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EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS
FOR NONSPREADING-TYPE MAPPINGS IN HILBERT SPACE

URAILUK SINGTHONG1 AND SUTHEP SUANTAI2∗

Abstract. In this paper by using the idea of mean convergence, we introduce
an iterative scheme for finding a common element of the set of solutions of an
equilibrium problem and the fixed points set of a nonspreading-type mappings in
Hilbert space. A strong convergence theorem of the proposed iterative scheme is
established under some control conditions. The main result of this paper extend
the results obtained by Osilike and Isiogugu (Nonlinear Analysis 74 (2011) 1814-
1822) and Kurokawa and Takahashi (Nonlinear Analysis 73 (2010) 1562-1568).
We also give an example and numerical results are also given.

1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert spaced H. Then a
mapping T : C → C is said to be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ C. A mapping F is said to be firmly nonexpansive if

‖Fx− Fy‖2 ≤ 〈x− y, Fx− Fy〉
for all x, y ∈ C; see, for instance, Browder [3], Goebel and Kirk [6]. It is also known
that a firmly nonexpansive mapping F is deduced from an equilibrium problem in
a Hilbert space as follows: Let C be a nonempty closed convex subset of H. Let f
be a bifunction from C × C to R satisfying

(A1) f(x, x) = 0, ∀x ∈ C;
(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;
(A3) ∀x, y, z ∈ C, limt→0+ f(tz + (1− t)x, y) ≤ f(x, y);
(A4) ∀x ∈ C, y 7→ f(x, y) is convex and lower semicontinuous.

We know the following theorem; see, for instance, [2, 5].

Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert spaced
H and let f be a bifunction from C ×C to R satisfying (A1)− (A4). Let r > 0 and
x ∈ H, Then, there exists z ∈ C such that

f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0 for all y ∈ C. (1.1)

Date: Received: April 2011; Revised: June 2011 .
2000 Mathematics Subject Classification. 47H09, 47H10.
Key words and phrases. k-strictly pseudononspreading mappings; nonspreading mappings; fixed

points; strong convergence; equilibrium problem; Hilbert spaces.
∗: Corresponding author.

51



52 URAILUK SINGTHONG AND SUTHEP SUANTAI

Further, for any r > 0 and x ∈ H, define Tr : H → C by z = Trx. Then, Tr is firmly
nonexpansive, i.e.,

‖Trx− Try‖2 ≤ 〈x− y, Trx− Try〉, ∀x, y ∈ H.
On the other hand, a mapping T : C → C is said to be quasi− nonexpansive if

F (T ) 6= ∅ and

‖Tx− q‖ ≤ ‖x− q‖
for all x ∈ C and q ∈ F (T ), where F (T ) is the set of fixed points of T . If T is
a nonspreading mapping from C into itself and the set F (T ) is nonempty, then T
is quasi-nonexpansive. Further, we know that the set of fixed points of a quasi-
nonexpansive mapping is closed and convex; see [10]. Then we can define the metric
projection of H onto F (T ).

In 2010, Kohsaka and Takahashi [11, 12] introduced the following nonlinear map-
ping: Let E be a smooth, strictly convex and reflexive Banach space, let j be the
duality mapping of E and let C be a nonempty closed convex subset of E. Then, a
mapping T : C → C nonspreading is said to be if

φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x)

for all x, y ∈ C, where φ(x, y) = ‖x‖2−2〈x, j(y)〉+‖y‖2, ∀x, y ∈ E. They considered
the class of nonspreading mappings to study the resolvents of a maximal monotone
operators in the Banach space. In the case when E is a Hilbert space, we know that
φ(x, y) = ‖x − y‖2 for all x, y ∈ E. So, a nonspreading mapping T : C → C in a
Hilbert space H is defined as follows:

2‖Tx− Ty‖2 ≤ ‖Tx− y‖2 + ‖Ty − x‖2 (1.2)

for all x, y ∈ C. Iemoto and Takahashi [8] prove that T : C → C is nonspreading if
and only if

‖Tx− Ty‖2 ≤ ‖x− y‖2 + 2〈x− Tx, y − Ty〉 (1.3)

for all x, y ∈ C. We also know that a nonspreading mapping is deduced from a firmly
nonexpansive mapping; see [9, 11, 17]. A strong convergence theorem of the hybrid
type for nonspreading mappings have been proved by Matsushita and Takahashi
[14].

By using an idea of mean ergodic theorem of Baillon’s type, Kurokawa and Taka-
hashi [13] introduced two iterative schemes for finding a fixed point of a nonspreading
mapping. Weak and strong convergence theorems of the proposed iterative schemes
in Hilbert spaces are proved under some control conditions.

Later in 2010, Osilike and Isiogugu [16] introduce a new class of nonspreading-
type of mappings which is more general than the class studied in Kurokawa and
Takahashi [13] in Hilbert spaces. By using the idea of mean convergence, they proved
a weak mean convergence theorem of Baillons type similar to the ones obtained in
[13] for the class of nonspreading-type mappings. Furthermore, using an idea of
mean convergence, they also proved a strong convergence theorem similar to the
one obtained in [13].

In this paper, we prove a strong convergence theorem of Halpern’s type for finding
a common element of the set of fixed point, nonspreading-type mapping and the set
of solution of an equilibrium problem in a Hilbert space.
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2. Preliminaries and lemmas

Throughout this paper, we denote by H a real Hilbert space with inner product
〈·, ·〉 and norm ‖ · ‖. We also denote by N the set of natural numbers. In a Hilbert
space, it is known that

Lemma 2.1. [16] Let H be a real Hilbert space. Then the following well known
results hold:
(1) ‖tx+ (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2,

for all x, y ∈ H and for all t ∈ [0, 1].
(2) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉 for all x, y ∈ H.
(3) If {xn}∞n=1 is a sequence in H which converges weakly to z ∈ H then

lim sup
n→∞

‖xn − y‖2 = lim sup
n→∞

(‖xn − z‖2 + ‖z − y‖2), ∀y ∈ H.

Let C be a closed convex subset of H and let T be a mapping of C into itself. We
denote by F (T ) the set of all fixed points of T , that is, F (T ) = {z ∈ C : Tz = z}.
We denote the strong convergence and the weak convergence of {xn} to x ∈ H by
xn → x. We can define the metric projection of H onto C: For each x ∈ H, there
exists a unique point z ∈ C such that

‖x− z‖ = min{‖x− y‖ : y ∈ C}
For every point x ∈ H, such that a point z denoted by PC(x) and P is called the
metric projection of H onto C. It is known that

〈x− PCx, y − PCx〉 ≤ 0, ∀y ∈ C
for each x ∈ H and y ∈ C; see [18] for more details.

Lemma 2.2. [19] Let C be nonempty closed convex subset of a real Hilbert space H.
Let PC : H → C be the metric projection of H onto C. Let {xn}∞n=1 be sequence in
C and let ‖xn+1−u‖ ≤ ‖xn−u‖ for all u in C. Then {PCxn}∞n=1 converges strongly.

The following lemma was also given in [5]

Lemma 2.3. [5] Let C be a nonempty closed convex subset of a Hilbert space H
and f : C × C → R satisfy (A1) − (A4). For r > 0 and x ∈ H, define a mapping
Tr : H → C as follows:

Tr(x) = {z ∈ C : f(z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C} for all x ∈ H. (2.1)

Then the following hold:
(1) Tr is is single-valued;
(2) Tr is firmly nonexpansive, i.e., for all x, y ∈ H,
‖Tr(x)− Tr(y)‖2 ≤ 〈Tr(x)− Tr(y), x− y〉;

(3) F (Tr) = EP (f);
(4) EP (f) is closed and convex.

Lemma 2.4. [1, 20] Let {an}∞n=1 be a sequence of non-negative real numbers satis-
fying the condition

an+1 ≤ (1− αn)an + αnβn, n ≥ 0,

where {αn}∞n=1 and {βn}∞n=1 are real sequences such that
(i) {αn}∞n=1 ⊂ [0, 1] and

∑∞
n=1 αn =∞.
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(ii) lim supn→∞ βn ≤ 0.
Then limn→∞ an = 0.

Let H be a real Hilbert space. Following the terminology of Browder-Petryshyn
[4], we say that a mapping T : D(T ) ⊆ H :→ H is k− strictly pseudononspreading
if there exists k ∈ [0, 1) such that

‖Tx− Ty‖2 ≤ ‖x− y‖2 + k‖x− Tx− (y − Ty)‖2 + 2〈x− Tx, y − Ty〉, (2.2)

for all x, y ∈ D(T ). Clearly every nonspreading mapping is k-strictly psedonon-
spreading. The class of k-strictly pseudononspreading mapping is more general
than the class of nonspreading mappings (see example [16]).

Observe that if T is k-strictly pseudononspreading and F (T ) 6= ∅, then for all
x ∈ D(T ) and for all p ∈ F (T ) we have

‖Tx− p‖2 ≤ ‖x− p‖2 + k‖x− Tx‖2. (2.3)

Thus every k-strictly pseudononspreading map with a nonempty fixed point set
F (T ) is demicontractive (see example [7], [15]).

Lemma 2.5. [16] Let C be nonempty closed convex subset of a real Hilbert space H.
and let T : C → C be k-strictly pseudononspreading mapping. If F (T ) 6= ∅, then it
is closed and convex.

Lemma 2.6. [16] Let C be nonempty closed convex subset of a real Hilbert space
H. and let T : C → C be k-strictly pseudononspreading mapping. Then (I − T ) is
demiclosed at 0.

3. Main Results

We first prove a strong convergence theorem.

Theorem 3.1. Let C be a nonempty closed convex subset of of a real Hilbert space.
Let f be a bifunction from C × C to R satisfying (A1)-(A2) and let T : C → C
be a k-strictly pseudononspreading mapping with a nonempty fixed point set and
F (T )

⋂
EP (f) 6= ∅. Let β ∈ [k, 1) and let Tβ := βI+(1−β)T . Let {αn}∞n=1 ⊂ [0, 1)

and {rn}∞n=1 ⊂ (0,∞) satisfying the conditions:

lim
n→∞

αn = 0,
∞∑
n=1

αn =∞ and lim inf
n→∞

rn > 0.

Let u ∈ C and let {xn}∞n=1, {un}∞n=1 and {zn}∞n=1 be sequence in C generated from
an arbitrary x1 ∈ C by

f(un, y) + 1
rn
〈y − un, un − zn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnu+ (1− αn)un, n ≥ 1,

zn = 1
n

∑n−1
m=0 T

m
β xn, n ≥ 1.

(3.1)

Then {xn}∞n=1, {un}∞n=1 and {zn}∞n=1 converge strongly to PF (T )
⋂
EP (f)u, where PF (T )

⋂
EP (f) :

H → F (T )
⋂
EP (f) is the metric projection of H onto F (T )

⋂
EP (f).
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Proof. Let Tβx := βx+(1−β)Tx. It is clear that F (Tβ) = F (T ) and for all x, y ∈ C,
we have

‖Tβx− Tβy‖2 = ‖β(x− y) + (1− β)(Tx− Ty)‖2

= β‖x− y‖2 + (1− β)‖Tx− Ty‖2 − β(1− β)‖x− Tx− (y − Ty)‖2

≤ β‖x− y‖2 − β(1− β)‖x− Tx− (y − Ty)‖2

+(1− β)
[
‖x− y‖2 + k‖x− Tx− (y − Ty)‖2 + 2〈x− Tx, y − Ty〉

]
= ‖x− y‖2 − β(1− β)‖x− Tx− (y − Ty)‖2

+k(1− β)‖x− Tx− (y − Ty)‖2 + 2(1− β)〈x− Tx, y − Ty〉
= ‖x− y‖2 − (1− β)(β − k)‖x− Tx− (y − Ty)‖2

+2(1− β)〈x− Tx, y − Ty〉
≤ ‖x− y‖2 + 2(1− β)〈x− Tx, y − Ty〉

= ‖x− y‖2 +
2

(1− β)
〈x− Tβx, y − Tβy〉. (3.2)

Let p ∈ F (T )
⋂
EP (f). Then from un = Trnxn, using (3.2) we obtain

‖zn − p‖ = ‖ 1

n

n−1∑
m=0

Tmβ xn − p‖

≤ 1

n

n−1∑
m=0

‖Tmβ xn − p‖ ≤
1

n

n−1∑
m=0

‖xn − p‖| = ‖xn − p‖. (3.3)

Thus

‖xn+1 − p‖ = ‖αnu+ (1− αn)un − p‖
= ‖αnu+ (1− αn)Trnzn − p‖
≤ αn‖u− p‖+ (1− αn)‖Trnzn − p‖
≤ αn‖u− p‖+ (1− αn)‖zn − p‖
≤ αn‖u− p‖+ (1− αn)‖xn − p‖. (3.4)

By (3.4) and induction, we can conclude that for all n ∈ N
‖xn − p‖ ≤ max{‖u− p‖, ‖x1 − p‖}.

This implies that {xn} and {zn} are bounded. Since ‖T nβ un − p‖ ≤ ‖un − p‖ and
‖un − p‖ = ‖Trnzn − p‖ ≤ ‖zn − p‖ ≤ ‖xn − p‖, we have that {T nβ un} and {un} are
also bounded.
Observe that since {un} is bounded and limn→∞ αn = 0, we obtain

‖xn+1 − un‖ = ‖αnu+ (1− αn)un − un‖
= αn‖u− un‖ → 0 as n→∞. (3.5)

Put Ω := F (T )
⋂
EP (f). We may assume without loss of generality that there

exists a subsequence {xnj
} of {xn} such that

lim sup
n→∞

〈u− PΩu, xn − PΩu〉 = lim
j→∞
〈u− PΩu, xnj

− PΩu〉,

and xnj
⇀ w as j → ∞. Since ‖xn+1 − un‖ → 0 as n → ∞, it follows that



56 URAILUK SINGTHONG AND SUTHEP SUANTAI

unj
⇀ w as j → ∞. Next we will show that w ∈ F (T ). Using (3.2) we obtain for

all m = 0, 1, 2, ..., n− 1 and for arbitrary y ∈ C
‖Tm+1

β xn − Tβy‖2 = ‖Tβ(Tmβ xn)− Tβy‖2

≤ ‖Tmβ xn − y‖2 +
2

1− β
〈Tmβ xn − Tm+1

β xn, y − Tβy〉

= ‖Tmβ xn − Tβy + Tβy − y‖2 +
2

1− β
〈Tmβ xn − Tm+1

β xn, y − Tβy〉

= ‖Tmβ xn − Tβy‖2 + ‖Tβy − y‖2 + 2〈Tmβ xn − Tβy, Tβy − y〉

+
2

1− β
〈Tmβ xn − Tm+1

β xn, y − Tβy〉. (3.6)

Summing (3.6) from m = 0 to n− 1 and dividing by n we obtain

1

n
‖T nβ xn − Tβy‖2 ≤ 1

n
‖xn − Tβy‖2 + ‖Tβy − y‖2 + 2〈zn − Tβy, Tβy − y〉

+
2

n(1− β)
〈xn − T nβ xn, y − Tβy〉. (3.7)

Replacing n by nj in (3.7) we obtain

1

nj
‖T nj

β xnj
− Tβy‖2 ≤ 1

nj
‖xnj

− Tβy‖2 + ‖Tβy − y‖2 + 2〈znj
− Tβy, Tβy − y〉

2

nj(1− β)
〈xnj
− T nj

β xnj
, y − Tβy〉. (3.8)

Since {xn} and {T nβ xn} are bounded, letting j →∞ in (3.8) yields

0 ≤ ‖Tβy − y‖2 + 2〈w − Tβy, Tβy − y〉. (3.9)

Since y ∈ C was arbitrary, if we set y = w in (3.9) we obtain

0 ≤ ‖Tβw − w‖2 − 2‖Tβw − w‖2,

from which it follows that w ∈ F (Tβ) = F (T ).
Since PΩ : H → Ω is the metric projection, we have

lim
j→∞
〈u− PΩu, xnj

− PΩu〉 = 〈u− PΩu,w − PΩu〉 ≤ 0.

Hence we have lim supn→∞〈u−PΩu, xn−PΩu〉 ≤ 0. Using Lemma 2.1 (ii) and (3.3)
we have

‖xn+1 − PΩu‖2 = ‖αnu+ (1− αn)un − PΩu‖2

= ‖αnu+ (1− αn)Trnzn − PΩu‖2

= ‖αnu− αnPΩu+ (1− αn)Trnzn − (1− αn)PΩu‖2

= ‖αn(u− PΩu) + (1− αn)(Trnzn − PΩu)‖2

≤ (1− αn)2‖Trnzn − PΩu‖2 + 2αn〈u− PΩu, xn+1 − PΩu〉
≤ (1− αn)2‖zn − PΩu‖2 + 2αn〈u− PΩu, xn+1 − PΩu〉
≤ (1− αn)2‖xn − PΩu‖2 + 2αn〈u− PΩu, xn+1 − PΩu〉.

(3.10)
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Since αn → 0,
∑∞

n=1 αn =∞ and lim supn→∞〈u− PΩu, xn+1 − PΩu〉 ≤ 0, it follows
from Lemma 2.4 that limn→∞ ‖xn − PΩu‖ = 0.

0 ≤ ‖un − PΩu‖ ≤ ‖un − xn+1‖+ ‖xn+1 − PΩu‖ → 0 as n→∞.
Hence limn→∞ ‖un − PΩu‖ = 0.
Since ‖xn − PΩu‖ → 0, we have ‖xn+1 − xn‖ → 0. In sequence, we show that
‖zn − un‖ → 0, as n→∞. For p ∈ F (T )

⋂
EP (f), we have

‖zn − p‖2 = ‖Trnzn − Trnp‖2

≤ 〈Trnzn − Trnp, zn − p〉
= 〈un − p, zn − p〉

=
1

2
(‖un − p‖2 + ‖zn − p‖2 − ‖zn − un‖2) (3.11)

and hence ‖un − p‖2 ≤ ‖zn − p‖2 − ‖zn − un‖2.
Therefore, from the convexity of ‖ · ‖2, we have

‖xn+1 − p‖2 = ‖αnu+ (1− αn)un − p‖2

= ‖αnu+ (1− αn)Trnzn − p‖2

≤ αn‖u− p‖2 + (1− αn)‖Trnzn − p‖2

≤ αn‖u− p‖2 + (1− αn)‖un − p‖2

≤ αn‖u− p‖2 + (1− αn)(‖zn − p‖2 − ‖zn − un‖2)

≤ αn‖u− p‖2 + (1− αn)(‖xn − p‖2 − ‖zn − un‖2)

≤ αn‖u− p‖2 + ‖xn − p‖2 − (1− αn)‖xn − un‖2

and hence

(1− αn)‖zn − un‖2 ≤ αn‖u− p‖2 + ‖xn − p‖2 − ‖xn+1 − p‖2

≤ αn‖u− p‖2 + ‖xn+1 − xn‖(‖xn − p‖+ ‖xn+1 − p‖).
So, we have ‖zn−un‖ → 0, and ‖zn−PΩu‖ ≤ ‖zn−un‖+‖un−PΩu‖ → 0 as n→∞.
This implies unj

→ w as j →∞. Finally, we prove that w ∈ EP (f). By un = Trnzn,
we have

f(un, y) +
1

rn
〈y − un, un − zn〉 ≥ 0, ∀y ∈ C.

From (A2), we also have

1

rn
〈y − un, un − zn〉 ≥ f(y, un), ∀y ∈ C,

and hence

〈y − unj
,
unj
− znj

rnj

〉 ≥ f(y, unj
), ∀y ∈ C.

Since
unj−znj

rnj
→ 0 and unj

⇀ w, from (A4) we have 0 ≥ f(y, w) for all y ∈ C. For t

with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)w. Since y ∈ C and w ∈ C, we have
yt ∈ C and hence f(yt, w) ≤ 0. So, from (A1) and (A4) we have

0 = f(yt, yt)

≤ tf(yt, y) + (1− t)f(yt, w)

≤ tf(yt, y)
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and hence 0 ≤ f(yt, y). From (A3), we have 0 ≤ f(w, y) for all y ∈ C and hence
w ∈ EP (F ). Therefore w ∈ F (T )

⋂
EP (f). �

If f(x, y) = 0, ∀(x, y) ∈ C × C, we have that un = zn for all n ∈ N. Hence the
following Corollary is directly obtained by Theorem 3.1

Corollary 3.2. ([16], Theorem 3.2) Let C be a nonempty closed convex subset of
of a real Hilbert space. Let f be a bifunction from C ×C to R satisfying (A1)-(A2)
and let T : C → C be a k-strictly pseudononspreading mapping with a nonempty
fixed point set and F (T )

⋂
EP (f) 6= ∅. Let β ∈ [k, 1) and let Tβ := βI + (1− β)T .

Let {αn}∞n=1 ⊂ [0, 1) satisfying the conditions:

lim
n→∞

αn = 0, and
∞∑
n=1

αn =∞

and let {xn}∞n=1 and {zn}∞n=1 be sequences in C generated from an arbitrary x1 ∈ C
by {

xn+1 = αnu+ (1− αn)zn, n ≥ 1,

zn = 1
n

∑n−1
m=0 T

m
β xn, n ≥ 1,

(3.12)

Then {xn}∞n=1 and {zn}∞n=1 converge strongly to PF (T )
⋂
EP (f)u, where PF (T )

⋂
EP (f) :

H → F (T )
⋂
EP (f) is the metric projection of H onto F (T )

⋂
EP (f).

Remark 3.3. If T is nonspreading, then T is 0-strictly pseudononspreading. By
putting β = 0, then T0 = T . By Theorem 3.1, we obtain the result of Kurokawa
and Takahashi ([13], Theorem 4.1).

4. Example and numerical results

In this section, we give examples and numerical results for our main theorem.

Example 4.1. Let T : [−9, 3]→ [−9, 3] be define by

Tx =

{
x, [-9, 0);
−3x, [0, 3].

Let H = R and C = [−9, 3], and let f(x, y) = y2 + xy − 2x2. Find x̂ ∈ [−9, 3] such
that

F (x̂, y) +
1

r
〈y − x̂, x̂− z〉 ≥ 0, ∀y ∈ [−9, 3].

Solution. To see that T is k−strictly pseudononspreading, if x, y ∈ [−9, 0), then

|Tx− Ty|2 = |x− y|2 + k|x− Tx− (y − Ty)|2 + 2〈x− Tx, y − Ty〉 ∀k ∈ [0, 1),

since |Tx− Ty|2 = |x− y|2, and k|x− Tx− (y − Ty)|2 = 2〈x− Tx, y − Ty〉 = 0.
For all x, y ∈ [0, 3], we have |Tx−Ty|2 = 9|x−y|2, |x−Tx− (y−Ty)|2 = 16|x−y|2
and 2〈x− Tx, y − Ty〉 = 32xy ≥ 0. Thus

|Tx− Ty|2 = 9|x− y|2 = |x− y|2 +
1

2
|x− Tx− (y − Ty)|2

≤ |x− y|2 +
1

2
|x− Tx− (y − Ty)|2 + 2〈x− Tx, y − Ty〉.
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Finally for all x ∈ [−9, 0), y ∈ [0, 3] we have |Tx−Ty|2 = |x+3y|2 = x2 +6xy+9y2,
2〈x− Tx, y − Ty〉 = 0, and 1

2
|x− Tx− (y − Ty)|2 = 8y2. Hence

|x− y|2 +
1

2
|x− Tx− (y − Ty)|2 + 2〈x− Tx, y − Ty〉

= x2 − 2xy + 9y2

= x2 + 6xy + 9y2 − 8xy

≥ x2 + 6xy + 9y2 (since− 8xy ≥ 0)

= (x+ 3y)2 = |x+ 3y|2 = |Tx− Ty|2.

Hence, for all x, y ∈ [−9, 3], we obtain

|Tx− Ty|2 ≤ |x− y|2 +
1

2
|x− Tx− (y − Ty)|2 + 2〈x− Tx, y − Ty〉.

Thus T is 1
2
−strictly pseudononspreading, observe that F (T ) = [−9, 0]. We observe

that if x = 1, y = 0,

|Tx− Ty|2 = 9|x− y|2 = 9 > 1 = |x− y|2 + 2〈x− Tx, y − Ty〉

So T is not nonspreading. For r > 0 and z ∈ [−9, 3], by Lemma 2.3, there exists
x ∈ [−9, 3] such that for each y ∈ [−9, 3]

f(x, y) +
1

r
〈y − x, x− z〉 ≥ 0

⇔ y2 + xy − 2x2 +
1

r
(y − x)(x− z) ≥ 0

⇔ ry2 + rxy − 2rx2 + xy − x2 − yz + xz ≥ 0

⇔ ry2 + (rx+ x− z)y − (2rx2 + x2 − xz) ≥ 0.

Put G(y) = ry2 + (rx+ x− z)y− (2rx2 + x2− xz). Then G is a quadratic function
of y with coefficient a = r, b = rx + x − z and c = −(2rx2 + x2 − xz). We next
compute the discriminant ∆ of G as follows:

∆ = b2 − 4ac

= (rx+ x− z)2 + 4r(2rx2 + x2 − xz)

= z2 − 2(rx+ x)z + (rx+ x)2 + 8rx2 + 4rx2 − 4rxz

= z2 − 2rxz − 2xz + r2x2 + 2rx2 + x2 + 8r2x2 + 4rx2 − 4rxz

= z2 − 6rxz − 2xz + 9r2x2 + 6rx2 + x2

= z2 − 2(3rx+ x) + (9r2 + 6r + 1)x2

= [z − (3r + 1)x]2

We know that G(y) ≥ 0 for all y ∈ [−9, 3]. If it has most one solution in [−9, 3], so
∆ ≤ 0 and hence z = 3rx+ x. Now we have x = Trz = z

3r+1
.

Since Tβ := βI + (1− β)T , we obtain

Tβx =

{
x, x ∈ [−9, 0);
(4β − 3)x, x ∈ [0, 3].
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Let {xn}∞n=1 be the sequence generated by x1 = x ∈ [−9, 3] and
f(un, y) + 1

rn
〈y − un, un − zn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnu+ (1− αn)un, n ≥ 1,

zn = 1
n

∑n−1
m=0 T

m
β xn, n ≥ 1,

(4.1)

We next give two numerical results for algorithm (4.1).
Let αn = 1

200n
and rn = n

n+1
. Choose β = 5

6
and x1 = u = 1. Then algorithm

(4.1) becomes {
xn+1 = 1

200n
+ (1− 1

200n
)
(

zn
3rn+1

)
n ≥ 1,

zn = 1
n

∑n−1
m=0 T

m
β xn, n ≥ 1.

(4.2)

n xn zn
1 1.000000 1.000000

2 0.403000 0.268667

3 0.091832 0.044215

4 0.015249 0.005648

5 0.002909 0.000869
...

...
...

123 0.000041 0.000001

124 0.000041 0.000000

Table 1:

Let αn = 1
200n

and rn = n
n+1

. Choose β = 5
6

and x1 = u = −1. Then algorithm
(4.1) becomes {

xn+1 = − 1
200n

+ (1− 1
200n

)
(

Zn

3rn+1

)
n ≥ 1,

zn = 1
n

∑n−1
m=0 T

m
β xn, n ≥ 1.

(4.3)

n xn zn
1 -1.00000 -1.00000

2 -0.40300 -0.40300

3 -0.13650 -0.13650

4 -0.04360 -0.04360

5 -0.01406 -0.01406
...

...
...

68 -0.00001 -0.00001

69 0.00000 0.00000

Table 2:

Conclusion. Table 1 and Table 2 show that the sequence {xn} and {zn} converge to
0 which solves both the equilibrium problem of f and the fixed point problem of T .
On the other hand, using Lemma 2.3 (3) , we can check that F (Tr) = EP (f) = {0}.
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