψ(λ(x2n+1, x2n+1, x2n+2))

β4(λ(x2n+1, x2n+1, x2n+2))min{ψ(λ(x2n, x2n, x2n+2), ψ(λ(x2n+1, x2n+1, x2n+1))}
≤β1(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1)) + β2(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1))

+ β3(λ(x2n+1, x2n+1, x2n+2))ψ(λ(x2n+1, x2n+1, x2n+2)) (3.1)

Then
(1− β3(λ(x2n+1, x2n+1, x2n+2))ψ(λ(x2n+1, x2n+1, x2n+2)) ≤
β1(λ(x2n, x2n, x2n+1)) + β2(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1))

(3.2)

and

ψ(λ(x2n+1, x2n+1, x2n+2)) ≤
(β1(λ(x2n, x2n, x2n+1)) + β2(λ(x2n, x2n, x2n+1)))

(1− β3(λ(x2n+1, x2n+1, x2n+2))
ψ(λ(x2n, x2n, x2n+1)) (3.3)

Thus
ψ(λ(x2n+1, x2n+1, x2n+2)) ≤ ψ(λ(x2n, x2n, x2n+1)). (3.4)

for all n ∈ N0. Similarly,
ψ(λ(x2n, x2n, x2n+1)) ≤ ψ(λ(x2n−1, x2n−1, x2n)). (3.5)

for all n ∈ N0. We have

ψ(λ(xn+1, xn+1, xn+2)) ≤ ψ(λ(xn, xn, xn+1)) ≤ . . . ≤ ψn(λ(x0, x0, x1)), (3.6)

for all n ∈ N. From the property of ψ, we conclude that

λ(xn, xn, xn+1) ≤ λ(xn−1, xn−1, xn), (3.7)

for all n ∈ N, it is clear that
lim
n→∞

λ(xn+1, xn+1, xn+2) = 0. (3.8)
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Consider equation (2.2), with x = x2n−1 and y = x2n+1. Clearly, we have

ψ(λ(x2n−1, x2n−1, x2n+1)) ≤α∗(Tx2n−2, Tx2n−2, Tx2n)ψ(Hλ(Tx2n−2, Tx2n−2, Tx2n))

≤β1(λ(x2n−2, x2n−2, x2n))ψ(λ(x2n−2, x2n−2, x2n))

+ β2(Λ(x2n−2, x2n−2, Tx2n−2))ψ(Λ(x2n−2, x2n−2, Tx2n−2))

+ β3(Λ(x2n, x2n, Tx2n))ψ(Λ(x2n, x2n, Tx2n))

+ β4(Hλ(Tx2n−2, Tx2n−2, Tx2n))min{ψ(Λ(x2n−2, x2n−2, Tx2n), ψ(Λ(x2n, x2n, Tx2n−2))}
≤β1(λ(x2n−2, x2n−2, x2n))ψ(λ(x2n−2, x2n−2, x2n))

+ β2(λ(x2n−2, x2n−2, x2n−1))ψ(λ(x2n−2, x2n−2, x2n−1))

+ β3(λ(x2n, x2n, x2n+1))ψ(λ(x2n, x2n, x2n+1))

+ β4(λ(x2n−1, x2n−1, x2n+1))min{ψ(λ(x2n−2, x2n−2, x2n+1), ψ(λ(x2n, x2n, x2n−1))}
(3.9)

Define a2n = λ(x2n−1, x2n−1, x2n+1) and b2n = λ(x2n, x2n, x2n+1). Then

ψ(a2n) ≤ β1(a2n−1)ψ(a2n−1)+β2(b2n−1)ψ(b2n−1)+β3(b2n)ψ(b2n)+β4(a2n)min{ψ(λ(x2n−2, x2n−2, x2n+1), ψ(b2n−1)}.
(3.10)

From the (3.8) limn→∞ b2n = limn→∞ λ(x2n, x2n, x2n+1) = 0. We get

ψ(a2n) ≤ β1(a2n−1)ψ(a2n−1) ≤ ψ(a2n−1) (3.11)

and hence,
lim

n→∞
a2n = lim

n→∞
d(x2n−1, x2n+1) = 0 ⇒ lim

n→∞
an = lim

n→∞
λ(xn−1, xn−1, xn+1) = 0.

Now, we shall prove that xn ̸= xm for all n ̸= m. Assume on the contrary that xn = xm for some m,n ∈ N with
n ̸= m. Since d(xp, xp+1) > 0 for each p ∈ N, without loss of generality, we may assume that m > n+ 1,m = 2k and
n = 2l for k, l ∈ N. Substitute again x = x2l = x2k and y = x2l+1 = x2k+1 in (2.2), (3.7) which yields

ψ(λ(x2l, x2l, x2l+1)) =ψ(λ(x2k, x2k, x2k+1))

≤α∗(Hλ(Tx2k−1, Tx2k−1, Tx2k))ψ(Hλ(Tx2k−1, Tx2k−1, Tx2k))

≤β1(λ(x2k−1, x2k−1, x2k))ψ(λ(x2k−1, x2k−1, x2k))

+ β2(Λ(x2k−1, x2k−1, Tx2k−1))ψ(Λ(x2k−1, x2k−1, Tx2k−1))

+ β3(Λ(x2k, x2k, Tx2k))ψ(Λ(x2k, x2k, Tx2k))

β4(Hλ(Tx2k, Tx2k, Tx2k−1))min{ψ(Λ(x2k, x2k, Tx2k−1), ψ(Λ(x2k−1, x2k−1, Tx2k))}
≤β1(λ(x2k−1, x2k−1, x2k))ψ(λ(x2k−1, x2k−1, x2k))

+ β2(λ(x2k−1, x2k−1, x2k))ψ(λ(x2k−1, x2k−1, x2k))

+ β3(λ(x2k, x2k, x2k+1))ψ(λ(x2k, x2k, x2k+1))

β4(λ(x2k+1, x2k+1, x2k))min{ψ(λ(x2k, x2k, x2k), ψ(λ(x2k−1, x2k−1, x2k+1))}
≤β1(λ(x2k−1, x2k−1, x2k))ψ(λ(x2k−1, x2k−1, x2k))

+ β2(λ(x2k−1, x2k−1, x2k))ψ(λ(x2k−1, x2k−1, x2k)) + β3(λ(x2k, x2k, x2k+1))ψ(λ(x2k, x2k, x2k+1))
(3.12)

which is impossible. From this it follows that xn ̸= xm for all n,m (n ̸= m) ∈ N.
Case I: Suppose that Sn = λ(xn, xn, xn+1), ψ(Sn) = αnSn and α ∈ (0, 1√

k
). Then

Sn = λ(xn, xn, xn+1) ≤ ψ(λ(xn−1, xn−1, xn)) = αn−1λ(xn−1, xn−1, xn)
≤ αn−1ψ(λ(xn−2, xn−2, xn−1)) ≤ · · · ≤ αn−1αn−2 · · ·α1α0λ(x0, x0, x1) = αnS0

(3.13)

Similarly, we have

S∗
n = λ(xn, xn, xn+2) ≤ ψ(λ(xn−1, xn−1, xn+1)) = αn−1λ(xn−1, xn−1, xn+1)

≤ αn−1ψ(λ(xn−2, xn−2, xn)) ≤ · · · ≤ αn−1αn−2 · · ·α1α0λ(x0, x0, x1) = αnS∗
0

(3.14)
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for all n ≥ 1 and α = max0≤i≤n−1{αi}. Now, we shall prove that {xn} is a Branciari Cauchy sequence, that is,

lim
n→∞

λ(xn, xn, xn+l) = 0,

for all l ∈ N.We have already proved the cases for l = 1 and l = 2 in (3.7) and (3.10), respectively. Now for l = 2m+1,
where m ≥ 1. Using the inequality (2.1), we have

λ(xn, xn, xn+l) ≤ k[λ(xn, xn, xn+1) + λ(xn, xn, xn+1) + λ(xn+l, xn+l, xn+2)
+λ(xn+1, xn+1, xn+2)]
= 2kλ(xn, xn, xn+1) + kλ(xn+l, xn+l, xn+2) + kλ(xn+1, xn+1, xn+2)]
Symmetric

= 2kλ(xn, xn, xn+1) + kλ(xn+1, xn+1, xn+2) + kλ(xn+2, xn+2, xn+l)
≤ 2kλ(xn, xn, xn+1) + kλ(xn+1, xn+1, xn+2) + k(k[λ(xn+2, xn+2, xn+3)
+λ(xn+2, xn+2, xn+3) + λ(xn+l, xn+l, xn+4) + λ(xn+3, xn+3, xn+4)])
Symmetric

= 2kλ(xn, xn, xn+1) + kλ(xn+1, xn+1, xn+2) + 2k2λ(xn+2, xn+2, xn+3)
+k2λ(xn+3, xn+3, xn+4) + k2λ(xn+4, xn+4, xn+2m+1)
≤ · · ·
...
≤ 2k[λ(xn, xn, xn+1) + λ(xn+1, xn+1, xn+2)] + 2k2[λ(xn+2, xn+2, xn+3)
+λ(xn+3, xn+3, xn+4)]
+ · · ·+ 2km[λ(xn+2m−2, xn+2m−2, xn+2m−1) + λ(xn+2m−1, xn+2m−1, xn+2m)]
+kmλ(xn+2m, xn+2m, xn+2m+1)
≤ 2[{k(αn

0 + αn+1
0 ) + k2(αn+2

0 + αn+3
0 ) + · · ·+ km(αn+2m−2

0 + αn+2m−1
0 )}

+kmαn+2m
0 ]S0 = 2k(1 + α0)α

n
0 [1 + kα2

0 + · · ·+ kmα2m
0 ]S0 = 2k(1+α0)

1+kα2
0
αn
0S0

(3.15)

for all n ≥ 1. Also for l = 2m we get

λ(xn, xn, xn+2m) ≤ · · · ≤ 2k(1+α0)
1+kα2

0
αn
0S0 + αn

0 (kα
2)m−1S∗

0 (3.16)

for all n ≥ 1. Thus we proved that {xn} is a Branciari Cauchy sequence in the complete metric space (X,λ), there
exists x∗ ∈ X such that

lim
n→∞

λ(xn, xn, x
∗) = 0

by (X,λ) has the property α−regular Branciari Sb-metric space. There exists a subsequence {xnk
} of {xn} such that

α∗({x2nk+1}, {x2nk+1}, {x∗}) ≥ α∗(Tx2nk
, Tx2nk

, Tx∗) ≥ 1 for all k. (3.17)

Thus

ψ(Λ(x∗, x∗, Tx∗)) ≤ψ(λ(x∗, x∗, x2nk+1)) + ψ(Λ(x2nk+1, x2nk+1, Tx
∗))

≤ψ(λ(x∗, x∗, x2nk+1)) + α∗(Tx2nk
, Tx2nk

, Tx∗)ψ(Hλ(Tx2nk
, Tx2nk

, Tx∗))

≤ψ(λ(x∗, x∗, x2nk+1)) + β1(λ(x2nk
, x2nk

, x∗))ψ(λ(x2nk
, x2nk

, x∗))

+ β2(λ(x2nk
, x2nk

, x∗))ψ(Λ(x2nk
, x2nk

, Tx2nk
)) + β3(λ(x2nk

, x2nk
, x∗))ψ(Λ(x∗, x∗, Tx∗))

β4(λ(x2nk
, x2nk

, x∗))min{ψ(Λ(x2nk
, x2nk

, Tx∗), ψ(Λ(x∗, x∗, Tx2nk
))}

≤ψ(λ(x∗, x∗, x2nk+1)) + β1(λ(x2nk
, x2nk

, x∗))ψ(λ(x2nk
, x2nk

, x∗))

+ β2(λ(x2nk
, x2nk

, x2nk+1))ψ(λ(x2nk
, x2nk

, x2nk+1)) + β3(λ(x2nk
, x2nk

, x∗))ψ(Λ(x∗, x∗, Tx∗))

β4(λ(x2nk
, x2nk

, x∗))min{ψ(Λ(x2nk
, x2nk

, Tx∗), ψ(λ(x∗, x∗, x2nk+1))}
≤ψ(0) + β1(λ(x2nk

, x2nk
, x∗))ψ(0) + β2(λ(x2nk

, x2nk
, x2nk+1))ψ(0)

+ β3(λ(x2nk
, x2nk

, x∗))ψ(Λ(x∗, x∗, Tx∗))β4(λ(x2nk
, x2nk

, x∗))min{ψ(Λ(x2nk
, x2nk

, Tx∗), ψ(0)}
≤β3(λ(x2nk

, x2nk
, x∗))ψ(Λ(x∗, x∗, Tx∗))

≤ψ(Λ(x∗, x∗, Tx∗)) (3.18)

for all k, which is impossible. Hence, Λ(x∗, x∗, Tx∗) = Λ(Tx∗, Tx∗, x∗) = 0 and so x∗ ∈ Tx∗.

Case-(II): α ∈ [ 1√
k
, 1). Then there exists N ∈ N such that αN ∈ ( 1√

k
, 1). Now due to the contractive condition

(2.2) we see that also satisfies the contractive condition (2.2) for the Lipschitz constant therefore by Case-(I) TN has
a fixed point in X and thus in this case also T has a fixed point. □
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Example 3.2. ([18]) Let X = N and λ : X3 → R+
0 be defined λ(x, x, x) = 0 and λ(x, x, y) = λ(y, y, x) for all x, y ∈ X

with

λ(x, y, z) =


10 if x = 1 = y and z = 2,

1
2(n+1) if x = 1 = y and z ≥ 3,

1
n+2 if x = 2 = y and z ≥ 3,

5 otherwise.

Then λ is a complete symmetric Branciari Sb-metric space on X for k = 4 but it is nether an S-metric nor an
Sb-metric for any k ≥ 1. Let T : X → 2X be

Tx =

{
{3, 4} if x ∈ {1, 2},
{5, 6} otherwise.

Then T 2 satisfies the contractive condition (2.2) for any ψ(x) = x2

1+x2 and thus T 2 has a fixed point in X. Therefore
T has a fixed point x = 5 in X.

Corollary 3.3. ([18]) (Analogue to Banach Contraction Theorem) Let (X,λ) be a complete symmetric Branciari
Sb-metric space and T : X → X satisfies

λ(Tx, Tx, Ty) ≤ α(λ(x, x, y))

for all x, y ∈ X, where α ∈ (0, 1). Then T has a unique fixed point in X.

Example 3.4. Let X = Z and Y ⊆ X be a finite set defined as Y = {1, 2, 4, 8}. Define λ : Y × Y × Y → [0,∞) as:
λ(1, 1, 1) = λ(2, 2, 2) = λ(4, 4, 4) = λ(8, 8, 8) = 0,
λ(1, 1, 2) = λ(2, 2, 1) = 3,
λ(2, 2, 8) = λ(8, 8, 2) = λ(1, 1, 8) = λ(8, 8, 1) = 1 and
λ(1, 1, 4) = λ(4, 4, 1) = λ(2, 2, 4) = λ(4, 4, 2) = λ(8, 8, 4) = λ(4, 4, 8) = 1

2 .
The function λ is not a metric on Y. Indeed, note

3 = λ(1, 1, 2) ≥ λ(1, 1, 8) + λ(8, 8, 2) = 1 + 1 = 2,

that is, the triangle inequality is not satisfied. However, λ is a Branciari Sb-metric on Y and moreover (Y, λ) is a
complete Branciari Sb-metric space. Define T : Y → 2Y as: T1 = T2 = T8 = {2, 4}, T4 = {1, 8} and T1 = T2 = T4 =
{2, 8}, T8 = {1, 2}, α : Y × Y × Y → [0,+∞), α∗ = inf α as α(x, x, y) = α(y, y, x)) = 1 ψ(t) = 2

3 t. Clearly, T satisfies
the conditions of Theorem (3.1) and has a fixed point x = 2.

3.1 Analogue to Kannan fixed point theorem

Theorem 3.5. (Analogue to Kannan fixed point theorem) Let (X,λ) be complete symmetric Branciari Sb-metric
space and T : X → 2X satisfies

α∗(Tx, Tx, Ty)Hλ(Tx, Tx, Ty) ≤ β1(λ(x, x, y))ψ1(Λ(x, x, Tx)) + β2(λ(y, y, x))ψ2(Λ(y, y, Ty)) (3.19)

for all x, y ∈ X where ψi ∈ Ψ and
∑2

i=1 βi(λ(x, x, y)) ∈ (0, 12 ). Then T has a fixed point in X.

Proof . Let x0 ∈ X be taken as arbitrary and let us construct the sequence {xn} in X by xn+1 ∈ Txn for all n ∈ N0.
If xn0 = xn0+1 for some n0 > 1, then x∗ = xn0 are a fixed point for T . So, we can assume that xn /∈ Txn for all
n ∈ N0. Here we show that {xn} is Cauchy sequence in X.

Case−I:
∑2

i=1 βi(λ(x, x, y)) ∈ (0, 1
k+1 ). From the contraction condition (3.19), we get

λ(xn, xn, xn+1) ≤α∗(Txn−1, Txn−1, Txn)Hλ(Txn−1, Txn−1, Txn)

≤β1(λ(xn−1, xn−1, xn))ψ1(Λ(xn−1, xn−1, Txn−1)) + β2(λ(xn, xn, xn−1))ψ2(Λ(xn, xn, Txn))

≤β1(λ(xn−1, xn−1, xn))ψ1(λ(xn−1, xn−1, xn)) + β2(λ(xn, xn, xn−1))ψ2(λ(xn, xn, xn+1))

≤β1(λ(xn−1, xn−1, xn))λ(xn−1, xn−1, xn) + β2(λ(xn, xn, xn−1))λ(xn, xn, xn+1)
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for all n ≥ 1. From which we get

Sn = λ(xn, xn, xn+1) ≤
β1

1− β2
λ(xn−1, xn−1, xn) = γλ(xn−1, xn−1, xn) = γSn−1 ≤ · · · ≤ γnS0

for all n ∈ N, where γ = β1

1−β2
< 1

k . Also we have,

S∗
n = λ(xn, xn, xn+2) ≤α∗(Txn−1, Txn−1, Txn+1)Hλ(Txn−1, Txn−1, Txn+1)

≤β1(λ(xn−1, xn−1, xn+1))ψ1(Λ(xn−1, xn−1, Txn−1))

+ β2(λ(xn+1, xn+1, xn−1))ψ2(Λ(xn+1, xn+1, Txn+1))

≤β1(λ(xn−1, xn−1, xn+1))ψ1(λ(xn−1, xn−1, xn))

+ β2(λ(xn+1, xn+1, xn−1))ψ2(λ(xn+1, xn+1, xn+2))

≤β1(λ(xn−1, xn−1, xn+1))λ(xn−1, xn−1, xn) + β2(λ(xn+1, xn+1, xn−1))λ(xn+1, xn+1, xn+2)

≤β1(λ(xn−1, xn−1, xn+1))Sn−1 + β2(λ(xn+1, xn+1, xn−1))Sn+1

≤β1(λ(xn−1, xn−1, xn+1))γ
n−1S0 + β2(λ(xn+1, xn+1, xn−1))γ

n+1S0

≤β(λ(xn−1, xn−1, xn+1))γ
n−1S0 + β(λ(xn+1, xn+1, xn−1))γ

n+1S0

≤β(λ(xn−1, xn−1, xn+1))[γ
n−1 + γn+1]S0

=β(λ(xn−1, xn−1, xn+1))[1 + γ2]γn−1S0

for all n ∈ N, where

β(λ(xn−1, xn−1, xn+1)) = max{β1(λ(xn−1, xn−1, xn+1)), β2(λ(xn+1, xn+1, xn−1))}.

Show that xn is Cauchy sequence in X and therefore due to the completeness of X there exist a u ∈ X such that
xn → u as n→ ∞. Now,

Λ(xn+1, xn+1, Tu) ≤α∗(Txn, Txn, Tu)Hλ(Txn, Txn, Tu)

≤β1(λ(xn, xn, u))ψ1(Λ(xn, xn, Txn)) + β2(λ(u, u, xn))ψ2(Λ(u, u, Tu))

=β1(λ(xn, xn, u))ψ1(λ(xn, xn, xn+1)) + β2(λ(u, u, xn))ψ2(Λ(u, u, Tu))

≤β1(λ(xn, xn, u))λ(xn, xn, xn+1) + β2(λ(u, u, xn))Λ(u, u, Tu)

≤β1(λ(xn, xn, u))λ(xn, xn, xn+1) + β2(λ(u, u, xn))k[2λ(u, u, xn) + λ(Tu, Tu, xn+1) + λ(xn, xn, xn+1)]

≤β(λ(xn, xn, u))λ(xn, xn, xn+1) + β(λ(u, u, xn))k[2λ(u, u, xn) + λ(Tu, Tu, xn+1) + λ(xn, xn, xn+1)],

for all n ≥ 1. Therefore

Λ(xn+1, xn+1, Tu) ≤
β(λ(xn, xn, u))(1 + k)λ(xn, xn, xn+1) + 2kβ(λ(xn, xn, u))λ(xn, xn, u)

1− kβ(λ(xn, xn, u))
→ 0

as n→ ∞ and β(λ(xn, xn, u)) = max{β1(λ(xn, xn, u)), β2(λ(xn, xn, u))}. Hence u ∈ Tu and u is a fixed point of T.

Case−II: β = max{β1, β2} ∈ [ 1
k+1 ,

1
2 ). Then there exists N ∈ N such that

βγN−1 ∈ (0, 1
k+1 ). □

Example 3.6. Let X = { 1
2 ,

1
3 ,

1
4 , · · · } and λ : X3 → [0,∞) be defined by λ(x, x, x) = 0 and λ(x, x, y) = λ(y, y, x) for

all x, y ∈ X with

λ(x, y, z) =

 |n−m| if x = 1
n = y , z = 1

m and |n−m| > 1,
1
3 if x = 1

n = y , z = 1
m and |n−m| = 1,

1 otherwise.

Then λ is a complete symmetric Branciari Sb-metric space for k = 3 but not an S-metric, since

λ(
1

2
,
1

2
,
1

4
) = 2 > 2λ(

1

2
,
1

2
,
1

3
) + λ(

1

4
,
1

4
,
1

3
) = 1.

Let T : X → 2X be given by

Tx =

{
{ 1
3 ,

1
4} if x = 1

2 ,
{ 1
5 ,

1
6} if x ≤ 1

3 .

Then T satisfies the contractive condition (3.19) for
∑2

i=1 βi =
1
6 and thus T has a fixed point x = 1

5 in X.
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In this section we give some consequences of the main results presented above. Specifically, we apply our results
to complete symmetric Branciari Sb-metric space endowed with a partial order.

3.2 Fixed point theorems for weakly increasing on X has the property α-regular Branciari Sb-metric
space

In the following we provide set-valued versions of the preceding theorem. The results are related to those in ([9]).
Let X be a topological space and ⪯ be a partial order on X.

Definition 3.7. ([3]). Let A,B be two nonempty subsets of X, the relations between A and B are definers follows:
(r1) If for every a ∈ A, there exists b ∈ B such that a ⪯ b, then A ≺1 B.
(r2) If for every b ∈ B there exists a ∈ A, such that a ⪯ b, then A ≺2 B.
(r3) If A ≺1 B and A ≺2 B, then A ≺ B.

Definition 3.8. ([5], [6]). Let (X,⪯) be a partially ordered set. Two mappings f, g : X → X are said to be weakly
increasing if fx ⪯ gfx and gx ⪯ fgx hold for all x ∈ X.

Definition 3.9. ([2]) Let (X,⪯) be a partially ordered set. Two mapping F,G : X → 2X are said to be weakly
increasing with respect to ≺1 if for any x ∈ X we have Fx ≺1 Gy for all y ∈ Fx and Gx ≺1 Fy for all y ∈ Gx.
Similarly two maps F,G : X → 2X are said to be weakly increasing with respect to ≺2 if for any x ∈ X we have
Gy ≺2 Fx for all y ∈ Fx and Fy ≺2 Gx for all y ∈ Gx.

Now we give some examples.

Example 3.10. ([2]) Let X = [1,∞) and ≤ be usual order on X. Consider two mappings F,G : X → 2X defined by
Fx = [1, x2] and Gx = [1, 2x] for all x ∈ X. Then the pair of mappings F and G are weakly increasing with respect
to ≺2 but not ≺1 . Indeed, since

Gy = [1, 2y] ≺2 [1, x2] = Fx for all y ∈ Fx

and
Fy = [1, y2] ≺2 [1, 2x] = Gx for all y ∈ Gx

so F and G are weakly increasing with respect to ≺2 but F2 = [1, 4] ⊀1 [1, 2] = G1 for 1 ∈ F2, so F and G are not
weakly increasing with respect to ≺1 .

Example 3.11. ([2]) Let X = [1,∞) and ≤ be usual order on X. Consider two mappings F,G : X → 2X defined by
Fx = [0, 1] and Gx = [x, 1] for all x ∈ X. Then the pair of mappings F and G are weakly increasing with respect to
≺1 but not ≺2 . Indeed, since

Fx = [0, 1] ≺1 [y, 1] = Gy for all y ∈ Fx

and
Gx = [x, 1] ≺1 [0, 1] = Fy for all y ∈ Gx

so F and G are weakly increasing with respect to ≺1 but G1 = 1 ⊀2 0, 1 = F1 for 1 ∈ F1, so F and G are not weakly
increasing with respect to ≺2 .

Theorem 3.12. Let (X,⪯, λ) be a partially ordered complete symmetric Branciari Sb-metric space. Suppose that
T : X → 2X are set-valued mappings and satisfies the following conditions:
(i)

Hλ(Tx, Tx, Ty) ≤ β1(λ(x, x, y))ψ(λ(x, x, y)) + β2(λ(x, x, y))ψ(Λ(x, x, Tx))
+β3(λ(x, x, y))ψ(Λ(y, y, Ty)) + β4(λ(x, x, y))min{ψ(Λ(x, x, Ty), ψ(Λ(y, y, Tx))}. (3.20)

(ii) T and ix be a weakly increasing pair on X w.r.t ≺1;
(iii) there exists x0 ∈ X such that {x0} ≺1 Tx0 and {x0} ≺1 T

2x0;
(iv)X has the property α−regular generalized metric space.

Then T has fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated sequence {xn} with xn+1 ∈ Txn converges
to the fixed point of T .
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Proof . Define the sequence xn in X by xn+1 ∈ Txn for all n ∈ N0. If xn = xn+1 for some n ∈ N0, then x
∗ = xn

is a fixed point for T . Using that the pair of set-valued mappings T and ix is weakly increasing and by define
α : X ×X ×X → [0,+∞)

α(x, x, y) =

{
1 ifx ⪯ y
0 ifx ≻ y.

It can be easily shown that the sequence xn is nondecreasing w.r.t, ⪯ i.e; and

α∗({x0}, {x0}, Tx0) ≥ 1 ⇒ ∃x1 ∈ Tx0, such that α(x0, x0, x1) ≥ 1 ⇒ x0 ⪯ x1.

Now since T and ix is weakly increasing with respect to ≺1, we have x1 ∈ Tx0 ≺1 Tx1. Thus there exist some
x2 ∈ Tx1 such that x1 ⪯ x2. Again since T and ix is weakly increasing with respect to ≺1, we have x2 ∈ Tx1 ≺1 Tx2.
Thus there exist some x3 ∈ Tx2 such that x2 ⪯ x3. Continue this process, we will get a nondecreasing sequence
{xn}∞n=1 which satisfies xn+1 ∈ Txn, n = 0, 1, 2, 3, · · · We get

x0 ⪯ x1 ⪯ x2 ⪯ · · · ⪯ xn ⪯ xn+1 ⪯ xn+2 ⪯ · · · .

In particular xn, xn+j are comparable for all j ∈ N. α(xn, xn+j) ≥ 1 for all n ∈ N0 and by equation (2.1)
and (2.3) we have limn→∞ λ(xn, xn, xn+j) = 0. Following the proof of Theorem (3.1), we know that {xn} is a
Cauchy sequence in the partially ordered complete symmetric Branciari Sb-metric space (X,⪯, λ). There exists
x∗ ∈ X such that limn→+∞ λ(xn, xn, x

∗) = 0. and condition (iv), there exists a subsequence {xnj
} of {xn} such that

α(xnj+1, xnj+1, x
∗) ≥ α∗(Txnj , Txnj , Tx

∗) ≥ 1 for all j. Thus,

Λ(x∗, x∗, Tx∗) ≤k[λ(x∗, x∗, xnj+1) + λ(x∗, x∗, xnj+1) + Λ(Tx∗, Tx∗, xnj+2) + λ(xnj+1, xnj+1, xnj+2)]

=2kλ(x∗, x∗, xnj+1) + kΛ(Tx∗, Tx∗, xnj+2) + kλ(xnj+1, xnjk+1, xnjk+2)

=2kλ(x∗, x∗, xnj+1) + jλ(xnj+1, xnj+1, xnj+2) + kΛ(Tx∗, Tx∗, Txnj+1)

≤2kλ(x∗, x∗, xnj+1) + kλ(xnj+1, xnj+1, xnjk+2) + kHλ(Tx
∗, Tx∗, Txnj+1)

≤2kλ(x∗, x∗, xnj+1) + kλ(xnj+1, xnjk+1, xnjk+2) + k[β1(λ(x
∗, x∗, xnj+1))ψ(λ(x

∗, x∗, xnj+1))

+ β2(λ(x
∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗)) + β3(λ(x
∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗))

+ β4(λ(x
∗, x∗, xnj+1))min{ψ(Λ(x∗, x∗, Txnj+1)), ψ(Λ(xnj+1, xnj+1, Tx

∗))}]
≤2kλ(x∗, x∗, xnj+1) + kλ(xnj+1, xnj+1, xnj+2) + k[β1(λ(x

∗, x∗, xnj+1))ψ(λ(x
∗, x∗, xnj+1))

+ β2(λ(x
∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗)) + β3(λ(x
∗, x∗, xnjk+1))ψ(Λ(x

∗, x∗, Tx∗))

+ β4(λ(x
∗, x∗, xnk+1))min{ψ(λ(x∗, x∗, xnj+2)), ψ(Λ(xnj+1, xnj+1, Tx

∗))}]
≤k[β2(λ(x∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗)) + β3(λ(x
∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗))]

≤k[β2(λ(x∗, x∗, xnj+1))Λ(x
∗, x∗, Tx∗) + β3(λ(x

∗, x∗, xnjk+1))Λ(x
∗, x∗, Tx∗)]

<k[β2(λ(x
∗, x∗, xnj+1)) + β3(λ(x

∗, x∗, xnj+1))]Λ(x
∗, x∗, Tx∗)

for all j ∈ N and k ≥ 1. Hence, Λ(x∗, x∗, Tx∗) = 0 and so x∗ ∈ Tx∗. □

Theorem 3.13. Let (X,⪯, λ) be a partially ordered complete symmetric Branciari Sb-metric space. Suppose that
T : X → 2X are set-valued mappings and satisfies the following conditions:
(i)

Hλ(Tx, Tx, Ty) ≤ β1(λ(x, x, y))ψ(λ(x, x, y)) + β2(λ(x, x, y))ψ(Λ(x, x, Tx))
+β3(λ(x, x, y))ψ(Λ(y, y, Ty)) + β4(λ(x, x, y))min{ψ(Λ(x, x, Ty), ψ(Λ(y, y, Tx))}. (3.21)

(ii) T and ix be a weakly increasing pair on X w.r.t ≺2;
(iii) there exists x0 ∈ X such that Tx0 ≺2 {x0} and T 2x0 ≺2 {x0};
(iv)X has the property α−regular generalized metric space.

Then T has fixed point x∗ ∈ X. Further, for each x0 ∈ X, the iterated sequence {xn} with xn+1 ∈ Txn converges
to the fixed point of T .

Proof . Define the sequence xn in X by xn+1 ∈ Txn for all n ∈ N0. If xn = xn+1 for some n ∈ N0, then x
∗ = xn

is a fixed point for T . Using that the pair of set-valued mappings T and ix is weakly increasing and by define
α : X ×X ×X → [0,+∞)

α(x, x, y) =

{
1 ifx ⪰ y
0 ifx ≺ y.
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It can be easily shown that the sequence xn is non-increasing w.r.t, ⪯ i.e; and

α∗(Tx0, Tx0, {x0}) ≥ 1 ⇒ ∃x1 ∈ Tx0, such that α(x1, x1, x0) ≥ 1 ⇒ x1 ⪯ x0;

Now since T and ix are weakly increasing with respect to ≺2, we have Tx1 ≺2 Tx0. Thus there exist some x2 ∈ Tx1
such that x2 ⪯ x1. Again since T and ix are weakly increasing with respect to ≺2, we have Tx2 ⪯2 Tx1. Thus there
exist some x3 ∈ Tx2 such that x3 ⪯ x2. Continue this process, we will get a non-increasing sequence {xn}∞n=1 which
satisfies xn+1 ∈ Txn and xn+2 ∈ Txn+1, n = 0, 1, 2, 3, · · · We get

x0 ⪰ x1 ⪰ x2 ⪰ · · · ⪰ xn ⪰ xn+1 ⪰ xn+2 ⪰ · · · .

In particular xn+j , xn are comparable for all k ∈ N, α(xn+j , xn) ≥ 1 for all j ∈ N0 and by equation (2.1)
and (2.3) we have limn→∞ λ(xn+j , xn+j , xn) = 0. Following the proof of Theorem (3.1), we know that {xn} is
a Cauchy sequence in the partially ordered complete symmetric Branciari Sb-metric space. (X,≺, λ). There ex-
ists x∗ ∈ X such that limn→+∞ λ(xn, xn, x

∗) = 0. Following the proof of Theorem (3.1), we know that {xn} is
a Cauchy sequence in the partially ordered complete symmetric Branciari Sb-metric space (X,⪯, λ). There exists
x∗ ∈ X such that limn→+∞ λ(xn, xn, x

∗) = 0. and condition (iv), there exists a subsequence {xnj} of {xn} such that
α(xnj+1, xnj+1, x

∗) ≥ α∗(Txnj , Txnj , Tx
∗) ≥ 1 for all j. Thus,

Λ(x∗, x∗, Tx∗) ≤k[λ(x∗, x∗, xnj+1) + λ(x∗, x∗, xnj+1) + Λ(Tx∗, Tx∗, xnj+2) + λ(xnj+1, xnj+1, xnj+2)]

=2kλ(x∗, x∗, xnj+1) + kΛ(Tx∗, Tx∗, xnj+2) + kλ(xnj+1, xnjk+1, xnjk+2)

=2kλ(x∗, x∗, xnj+1) + jλ(xnj+1, xnj+1, xnj+2) + kΛ(Tx∗, Tx∗, Txnj+1)

≤2kλ(x∗, x∗, xnj+1) + kλ(xnj+1, xnj+1, xnjk+2) + kHλ(Tx
∗, Tx∗, Txnj+1)

≤2kλ(x∗, x∗, xnj+1) + kλ(xnj+1, xnjk+1, xnjk+2) + k[β1(λ(x
∗, x∗, xnj+1))ψ(λ(x

∗, x∗, xnj+1))

+ β2(λ(x
∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗)) + β3(λ(x
∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗))

+ β4(λ(x
∗, x∗, xnj+1))min{ψ(Λ(x∗, x∗, Txnj+1)), ψ(Λ(xnj+1, xnj+1, Tx

∗))}]
≤2kλ(x∗, x∗, xnj+1) + kλ(xnj+1, xnj+1, xnj+2) + k[β1(λ(x

∗, x∗, xnj+1))ψ(λ(x
∗, x∗, xnj+1))

+ β2(λ(x
∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗)) + β3(λ(x
∗, x∗, xnjk+1))ψ(Λ(x

∗, x∗, Tx∗))

+ β4(λ(x
∗, x∗, xnk+1))min{ψ(λ(x∗, x∗, xnj+2)), ψ(Λ(xnj+1, xnj+1, Tx

∗))}]
≤k[β2(λ(x∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗)) + β3(λ(x
∗, x∗, xnj+1))ψ(Λ(x

∗, x∗, Tx∗))]

≤k[β2(λ(x∗, x∗, xnj+1))Λ(x
∗, x∗, Tx∗) + β3(λ(x

∗, x∗, xnjk+1))Λ(x
∗, x∗, Tx∗)]

<k[β2(λ(x
∗, x∗, xnj+1)) + β3(λ(x

∗, x∗, xnj+1))]Λ(x
∗, x∗, Tx∗)

for all j ∈ N and k ≥ 1. Hence, Λ(x∗, x∗, Tx∗) = 0 and so x∗ ∈ Tx∗. □

3.3 Coupled fixed point

Definition 3.14. ([10]) Let F : X ×X → X be a mapping, where (X,λ) is a symmetric Branciari Sb-metric space.
We say that (x, y) ∈ X ×X is a coupled fixed point of F if

x = F (x, y) y = F (y, x).

Note that if (x, y) is a coupled fixed point of F then (y, x) are coupled fixed points of F too. Our results are based on
the following simple lemma.

Lemma 3.15. ([20]) Let F : X × X → X be a given mapping. Define the mapping TF : X × X → X × X by
TF (x, y) = (F (x, y), F (y, x)) for all (x, y) ∈ X ×X. Then, (x, y) is a coupled fixed point of F if and only if (x, y) is a
fixed point of TF .

Theorem 3.16. Let (X,λ) be a complete symmetric Branciari Sb-metric space and F : X × X → X be a given
mapping. Assume there are exist nondecreasing functions ψi : [0,+∞) → [0,+∞), i = 1, 2, such that ψ = ψ1 + ψ2 is
convex, ψ(0) = 0, limn→+∞ ψn(t) = 0 for all t > 0, a function α : X2 ×X2 ×X2 → [0,+∞) and satisfies the following
conditions:
(i) for all (x, y), (u, v) ∈ X ×X,

α((x, y), (x, y), (u, v))λ(F (x, y), F (x, y), F (u, v)) ≤ ψ1(λ(x, x, u)) + ψ2(λ(y, y, v));
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(ii) if for all (x, x, y), (u, u, v) ∈ X ×X ×X,

α((x, x, y), (u, u, v)) ≥ 1 ⇒ α(TF (x, y), TF (x, y), TF (u, v)) ≥ 1;

(iii) there exists (x0, x0, y0) ∈ X ×X ×X such that

α((x0, x0, y0), TF (x0, x0, y0)) ≥ 1 and α(TF (y0, x0), TF (y0, x0), (y0, x0) ≥ 1; or

(iii)∗ there exists (x0, x0, y0) ∈ X ×X ×X such that

α(TF (x0, x0, y0), (x0, x0, y0)) ≥ 1 and α((y0, y0, x0), TF (y0, y0, x0)) ≥ 1;

(iv) if {xn} and {yn} are sequences in X such that α(xn, xn+1) ≥ 1, α(yn, yn, yn+1) ≥ 1, for all n, xn → x ∈ X,
yn → y ∈ X as n→ ∞, then there are exist subsequence {xnk

} of {xn} and {ynk
} of {yn} such that α(xnk

, xnk
, x) ≥ 1

and α(ynk
, ynk

, y) ≥ 1 for all k; or
(iv)∗ if {xn} and {yn} are sequences in X such that α(xn+1, xn+1, xn) ≥ 1, α(yn+1, yn+1, yn) ≥ 1, for all n,

xn → x ∈ X, yn → y ∈ X as n → ∞, then there are exist subsequence {xnk
} of {xn} and {ynk

} of {yn} such that
α(x, x, xnk

) ≥ 1 and α(y, y, ynk
) ≥ 1 for all k.

Then, F has a coupled fixed point, that is, there exists (x∗, x∗, y∗) ∈ X × X × X such that x∗ = F (x∗, x∗, y∗) and
y∗ = F (y∗, y∗, x∗).

Proof . The idea consists in transporting the problem to the complete symmetric Branciari Sb-metric space (Y, δ),
where Y = X ×X and δ((x, y), (x, y), (u, v)) = λ(x, x, u)+λ(y, y, v), for all (x, y), (u, v) ∈ X ×X. From condition (i),
we have

α((x, y), (x, y), (u, v))λ(F (x, y), F (x, y), F (u, v)) ≤ ψ1(λ(x, x, u)) + ψ2(λ(y, y, v)) (3.22)

and
α((v, u), (v, u), (y, x))λ(F (v, u), F (v, u), F (y, x)) ≤ ψ1(λ(v, v, y)) + ψ2(λ(u, u, x)) (3.23)

for all x, y, u, v ∈ X. Adding (3.22) to (3.23), we get (note that ψ is super-additive)

β(ξ, ξ, η)δ(TF ξ, TF ξ, TF η) ≤ψ1(λ(ξ1, ξ1, η1)) + ψ2(λ(ξ2, ξ2, η2)) + ψ1(λ(η2, η2, ξ2)) + ψ2(λ(η1, η1, ξ1))

≤ψ1(λ(ξ1, ξ1, η1) + λ(η2, η2, ξ2)) + ψ2(λ(ξ2, ξ2, η2) + λ(η1, η1, ξ1))

=ψ(λ(ξ1, ξ1, η1) + d(η2, η2, ξ2))

=ψ(δ(ξ, ξ, η)) (3.24)

for all ξ = (ξ1, ξ1, ξ2), η = (η1, η1, η2) ∈ Y , where β : Y × Y → [0,+∞) is the function defined by

β((ξ1, ξ1, ξ2), (η1, η1, η2)) = min{α((ξ1, ξ1, ξ2), (η1, η1, η2)), α((η2, η2, η1), (ξ2, ξ2, ξ1))} (3.25)

and TF : Y → Y is given by lemma (3.15). Let {(xn, xn, yn)} be a sequence in Y = X ×X ×X such that

β((xn, xn, yn), (xn+1, xn+1, yn+1)) ≥ 1 and (xn, xn, yn) → (x, x, y)

as n → +∞. Using the condition (iv), we obtain easily there exists a subsequence {(xnk
, xnk

, ynk
)} of {(xn, xn, yn)}

such that β((xnk
, xnk

, ynk
), (x, x, y)) ≥ 1 for all k. Then all the hypotheses of Theorem (3.1) are satisfied. We deduce

the existence of a fixed point of TF that gives us from Lemma (3.15) the existence of a coupled fixed point of F. □

3.4 Application

In this section, an existence result for a fractional integral equation

y(t) =
f(t, x(t), y(t))

Γ(α)

∫ t

0

h′(s)g(s, x(s), y(s))

(h(t)− h(s))1−α
ds, t ∈ [0, T ], (3.26)

where T > 0, α ∈ (0, 1) and h : [0, T ] → R. We suppose that the following conditions are satisfied.
(i) The function f : [0, T ]× R× R → R is continuous.
(ii)There exists an upper semi-continuous function ψi : [0,+∞) → [0,+∞), i = 1, 2, are nondecreasing functions

such that ψ = ψ1 + ψ2 is convex, ψ(0) = 0, and limn→∞ ψn(t) = 0 for each t > 0,

|f(t, x(t), y(t))− f(t, u(t), v(t))| ≤ ψ1(x− u) + ψ2(y − v), (3.27)
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for all (t, x(t), y(t)) and (t, u(t), v(t)) ∈ [0, T ]× R× R.
(iii) The function h : [0, T ] → R is C1 and nondecreasing.
(iv) The function g : [0, T ]×R×R → R is continuous and there exists a nondecreasing function ω : [0,∞) → [0,∞)

such that

|g(t, x(t), y(t))| ≤ ω(|(x(t), y(t))|) (t, x(t), y(t)) ∈ [0, T ]× R× R.
(v) There exists r0 > 0 such that

(ψ(r0) + F0)ω(r0)(g(T )− g(0)))α ≤ r0Γ(α+ 1) and
ω(r0)

Γ(α+ 1)
× (g(T )− g(0))α ≤ 1 (3.28)

where F0 = 1
2 max{|f(t, 0, 0)| : t ∈ [0, T ]}.

Example 3.17. Let X = C([0, T ],R), λ : X3 → R+
0 and λ(x, y, z) = |x(t) − y(t)| + |x(t) − z(t)| + |y(t) − z(t)| is a

complete symmetric Branciari Sb-metric space for all x, y, z ∈ X and t ∈ [0, T ].

λ(x, x, y) = |x(t)− x(t)|+ |x(t)− y(t)|+ |x(t)− y(t)| = λ(y, y, x) (3.29)

|x− y| ≤ |x− a|+ |a− b|+ |b− y| (3.30)

|x− y| ≤ |x− b|+ |b− a|+ |a− y|. (3.31)

Adding (3.30) to (3.31), we get

λ(x, x, y) =|x− y|+ |x− y| ≤ |x− a|+ |a− b|+ |b− y|+ |x− b|+ |b− a|+ |a− y| (3.32)

≤4k|x− a|+ 2k|y − b|+ 2k|a− b|+ |x− b|
=k[λ(x, x, a) + λ(x, x, a) + λ(y, y, b) + λ(a, a, b)] (3.33)

for all x, y, z ∈ X and a, b ∈ X \ {x, y, z}, a ̸= b, k ≥ 1.

Theorem 3.18. Consider fractional integral equation (3.26) with g ∈ C([0, T ] × R × R,R) is C1 and nondecreasing
in the third variables. Suppose that for x ≥ u and y ≥ v, we have

0 ≤ g(t, x, y)− g(t, u, v) ≤ Γ(α+ 1)

F0(h(t)− h(s))α
(ψ1(x− u) + ψ2(y − v)). (3.34)

Then the fractional integral equation (3.26) with the assumptions (i−v) has at least one solution y∗ ∈ C([0, T ],R).

Proof . Let X = C([0, T ],R) is partially ordered if we define the following order relation in X:

x, y ∈ X, x ≤ y ⇔ x(t) ≤ y(t), for all t ∈ [0, T ].

It is well-known that (X,λ) is a complete symmetric Branciari Sb-metric space with the metric

λ(x, y, z) = |x(t)− y(t)|+ |x(t)− z(t)|+ |y(t)− z(t)|.

Suppose {xn} is a nondecreasing sequence in X that converges to x ∈ X. Then for every t ∈ [0, T ], the sequence
of the real numbers

x1(t) ≤ x2(t) ≤ · · · ≤ xn(t) ≤ · · · ,
converges to x(t). Therefore, for all t ∈ I and n ∈ N, we have xn(t) ≤ x(t). Hence xn ≤ x, for all n ∈ N. Also, X ×X
is a partially ordered set if we define the following order relation in X ×X :

(x, y) ≤r (u, v) ⇔ x(t) ≤ u(t) and y(t) ≤ v(t), for all t ∈ [0, T ],

for all (x, y), (u, v) ∈ X ×X. For any x, y ∈ X, max{x(t), u(t)} for all t ∈ [0, T ] is in X and is the upper bound of
x, u. Therefore, for every (x, y) and (u, v) ∈ X × X max{x(t), u(t)}, max{y(t), v(t)}, in X × X for all t ∈ [0, T ] is
comparable to (x, y) and (u, v). Define F : X ×X → X by

F (x, y)(t) =
f(t, x(t), y(t))

Γ(α)

∫ t

0

h′(s)g(s, x(s), y(s))

(h(t)− h(s))1−α
ds, for all t ∈ [0, T ].
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Since f is nondecreasing in the second and third of its variables then F is nondecreasing in each of its variables.
Now, for x ≥ u, y ≥ v, that is, x(t) ≥ u(t), y(t) ≥ v(t) for all t ∈ [0, T ]. we have

λ(F (x, y), F (x, y), F (u, v)) =|F (x, y)(t)− F (x, y)(t)|+ |F (x, y)(t)− F (u, v)(t)|+ |F (x, y)(t)− F (u, v)(t)|

=2

{
f(t, x(t), y(t))

Γ(α)

∫ t

0

h′(s)g(s, x(s), y(s))

(h(t)− h(s))1−α
ds

}
≤2

{
F1

Γ(α)

∫ t

0

h′(s)

(h(t)− h(s))1−α
(g(s, x(s), y(s))− g(s, u(s), v(s))ds

}
≤
{

F0

Γ(α)
× Γ(α+ 1)

F0(h(t)− h(s))α
(ψ1(x− u) + ψ2(y − v))

∫ t

0

h′(s)

(h(t)− h(s))1−α
ds

}
≤
{

F0

Γ(α)
× Γ(α+ 1)

F1(h(t)− h(s))α
(ψ1(x− u) + ψ2(y − v))

(h(t)− h(0))α

α

}
≤
{

F0

Γ(α)
× Γ(α+ 1)

F1(h(t)− h(s))α
× (h(t)− h(0))α

α
(ψ1(x− u) + ψ2(y − v))

}
≤ψ1(d(x, u)) + ψ2(d(y, v)). (3.35)

Thus F satisfies the condition of Theorem (3.16). Now, let (x∗, y∗) be a coupled lower solution of the fractional
integral equation problem (3.26) then we have x∗ ≤ F (x∗, y∗) and y∗ ≤ F (y∗, x∗). Then, Theorem (3.16) gives that
F has a unique coupled fixed point (x∗, y∗) with x∗ = y∗. Then x∗(t) is the solution of the integral equation (3.26). □
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[13] Z. Kadelburg and S. Radenović, On generalized metric spaces, A survey, TWMS J. Pure Appl. Math. 5 (2014),
3—13.



384 Vatani, Hassanzadeh Asl, Eshaghi Gordji, Jahangiri Rad

[14] W.A. Kirk and N. Shahzad, Generalized metrics and Caristi’s theorem, Fixed Point Theory Appl. 2013 (2013),
Article ID 129.

[15] M.S. Khan, M. Swaleh, and S. Sessa, Fixed point theorems by altering distances between the points, Bull. Aust.
Math. Soc. 30 (1984), no. 1, 1–9.

[16] F. Lotfy and J. Hassanzadeh Asl, Some fixed point theorems for α∗-ψ-common rational type mappings on gener-
alized metric spaces with application to fractional integral equations, Int. J. Nonlinear Anal. Appl. 12 (2021), no.
1, 245–260.
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