ON THE FIXED POINT OF ORDER 2

M. ALIMOHAMMADY ${ }^{1}$ AND A. SADEGHI ${ }^{2}$

Abstract. This paper deals with a new type of fixed point, i.e; "fixed point of order 2" which is introduced in a metric space and some results are achieved.

1. Introduction

In 1922, Banach proved the following famous fixed point theorem [1]. Let (X, d) be a complete metric space, $T: X \rightarrow X$ be a contraction, there exists a unique fixed point $x_{0} \in X$ of T. This theorem, called the Banach contraction principle is a forceful tool in nonlinear analysis. This principle has many applications and is extended by several authors: Caristi [2], Edelstein [4], Ekeland [5, 6], Khan[9], Meir and Keeler [12], Nadler [13] and others. These theorems are also extended; see [3, $7,8,10,15,16,17,18]$ and others.
Many expressions and generalizations of Banach fixed point theorem were derived in recent years. The results presented in this paper extend properly the Banach contraction principle.
As we have experience with zero's of a map of order 2, we want to introduce a fixed point of order 2 for a map. Our idea goes back to special case in R, which if a real map on R has a fixed point of order 2 means that this map is tangent to axis $y=x$. Therefore, the derivative of map (if exists) is equal to 1 at this point.

2. Main Results

Definition 2.1. Suppose that (X, d) is a metric space, $T: X \rightarrow X$ is a function and $x_{0} \in X$ is a fixed point for T. We call x_{0} is a fixed point of order 2 if it is not alone point and the following satisfies:

$$
\lim _{x \rightarrow x_{0}} \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)}=1
$$

We remember the following definitions. We will show that for the case (a) there is not fixed point of order 2 but in two other cases there is fixed point of order 2.

Definition 2.2. Suppose that (X, d) is a metric space, $T: X \rightarrow X$ is a function.
Date: Received: December 2010; Revised: May 2011.
2000 Mathematics Subject Classification. 54H25, 55M20.
Key words and phrases. Common fixed point, fixed point, non-expansive map, contractive map.

- (a) T is a contraction, if there exist $k \in[0,1)$ such that $d(T x, T y) \leq k d(x, y)$ for all x, y in X.
- (b) T is a contractive mapping, if $d(T x, T y)<d(x, y)$ for all x, y in X which $x \neq y$.
- (c) T is a non-expansive mapping, if $d(T x, T y) \leq d(x, y)$ for all x, y in X .

In the following we consider first some properties for fixed point of order 2.

Proposition 2.3. If $x_{0} \in X$ is a fixed point of order 2 for T on X. Then T is continuous at x_{0}.

Proof.

$\left.\lim _{n \rightarrow \infty} d\left(T x, x_{0}\right)\right)=\lim _{x \rightarrow x_{0}} \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)} d\left(x, x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)} \lim _{x \rightarrow x_{0}} d\left(x, x_{0}\right)=0$.

Proposition 2.4. Let (X, d) be a metric spaces and $T: X \rightarrow X$ be a function such that $x_{0} \in X$ is a fixed point for f, not alone point for X and a alone point for $T(X)$. Then x_{0} is not fixed point of order 2 for T.

Proof. According to assume the x_{0} is a alone point for $T(X)$. There is a neighborhood of x_{0}, like $N\left(x_{0}\right)$ such that $N\left(x_{0}\right) \bigcap T(X)=\left\{x_{0}\right\}$ and each $x \in N\left(x_{0}\right)$ implies that $d\left(T x, x_{0}\right)=0$. Therefore, $\lim _{x \rightarrow x_{0}} \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)}=0$, i.e; x_{0} is not a fixed point of order 2 for T.

Proposition 2.5. Suppose that $x_{0} \in X$ be a fixed point for $T_{i}: X \rightarrow X$ which $i=1, \ldots, n(n \in N)$ and also $\lim _{x \rightarrow x_{0}} \frac{d\left(T_{i} x, x_{0}\right)}{d\left(x, x_{0}\right)}=\lambda_{i}$. Then x_{0} is a fixed point of order 2 for $T_{1} T_{2} \ldots T_{n}$ if and only $\lambda_{1} \lambda_{2} \ldots \lambda_{n}=1$.

Proof. T_{i} is continuous at x_{0} for all $i=1, \ldots, n$, by a simple change of variable, that

$$
\lim _{x \rightarrow x_{0}} \frac{d\left(T_{k}\left(T_{k+1} \ldots T_{n} x\right), x_{0}\right)}{d\left(T_{k+1} \ldots T_{n} x, x_{0}\right)}=\lim _{t \rightarrow x_{0}} \frac{d\left(T_{k} t, x_{0}\right)}{d\left(t, x_{0}\right)}
$$

and the last limit is equal with λ_{k} for $k=1, \ldots, n$. Hence,

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1} T_{2} \ldots T_{n} x, x_{0}\right)}{d\left(x, x_{0}\right)} & =\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1}\left(T_{2} \ldots T_{n}\right) x, x_{0}\right)}{d\left(T_{2} \ldots T_{n}, x_{0}\right)} \frac{d\left(T_{2}\left(T_{3} \ldots T_{n}\right), x_{0}\right)}{d\left(T_{3} \ldots T_{n}, x_{0}\right)} \ldots \frac{d\left(T_{n} x, x_{0}\right)}{d\left(x, x_{0}\right)} \\
& =\lambda_{1} \lambda_{2} \ldots \lambda_{n} .
\end{aligned}
$$

Proposition 2.6. Let $x_{0} \in X$ be a fixed point for $T_{i}: X \rightarrow X$ for $i=1, \ldots, n$ and $n \in N$.

- (a) If x_{0} is fixed point order 2 for all T_{i}, then x_{0} is fixed point of order 2 for $T_{1} T_{2} \ldots T_{n}$.
- (b) If x_{0} is fixed point order 2 for $T_{1} T_{2}$ and T_{2}, then x_{0} is fixed point of order 2 for T_{1}.
Proof. (a) By proposition 2.3.
(b) x_{0} is fixed point order 2 for $T_{1} T_{2}$ and T_{2}. Thus, $\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1} T_{2} x, x_{0}\right)}{d\left(x, x_{0}\right)}=1, \lim _{x \rightarrow x_{0}} \frac{d\left(T_{2} x, x_{0}\right)}{d\left(x, x_{0}\right)}=$ 1. Since T is continuous at x_{0} for $t=T_{2} x$.

$$
1=\frac{\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1} T_{2} x, x_{0}\right)}{d\left(x, x_{0}\right)}}{\lim _{x \rightarrow x_{0}} \frac{d\left(T_{2} x, x_{0}\right)}{d\left(x, x_{0}\right)}}=\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1} T_{2} x, x_{0}\right)}{d\left(T_{2} x, x_{0}\right)}=\lim _{t \rightarrow x_{0}} \frac{d\left(T_{1} t, x_{0}\right)}{d\left(t, x_{0}\right)} .
$$

Proposition 2.7. Suppose that x_{0} is not alone point and is a fixed point for T_{i} : $X \rightarrow X$ for $i=1, \ldots, n$ and $n \in N$.

- (a) If T_{i} be a contractive mapping or non-expansive mapping for all $i=1, \ldots, n$ and $\lim _{x \rightarrow x_{0}} \frac{d\left(T_{i} x, x_{0}\right)}{d\left(x, x_{0}\right)}=\lambda_{i}$. Then $x_{0} \in X$ is a fixed point of order 2 for $T_{1} T_{2} \ldots T_{n}$ if and only if x_{0} is a fixed point of order 2 for all T_{i}.
- (b) If $\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1} x, x_{0}\right)}{d\left(x, x_{0}\right)}=\lambda$ then x_{0} is a fixed point of order 2 for T_{1} if and only if x_{0} be a fixed point of order 2 for T_{1}^{n}, where n is arbitrary positive integer.
- (c) If T_{1} be a contractive mapping or non-expansive mapping, then x_{0} is a fixed point of order 2 for T_{1} if and only if there exist $n \in N$ such that x_{0} be a fixed point of order 2 for T_{1}^{n}.

Proof. (a) Let T_{i} be a contractive mapping for all $i=1, \ldots, n$. If x_{0} is a fixed point of order 2 for all T_{i} then by proposition $2.5, x_{0}$ is a fixed point of order 2 for $T_{1} T_{2} \ldots T_{n}$. Now assume that x_{0} is a fixed point of order 2 for $T_{1} T_{2} \ldots T_{n}$, then by proposition 2.4, $1=\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1} T_{2} \ldots T_{n} x, x_{0}\right)}{d\left(x, x_{0}\right)}=\lambda_{1} \lambda_{2} \ldots \lambda_{n}$. But all T_{i} are contractive mappings so $\frac{d\left(T_{1} x, x_{0}\right)}{d\left(x, x_{0}\right)}<1$ which implies that $\lambda_{i} \leq 1$ for all $i=1, \ldots, n$. Hence, $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{n}=1$. Proof for non-expansive is similar.
(b) By proposition 2.4, $\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1}^{n} x, x_{0}\right)}{d\left(x, x_{0}\right)}=\lambda^{n}$. Then $\lambda^{n}=1$ if and only if $\lambda=1$ because $\lambda \geq 0$.
(c) Let T_{1} be a contractive mapping and there exists $n \in N$ such that x_{0} is a fixed point of order 2 for T_{1}^{n}. T_{1} is a contractive mapping, so

$$
\begin{gathered}
d\left(T_{1}^{n} x, x_{0}\right)<\ldots<d\left(T_{1} x, x_{0}\right)<d\left(x, x_{0}\right) \\
1=\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1}^{n} x, x_{0}\right)}{d\left(x, x_{0}\right)} \leq \lim _{x \rightarrow x_{0}} \frac{d\left(T_{1} x, x_{0}\right)}{d\left(x, x_{0}\right)} \leq 1
\end{gathered}
$$

Therefore, $\lim _{x \rightarrow x_{0}} \frac{d\left(T_{1} x, x_{0}\right)}{d\left(x, x_{0}\right)}=1$.

Proposition 2.8. Suppose that (X, d) is a metric space, $T: X \rightarrow X$ is a function and $x_{0} \in X$ is a fixed point for T. If T is a contraction then x_{0} is not a fixed point of order 2 for T.

Proof. Since T is a contractive mapping so there exists $\alpha \in[0,1)$ such that $d(T x, T y) \leq \alpha d(x, y)$ for all $x, y \in X$. Therefore, $\frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)} \leq \alpha<1$ and x_{0} can not be a fixed point of order 2 for T.

Proposition 2.9. Suppose that $x_{0} \in X$ be a fixed point of order 2 for $T: X \rightarrow X$, where T is one-to-one and g is left inverse of T. Then x_{0} is also a fixed point of order 2 for g.

Proof. It is clear that x_{0} is a fixed point for g. On the other hand, since T is continuous at x_{0} for $t=T x$ so

$$
\begin{aligned}
1=\lim _{x \rightarrow x_{0}} \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)} & =\lim _{x \rightarrow x_{0}} \frac{d\left(g\left(T(T x), x_{0}\right)\right.}{d\left(g T(x), x_{0}\right)} \\
& =\lim _{t \rightarrow x_{0}} \frac{d\left(g T(t), x_{0}\right)}{d\left(g(t), x_{0}\right)} \\
& =\lim _{t \rightarrow x_{0}} \frac{d\left(t, x_{0}\right)}{d\left(g(t), x_{0}\right)}=\lim _{t \rightarrow x_{0}} \frac{1}{\frac{d\left(g(t), x_{0}\right)}{d\left(t, x_{0}\right)} .}
\end{aligned}
$$

Therefore, $\lim _{t \rightarrow x_{0}} \frac{d\left(g(t), x_{0}\right)}{d\left(t, x_{0}\right)}=1$.
In the following we give another condition for the fixed point of order 2.

Proposition 2.10. Suppose that x_{0} is not alone point and is a fixed point for T : $X \rightarrow X$.

- (a) If $\lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(x, x_{0}\right)}=0$ then x_{0} is a fixed point of order 2 for T.
- (b) If $\lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(T x, x_{0}\right)}=0$ then x_{0} is a fixed point of order 2 for T.

Proof.
(a) Using $\left|d\left(T x, x_{0}\right)-d\left(x, x_{0}\right)\right| \leq d(T x, x)$,

$$
1-\frac{d(T x, x)}{d\left(x, x_{0}\right)} \leq \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)} \leq 1+\frac{d(T x, x)}{d\left(x, x_{0}\right)}
$$

$\lim _{x \rightarrow x_{0}} \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)}=1$.
(b) Using $\left|d\left(T x, x_{0}\right)-d\left(x, x_{0}\right)\right| \leq d(T x, x)$,

$$
1-\frac{d(T x, x)}{\left.d\left(T x, x_{0}\right)\right)} \leq \frac{d\left(x, x_{0}\right)}{d\left(T x, x_{0}\right)} \leq 1+\frac{d(T x, x)}{d\left(T x, x_{0}\right)}
$$

This shows that $\lim _{x \rightarrow x_{0}} \frac{d\left(x, x_{0}\right)}{d\left(T x, x_{0}\right)}=1$. Therefore, $\lim _{x \rightarrow x_{0}} \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)}=1$.

Proposition 2.11. Suppose that x_{0} is a fixed point for $T: X \rightarrow X$ and $\varphi: X \rightarrow R^{+}$ is a real valued function.

- (a) If x_{0} be a fixed point of order 2 for T then $\lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(x, x_{0}\right)} \leq 2$.
- (b) If $d(T x, x) \leq \varphi(x)-\varphi(T x) \leq d\left(x, x_{0}\right)$ for all x in X then x_{0} is a fixed point of order 2 for T if and only if $\lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(x, x_{0}\right)}=0$.

Proof.
(a) From the inequality $d(T x, x) \leq d\left(T x, x_{0}\right)+d\left(x, x_{0}\right)$,

$$
\frac{d(T x, x)}{d\left(x, x_{0}\right)} \leq \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)}+1
$$

Therefore, $\lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(x, x_{0}\right)} \leq 2$.
(b) From inequality $d(T x, x) \leq \varphi(x)-\varphi(T x) \leq d\left(x, x_{0}\right)$,

$$
\begin{aligned}
d(x, T x)+d\left(T x, T^{2} x\right)+\ldots+d\left(T^{n-1} x, T^{n} x\right) & \leq \sum_{i=1}^{n} \varphi\left(T^{i-1} x\right)-\varphi\left(T^{i} x\right) \\
& =\varphi(x)-\varphi\left(T^{n} x\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d\left(T^{n-1} x, T^{n} x\right)}{d\left(x, x_{0}\right)} & =\frac{d\left(T^{n-1} x, T^{n} x\right)}{d\left(T^{n-1} x, T^{n-2} x_{0}\right)} \frac{d\left(T^{n-1} x, T^{n-2} x_{0}\right)}{d\left(T^{n-2} x, T^{n-3} x_{0}\right)}, \ldots, \frac{d\left(T^{2} x, T x_{0}\right)}{d\left(T x, x_{0}\right)} \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)} \\
& =\frac{d\left(T^{n-1} x, T^{n} x\right)}{d\left(T^{n-1} x, x_{0}\right)} \frac{d\left(T^{n-1} x, x_{0}\right)}{d\left(T^{n-2} x, x_{0}\right)} \ldots, \frac{d\left(T^{2} x, x_{0}\right)}{d\left(T x, x_{0}\right)} \frac{d\left(T x, x_{0}\right)}{d\left(x, x_{0}\right)},
\end{aligned}
$$

since $\lim _{x \rightarrow x_{0}} \frac{d\left(T^{n-1} x, T^{n} x\right)}{d\left(T^{n-1} x, x_{0}\right)}=\lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(x, x_{0}\right)}$ and $\lim _{x \rightarrow x_{0}} \frac{d\left(T^{n-k} x, x_{0}\right)}{d\left(T^{n-k-1} x, x_{0}\right)}=1$ which $k=$ $1,2, \ldots, n-1$, so $\lim _{x \rightarrow x_{0}} \frac{d\left(T^{n-1} x, T^{n} x\right)}{d\left(x, x_{0}\right)}=\lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(x, x_{0}\right)}$. From inequality $d(T x, x) \leq$ $\varphi(x)-\varphi(T x)$. It is clear that $\varphi\left(T^{n} x\right)$ is strict decreasing.

$$
\begin{aligned}
n \lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(x, x_{0}\right)} & \leq \lim _{x \rightarrow x_{0}} \frac{\varphi(x)-\varphi\left(T^{n} x\right)}{d\left(x, x_{0}\right)} \\
& \leq \lim _{x \rightarrow x_{0}} \frac{\varphi(x)-\varphi\left(T^{n} x\right)}{\varphi(x)-\varphi(T x)} \\
& \leq \lim _{x \rightarrow x_{0}} \frac{\varphi(x)-\varphi\left(T^{n} x\right)}{\varphi(x)-\varphi\left(T^{n} x\right)}=1 .
\end{aligned}
$$

Hence, $\lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(x, x_{0}\right)} \leq \frac{1}{n}$. Since n is arbitrary positive integer, $\lim _{x \rightarrow x_{0}} \frac{d(T x, x)}{d\left(x, x_{0}\right)}=0$. In the following we prove common fixed point of order 2.

Proposition 2.12. Suppose that (X, d) is a metric space, $f, g: X \rightarrow X$ are two function and $x_{0} \in X$ is a fixed point for f such that f, g satisfies

$$
\left\{\begin{array}{l}
d(f(x), g(x)) \leq d(f(x), x) \leq \varphi(x)-\varphi(f(x)) \leq d\left(x, x_{0}\right) \\
\lim _{x \rightarrow x_{0}} \frac{d\left(f(x), x_{0}\right)}{d\left(x, x_{0}\right)} \geq 1
\end{array}\right.
$$

for all x in X. Then x_{0} is a common fixed point of order 2 for f, g.
Proof. First we show that x_{0} is a fixed point of order 2 for f. From inequality $d(f(x), x) \leq \varphi(x)-\varphi(f(x)) \leq d\left(x, x_{0}\right)$ we have

$$
\begin{aligned}
d(x, f(x))+d\left(f(x), f^{2}(x)\right)+\ldots+d\left(f^{n-1}(x), f^{n}(x)\right) & \leq \sum_{i=1}^{n} \varphi\left(f^{i-1}(x)\right)-\varphi\left(f^{i}(x)\right) \\
& =\varphi(x)-\varphi\left(f^{n}(x)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d\left(f^{n-1}(x), f^{n}(x)\right)}{d\left(x, x_{0}\right)} & =\frac{d\left(f^{n-1}(x), f^{n}(x)\right)}{d\left(f^{n-1}(x), f^{n-2}\left(x_{0}()\right.\right.} \frac{d\left(f^{n-1}(x), f^{n-2}\left(x_{0}\right)\right)}{d\left(f^{n-2}(x), f^{n-3}\left(x_{0}\right)\right)} \cdots \frac{d\left(f^{2}(x), f\left(x_{0}\right)\right)}{d\left(f(x), x_{0}\right)} \frac{d\left(f(x), x_{0}\right)}{d\left(x, x_{0}\right)} \\
& =\frac{d\left(f^{n-1}(x), f^{n}(x)\right)}{d\left(f^{n-1}(x), x_{0}\right)} \frac{d\left(f^{n-1}(x), x_{0}\right)}{d\left(f^{n-2}(x), x_{0}\right)} \cdots \frac{d\left(f^{2}(x), x_{0}\right)}{d\left(f(x), x_{0}\right)} \frac{d\left(f(x), x_{0}\right)}{d\left(x, x_{0}\right)} .
\end{aligned}
$$

Since $\lim _{x \rightarrow x_{0}} \frac{d\left(f^{n-1}(x), f^{n}(x)\right)}{d\left(f^{n-1}(x), x_{0}\right)}=\lim _{x \rightarrow x_{0}} \frac{d(f(x), x)}{d\left(x, x_{0}\right)}$ and $\lim _{x \rightarrow x_{0}} \frac{d\left(f^{n-k}(x), x_{0}\right)}{d\left(f^{n-k-1}(x), x_{0}\right)}=\lambda$ which $k=1,2, \ldots, n-1$, we see that

$$
\lim _{x \rightarrow x_{0}} \frac{d(f(x), x)}{d\left(x, x_{0}\right)}\left(1+\lambda+\lambda^{2}+\ldots+\lambda^{n}\right) \leq \lim \frac{\varphi(x)-\varphi\left(f^{n}(x)\right)}{d\left(x, x_{0}\right)}
$$

But $\varphi\left(f^{n}(x)\right)$ is strict decreasing so,

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}} \frac{d(f(x), x)}{d\left(x, x_{0}\right)}\left(1+\lambda+\lambda^{2}+\ldots+\lambda^{n}\right) & \leq \lim _{x \rightarrow x_{0}} \frac{\varphi(x)-\varphi\left(f^{n}(x)\right)}{d\left(x, x_{0}\right)} \\
& \leq \lim _{x \rightarrow x_{0}} \frac{\varphi(x)-\varphi\left(f^{n}(x)\right)}{\varphi(x)-\varphi(f(x))} \\
& \leq \lim _{x \rightarrow x_{0}} \frac{\varphi(x)-\varphi\left(f^{n}(x)\right)}{\varphi(x)-\varphi\left(f^{n}(x)\right)}=1
\end{aligned}
$$

and also $\lim _{x \rightarrow x_{0}} \frac{d(f(x), x)}{d\left(x, x_{0}\right)} \leq \frac{1}{\left(1+\lambda+\lambda^{2}+\ldots+\lambda^{n}\right)}$, but $\lambda \geq 1$ and n is arbitrary positive integer. Then $\lim _{x \rightarrow x_{0}} \frac{d(f(x), x)}{d\left(x, x_{0}\right)}=0$ and proposition 2.9 implies that x_{0} is a fixed point of order 2 for f. Now, we show that x_{0} is a fixed point of order 2 for g. It is clear that x_{0} is a fixed point for g, because $d(f(x), g(x)) \leq d(f(x), x)$ and x_{0} is fixed point for f. From inequality $d(f(x), g(x)) \leq d(f(x), x)$ and triangle inequality,

$$
0 \leq \frac{d(g(x), x)}{d\left(x, x_{0}\right)} \leq \frac{d(g(x), f(x))}{d\left(x, x_{0}\right)}+\frac{d(f(x), x)}{d\left(x, x_{0}\right)} \leq 2 \frac{d(f(x), x)}{d\left(x, x_{0}\right)}
$$

Therefore, $\lim _{x \rightarrow x_{0}} \frac{d(g(x), x)}{d\left(x, x_{0}\right)}=0$ and x_{0} is a fixed point of order 2 for g.

References

1. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3(1922), 133-181(French).
2. J. Caristi, Fixed point theoems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215(1976), 241-251.
3. D. Downing and W. A. Kirk, A generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacific J. Math. 69(1977), no. 2, 239-346.
4. M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc. 12(1961), 7-10.
5. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47(1974), 324-353.
6. I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc.(N.S.) 1(1979), no. 3, 443-474.
7. J. R. Jachymski, Caristi's fixed point theorem and selections of set-valued contractions, J. Math. Anal. Appl. 227(1998), no. 1, 55-67.
8. J. S. Jung, Y. J. Cho, B. S. Lee, G. M. Lee and H. K. Pathak, Some nonconvex minimization theorems in complete metric spaces and applications, Panamer. Math. J. 7(1997), no. 3, 35-45.
9. M. S. Khan, Some fixed point theorems, 8/12(1975), 1511-1514.
10. T. H. Kim, E. S. Kim and S. S. Shin, Minimization thorems relating to fixed point theorems on complete metric spaces, Math. Japon. 45(1997), no. 1, 97-102.
11. Z. Liu, L. Wang, SH. Kang, Y. S. Kim, On nonunique fixed point theorems, Applied Mathematics E-Notes, 8(2008), 231-237.
12. A. Meir and E. Keeler, A thorem on contraction mappings, J. Math. Anal. Appl. 28(1969), 326-329.
13. S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math. 30(1969), 475-488.
14. B. E. Rhoades, A comparsion of various definitions of contraction mappings, Trans. Amer. Math. Soc. 226(1997), 257-289.
15. W. Takahashi, Existence theorems generalizing fixed point theorems for multivalued mappings, Fixed Point Theory and Applications (Marseille, 1989)(M. A. Thera and J. B. Ballon, eds.), Pitman Res. Notes Math. Ser., vol. 252, Longman Scientific and Technical, Harlow, 1991, pp. 397-406.
16. D. Tataru, Viscosity solutions of Hamilton-Jacobi equations with unbounded nonlinear terms, J. Math. Anal. Appl. 163(1992), no. 2, 345-392.
17. J. S. Ume, Some existence theorems generalizing fixed point thorems on complete metric spaces, Math. Japon. 40(1994), no. 1, 109-114.
18. C. K. Zhong, On Ekeland's variational principle and a minimax theorem, J. Math. Anal. Appl. 205(1997), no. 1, 239-250.
[^0]
[^0]: 1,2 Department of Mathematics, University of Mazandaran, Babolsar, Iran. E-mail address: amohsen@umz.ac.ir, sadeghi.ali68@gmail.com

