HYERS-ULAM STABILITY OF K-FIBONACCI FUNCTIONAL EQUATION

M. BIDKHAM* AND M. HOSSEINI

Abstract

Let denote by $F_{k, n}$ the $n^{\text {th }} \mathrm{k}$-Fibonacci number where $F_{k, n}=k F_{k, n-1}+$ $F_{k, n-2}$ for $n \geq 2$ with initial conditions $F_{k, 0}=0, F_{k, 1}=1$, we may derive a functional equation $f(k, x)=k f(k, x-1)+f(k, x-2)$. In this paper, we solve this equation and prove its Hyere-Ulam stability in the class of functions $f: \mathbb{N} \times \mathbb{R} \rightarrow X$, where X is a real Banach space.

1. Introduction

The stability of functional equation originated from an equaton of Ulam [11] concerning the stability of group homomorphisms. Later, the result of Ulam was generated by Rassias [10]. Since then, the stability problems of functional equations have been extensively investigated by several mathematiciens(see[1-9]).
For any positive real number k , the k-Fibonacci sequence, $\operatorname{say}\left\{F_{k, n}\right\}_{n \in \mathbb{N}}$ is defined recurrently by $F_{k, n}=k F_{k, n-1}+F_{k, n-2}$ for all $n \geq 2$ with initial conditions $F_{k, 0}=$ $0, F_{k, 1}=1$.From this famous formula, we may derive a functional equation

$$
\begin{equation*}
f(k, x)=k f(k, x-1)+f(k, x-2) . \tag{1.1}
\end{equation*}
$$

A function $f: \mathbb{N} \times \mathbb{R} \rightarrow X$, will be called a k-Fibonacci function if it satisfies in (1.1), for all $x \in \mathbb{R}$ and $k \in \mathbb{N}$, where X is a real vector space. Characteristic equation of k -Fibonacci sequences is $x^{2}-k x-1=0$. We denote the positive and negative roots of this function by γ, θ (respectively); i.e,

$$
\gamma=\frac{k+\sqrt{k^{2}+4}}{2} \quad, \quad \theta=\frac{k-\sqrt{k^{2}+4}}{2}
$$

for any $x \in \mathbb{R}, k \in \mathbb{N}$.

2. General solution of k-Fibonacci equation

Let X bea real vector space. In the following theorem, we investigate the general solution for equation of the form (1.1) which is strongly related to the $F_{k, n}$.

[^0]Theorem 2.1. Let X be a real vector space. A function $f: \mathbb{N} \times \mathbb{R} \rightarrow X$ is a k-Fibonacci function if and only if there exists a function $h: \mathbb{N} \times[-1,1) \rightarrow X$ such that
$f(k, x)=\left\{\begin{array}{c}F_{k,[x]+1} h(k, x-[x])+F_{k,[x]} h(k, x-[x]-1) \quad x \geq 0 \\ (-1)^{[x]}\left[F_{k,-[x]-1} h(k, x-[x])-F_{k,-[x]} h(k, x-[x]-1)\right] \quad x<0\end{array}\right.$
where $[x]$ stands for the largest integer number that does not exceed x.
Proof. From (1.1) we have

$$
f(k, x)=k f(k, x-1)+f(k, x-2)
$$

Since $\gamma+\theta=k, \gamma \theta=-1$, hence

$$
\begin{aligned}
& f(k, x)=(\gamma+\theta) f(k, x-1)-\gamma \theta f(k, x-2) \\
& =\gamma f(k, x-1)+\theta f(k, x-1)-\gamma \theta f(k, x-2)
\end{aligned}
$$

which implies that

$$
\left\{\begin{array}{l}
f(k, x)-\gamma f(k, x-1)=\theta[f(k, x-1)-\gamma f(k, x-2)] \tag{2.2}\\
f(k, x)-\theta f(k, x-1)=\gamma[f(k, x-1)-\theta f(k, x-2)]
\end{array}\right.
$$

By induction on n, it follows that

$$
\left\{\begin{array}{l}
f(k, x)-\gamma f(k, x-1)=\theta^{n}[f(k, x-n)-\gamma f(k, x-n-1)] \tag{2.3}\\
f(k, x)-\theta f(k, x-1)=\gamma^{n}[f(k, x-n)-\theta f(k, x-n-1)]
\end{array}\right.
$$

If we replace x by $x+n(n \geq 0)$ in (2.3), divide the resulting equation by θ^{n} (resp. γ^{n}) and replace n by $-m$ in the resulting equation, then we obtain a equation with m in place of n, where $m \in\{0,-1,-2, \ldots\}$. Therefore, (2.3) is true for all $x \in \mathbb{R}, n \in \mathbb{Z}$ and $k \in \mathbb{N}$.
Now by multiplying the first and second equations of (2.3) by θ and $-\gamma$ (respectively) and then adding with together, we get

$$
\begin{equation*}
f(k, x)=\frac{\theta^{n+1}-\gamma^{n+1}}{\theta-\gamma} f(k, x-n)+\frac{\theta^{n}-\gamma^{n}}{\theta-\gamma} f(k, x-n-1) \tag{2.4}
\end{equation*}
$$

for all $x \in \mathbb{R}, n \in \mathbb{Z}$ and $k \in \mathbb{N}$. For $n=[x], x \geq 0$ in (2.4) and using Binet's formula

$$
F_{k, n}=\frac{\theta^{n}-\gamma^{n}}{\theta-\gamma}
$$

we have

$$
f(k, x)=F_{k,[x]+1} f(k, x-[x])+F_{k,[x]} f(k, x-[x]-1)
$$

and if $x<0$, then for $n=[x]=-|[x]|$, we have

$$
\begin{aligned}
f(k, x) & =\frac{\theta^{-|[x x]|+1}-\gamma^{-|[x]|+1}}{\theta-\gamma} f(k, x-[x]) \\
& +\frac{\theta^{-|[x]|}-\gamma^{-|[x]|}}{\theta-\gamma} f(k, x-[x]-1) \\
& =\frac{-1}{(\gamma \theta)^{|[x]|-1}} \frac{\theta^{\mid[x x]-1}-\gamma^{|[x]|-1}}{\theta-\gamma} f(k, x-[x]) \\
& +\frac{-1}{(\gamma \theta)^{|[x]|} \frac{\theta|[x]|}{\theta-\gamma} \gamma^{|[x]|}} \theta(k, x-[x]-1) \\
& =(-1)^{[x]} F_{k,|[x]|-1} f(k, x-[x])+(-1)^{1+[x]} F_{k, \mid[x x]} f(k, x-[x]-1) \\
& =(-1)^{[x]}\left[F_{k,-[x]-1} f(k, x-[x])-F_{k,-[x]} f(k, x-[x]-1)\right] .
\end{aligned}
$$

Since $0 \leq x-[x]<1$, and $-1 \leq x-[x]-1<0$, if we define a function $h: \mathbb{N} \times[-1,1) \rightarrow X$, by $h:=\left.f\right|_{\mathbb{N} \times[-1,1)}$, then f is a function of the form (2.1).

Now, Let f be a function of the form (2.1), where $h: \mathbb{N} \times[-1,1) \rightarrow X$ is an arbitrary function, we want to show that

$$
f(k, x)=k f(k, x-1)+f(k, x-2)
$$

and so f is a k -Fibonacci function.
If $x \geq 2$, then $x-1 \geq 1, \quad x-2 \geq 0$.
and by (2.1) we have

$$
\begin{gathered}
f(k, x)=F_{k,[x]+1} h(k, x-[x])+F_{k,[x]} h(k, x-[x]-1) \\
f(k, x-1)=F_{k,[x-1]+1} h(k, x-1-[x-1])+F_{k,[x-1]} h(k, x-1-[x-1]-1)
\end{gathered}
$$

Since $(x-1)-[x-1]=x-[x]$, hence

$$
\begin{gathered}
f(k, x-1)=F_{k,[x]} h(k, x-[x])+F_{k,[x]-1} h(k, x-[x]-1), \\
f(k, x-2)=F_{k,[x]-1} h(k, x-[x])+F_{k,[x]-2} h(k, x-[x]-1) .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
k f(k, x-1)+f(k, x-2) & =k F_{k,[x]} h(k, x-[x])+k F_{k,[x]-1} h(k, x-[x]-1) \\
& +F_{k,[x]-1} h(k, x-[x])+F_{k,[x]-2} h(k, x-[x]-1) \\
& =\left(k F_{k,[x]}+F_{k,[x]-1}\right) h(k, x-[x])+\left(k F_{k,[x]-1}+F_{k,[x]-2}\right) h(k, x-[x]-1) \\
& =F_{k,[x]+1} h(k, x-[x])+F_{k,[x]} h(k, x-[x]-1)=f(k, x) .
\end{aligned}
$$

If $1 \leq x \leq 2$, then $0 \leq x-1 \leq 1,-1 \leq x-2 \leq 0$ and by (2.1), we have

$$
\begin{aligned}
f(k, x) & =F_{k,[x]+1} h(k, x-[x])+F_{k,[x]} h(k, x-[x]-1) \\
& =F_{k, 2} h(k, x-[x])+F_{k, 1} h(k, x-[x]-1) \\
& =k h(k, x-[x])+h(k, x-[x]-1)
\end{aligned}
$$

$$
\begin{aligned}
f(k, x-1)= & F_{k,[x-1]+1} h(k, x-1-[x-1])+F_{k,[x-1]} h(k, x-1-[x-1]-1) \\
= & F_{k, 1} h(k, x-[x])+F_{k, 0} h(k, x-[x]-1) \\
= & h(k, x-[x]) \\
f(k, x-2) & =(-1)^{[x-2]}\left[F_{k,(-[x]-1)} h(k, x-[x])-F_{k, 2-[x]} h(k, x-[x]-1)\right] \\
& =-\left[F_{k, 0} h(k, x-[x])-F_{k, 1} h(k, x-[x]-1)\right] \\
& =h(k, x-[x]-1) .
\end{aligned}
$$

Hence

$$
k f(k, x-1)+f(k, x-2)=k h(k, x-[x])+h(k, x-[x]-1)=f(k, x) .
$$

If $0 \leq x<1$, then $-1 \leq x-1<0,-2 \leq x-2<-1$ and by (2.1), we have

$$
f(k, x)=F_{k, 1} h(k, x-[x])+F_{k, 0} h(k, x-[x]-1)=h(k, x-[x])
$$

$$
f(k, x-1)=(-1)^{-1}\left[F_{k, 0} h(k, x-[x])-F_{k, 1} h(k, x-[x]-1)\right]=h(k, x-[x]-1)
$$

$$
f(k, x-2)=(-1)^{-2}\left[F_{k, 1} h(k, x-[x])+F_{k, 2} h(k, x-[x]-1)\right]=h(k, x-[x])-k h(k, x-[x]-1)
$$

Thus, we get

$$
k f(k, x-1)+f(k, x-2)=h(k, x-[x])=f(k, x) .
$$

Finally, if $x<0$, then we have

$$
f(k, x)=(-1)^{[x]}\left[F_{k,-[x]-1} h(k, x-[x])-F_{k,-[x]} h(k, x-[x]-1)\right]
$$

$$
f(k, x-1)=(-1)^{[x-1]}\left[F_{k,-[x-1]-1} h(k, x-1-[x-1])-F_{k,-[x-1]} h(k, x-1-[x-1]-1)\right]
$$

$$
=(-1)^{[x]-1}\left[F_{k,-[x]} h(k, x-[x])-F_{k,-[x]-1} h(k, x-[x]-1)\right]
$$

$$
\begin{aligned}
f(k, x-2) & =(-1)^{[x-2]}\left[F_{k,-[x-2]-1} h(k, x-2-[x-2])-F_{k,-[x-2]} h(k, x-2-[x-2]-1)\right] \\
& =(-1)^{[x]-2}\left[F_{k,-[x]} h(k, x-[x])-F_{k,-[x]+2} h(k, x-[x]-1)\right] .
\end{aligned}
$$

Therefore

$$
f(k, x)=k f(k, x-1)+f(k, x-2) .
$$

3. Hyers-Ulam stability of k-Fibonacci equation

In the following theorem, we investigate the Hyers-Ulam stability for equations of the form (1.1).

Theorem 3.1. Let $(X,\|\|$.$) be a real Banach space. If a function f: \mathbb{N} \times \mathbb{R} \rightarrow X$ satisfies the inequality

$$
\begin{equation*}
\|f(k, x)-k f(k, x-1)-f(k, x-2)\| \leq \varepsilon, \tag{3.1}
\end{equation*}
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$, and for some $\varepsilon>0$, then there exists a k-Fibonacci function $G: \mathbb{N} \times \mathbb{R} \rightarrow X$ such that

$$
\begin{equation*}
\|f(k, x)-G(k, x)\| \leq \frac{\varepsilon}{2 k}\left(k+1-\frac{k^{2}-3 k-2}{\sqrt{k^{2}+4}}\right) \tag{3.2}
\end{equation*}
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$.
Proof. As $\gamma+\theta=k, \gamma \theta=-1$, we get from (3.1)

$$
\|f(k, x)-(\gamma+\theta) f(k, x-1)+\gamma \theta f(k, x-2)\| \leq \varepsilon
$$

or

$$
\|f(k, x)-\gamma f(k, x-1)-\theta[f(k, x-1)-\gamma f(k, x-2)]\| \leq \varepsilon,
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$.
If we replace x by $x-t$ and then multiplying the both sides of this inequality by $|\theta|^{t}$, we get
$\left\|\theta^{t}[f(k, x-t)-\gamma f(k, x-t-1)]-\theta^{t+1}[f(k, x-t-1)-\gamma f(k, x-t-2)]\right\| \leq|\theta|^{t} \varepsilon$
for all $x \in \mathbb{R}, k \in \mathbb{N}$, and $t \in \mathbb{Z}$. Since

$$
\begin{align*}
& \left\|\sum_{t=0}^{n-1} \theta^{t}[f(k, x-t)-\gamma f(k, x-t-1)]-\theta^{t+1}[f(k, x-t-1)-\gamma f(k, x-t-2)]\right\| \\
& =\left\|f(k, x)-\gamma f(k, x-1)-\theta^{n}[f(k, x-n)-\gamma f(k, x-n-1)]\right\|, \tag{3.3}
\end{align*}
$$

hence

$$
\begin{equation*}
\left\|f(k, x)-\gamma f(k, x-1)-\theta^{n}[f(k, x-n)-\gamma f(k, x-n-1)]\right\| \leq \sum_{t=0}^{n-1}|\theta|^{t} \varepsilon \tag{3.4}
\end{equation*}
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$, and $t \in \mathbb{Z}$.
From (3.3)for all $x \in \mathbb{R}, k \in \mathbb{N}$, we have $\left\{\theta^{n}[f(k, x-n)-\gamma f(k, x-n-1)]\right\}$ is a Cauchy sequence $(|\theta|<1)$. Therefore we can define $G_{1}: \mathbb{N} \times \mathbb{R} \rightarrow X$ by

$$
G_{1}(k, x)=\lim _{n \rightarrow \infty} \theta^{n}[f(k, x-n)-\gamma f(k, x-n-1)] .
$$

Since X is a Banach space, so it is complete and G_{1} is well defined function. We have

$$
\begin{aligned}
& k G_{1}(k, x-1)+G_{1}(k, x-2) \\
& =k \theta^{-1} G_{1}(k, x)+\theta^{-2} G_{1}(k, x)=G_{1}(k, x)
\end{aligned}
$$

if $n \rightarrow \infty$, then from (3.4) we have

$$
\begin{equation*}
\left\|f(k, x)-\gamma f(k, x-1)-G_{1}(k, x)\right\| \leq \frac{2+k+\sqrt{k^{2}+4}}{2} \varepsilon \tag{3.5}
\end{equation*}
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$.
On other hand, from (3.1), we have

$$
\|f(k, x)-\theta f(k, x-1)-\gamma[f(k, x-1)-\theta f(k, x-2)]\| \leq \varepsilon,
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$.
Now if we replace x by $x+t$ and then multiplying the both sides of this inequality by γ^{-t}, we get

$$
\begin{equation*}
\left\|\gamma^{-t}[f(k, x+t)-\theta f(k, x+t-1)]-\gamma^{-t+1}[f(k, x+t-1)-\theta f(k, x+t-2)]\right\| \leq \gamma^{-t} \varepsilon, \tag{3.6}
\end{equation*}
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$, and $t \in \mathbb{Z}$. Therefore

$$
\begin{align*}
& \left\|\gamma^{-n}[f(k, x+n)-\theta f(k, x+n-1)]-[f(k, x)-\theta f(k, x-1)]\right\| \\
& \leq \sum_{t=1}^{n}\left\|\gamma^{-t}[f(k, x+t)-\theta f(k, x+t-1)]-\gamma^{-t+1}[f(k, x+t-1)-\theta f(k, x+t-2)]\right\| \\
& \leq \sum_{t=1}^{n}\left|\gamma^{-t}\right| \varepsilon, \tag{3.7}
\end{align*}
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$, and $t \in \mathbb{Z}$.
For all $x \in \mathbb{R}, k \in \mathbb{N}(3.6)$, we have $\left\{\gamma^{-n}[f(k, x+n)-\theta f(k, x+n-1)]\right\}$ is a Cauchy sequence and hence we can define $G_{2}: \mathbb{N} \times \mathbb{R} \rightarrow X$ by

$$
G_{2}(k, x)=\lim _{n \rightarrow \infty} \gamma^{-n}[f(k, x+n)-\theta f(k, x+n-1)] .
$$

Since X is a Banach space, so it is complete and G_{2} is well defined function. We have

$$
\begin{aligned}
& k G_{2}(k, x-1)+G_{2}(k, x-2) \\
& =k \gamma^{-1} G_{2}(k, x)+\gamma^{-2} G_{2}(k, x)=G_{2}(k, x) .
\end{aligned}
$$

If $n \rightarrow \infty$, then from (3.7), we have

$$
\begin{equation*}
\left\|G_{2}(k, x)-f(k, x)-\theta f(k, x-1)\right\| \leq \frac{2-k+\sqrt{k^{2}+4}}{2 k} \varepsilon \tag{3.8}
\end{equation*}
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}$.
For

$$
G(k, x)=\frac{\theta}{\theta-\gamma} G_{1}(k, x)-\frac{\gamma}{\theta-\gamma} G_{2}(k, x),
$$

we have

$$
\begin{aligned}
\|f(k, x)-G(k, x)\| & =\left\|f(k, x)-\frac{\theta}{\theta-\gamma} G_{1}(k, x)-\frac{\gamma}{\theta-\gamma} G_{2}(k, x)\right\| \\
& =\frac{1}{|\theta-\gamma|}\left\|(\theta-\gamma) f(k, x)-\left[\theta G_{1}(k, x)-\gamma G_{2}(k, x)\right]\right\| \\
& \leq \frac{1}{\gamma-\theta} \| \theta\left[f(k, x)-\gamma f(k, x-1)-G_{1}(k, x) \|\right. \\
& +\frac{1}{\gamma-\theta} \| \gamma\left[G_{2}(k, x)-f(k, x)-\theta f(k, x-1) \|\right. \\
& \leq \frac{\varepsilon}{2 k}\left(k+1-\frac{k^{2}-3 k-2}{\sqrt{k^{2}+4}}\right), \quad(\text { By 3.5 and 3.8) }
\end{aligned}
$$

and it is easy to see G is a k-Fibonacci function.

In order to prove G is also unique, we need the following lemma.
Lemma 3.2. Let $(X,\|\|$.$) be a real normed space and u, v \in X$ are given. If for all $n \in \mathbb{N}$ and for some $C \geq 0$ we have

$$
\left\|F_{k, n+1} u+F_{k, n} v\right\| \leq C
$$

then,

$$
\gamma u+v=0
$$

Proof. We have,

$$
\begin{aligned}
F_{k, n}\|\gamma u+v\| & =\left\|\gamma F_{k, n} u+F_{k, n} v+F_{k, n+1} u-F_{k, n+1} u\right\| \\
& \leq\left\|F_{k, n+1} u+F_{k, n} v\right\|+\mid F_{k, n+1}-\gamma F_{n}\| \| u \| \\
& \leq C+\left|\frac{\gamma^{n+1}-\theta^{n+1}}{\gamma-\theta}-\gamma \frac{\gamma^{n}-\theta^{n}}{\gamma-\theta}\right|\|u\| \quad \text { (By Binet's formula) } \\
& =C+|\theta|^{n}\|u\|,
\end{aligned}
$$

for all $n \in \mathbb{N}, k \in \mathbb{N}$.
Since $|\theta|<1$, if $n \rightarrow \infty$, then $F_{k, n} \rightarrow \infty$, and so $\gamma u+v=0$.

Theorem 3.3. The k-Fibonacci function in Theorem (3.1) is unique.
Proof. Let there exist k-Fibonacci functions, $G_{1}: \mathbb{N} \times \mathbb{R} \longrightarrow X$, and $G_{2}: \mathbb{N} \times \mathbb{R} \longrightarrow$ X satisfying

$$
\begin{equation*}
\left\|f(k, x)-G_{i}(k, x)\right\| \leq \frac{\varepsilon}{2 k}\left(k+1-\frac{k^{2}-3 k-2}{\sqrt{k^{2}+4}}\right) \tag{3.9}
\end{equation*}
$$

for all $x \in \mathbb{R}, k \in \mathbb{N}, i \in\{1,2\}$. Since G_{1} and G_{2} are k-Fibonacci function, by Theorem (2.1), there exist functions $g_{i}: \mathbb{N} \times[-1,1) \longrightarrow X(i=\{1,2\})$ such that

$$
G_{i}(k, x)=\left\{\begin{array}{c}
F_{k,[x]+1} g_{i}(k, x-[x])+F_{k,[x]} g_{i}(k, x-[x]-1) \quad x \geq 0 \tag{3.10}\\
(-1)^{[x]}\left[F_{k,-[x]-1} g_{i}(k, x-[x])-F_{k,-[x]} g_{i}(k, x-[x]-1)\right] \quad x<0
\end{array},\right.
$$

for $i \in 1,2$.
Fix a t in $[0,1)$, from (3.9), we have

$$
\begin{aligned}
& \left\|G_{1}(k, n+t)-G_{2}(k, n+t)\right\| \\
& \leq\left\|G_{1}(k, n+t)-f(k, n+t)\right\|+\left\|f(k, n+t)-G_{2}(k, n+t)\right\| \\
& \leq 2 \frac{\varepsilon}{2 k}\left(k+1-\frac{k^{2}-3 k-2}{\sqrt{k^{2}+4}}\right)
\end{aligned}
$$

for all $n \in \mathbb{Z}, k \in \mathbb{N}$.
by (3.10), we have

$$
\begin{aligned}
& \| F_{k, n+1}\left[g_{1}(k, t)-g_{2}(k, t)\right]+F_{k, n}\left[g_{1}(k, t-1)-g_{2}(k, t-1) \|\right. \\
= & \left\|G_{1}(k, n+t)-G_{2}(k, n+t)\right\| \leq 2 \frac{\varepsilon}{2 k}\left(k+1-\frac{k^{2}-3 k-2}{\sqrt{k^{2}+4}}\right),
\end{aligned}
$$

and

$$
\begin{array}{r}
\quad \| F_{k, n-1}\left[g_{1}(k, t)-g_{2}(k, t)\right]-F_{k, n}\left[g_{1}(k, t-1)-g_{2}(k, t-1) \|\right. \\
=\left\|G_{1}(k,-n+t)-G_{2}(k,-n+t)\right\| \leq 2 \frac{\varepsilon}{2 k}\left(k+1-\frac{k^{2}-3 k-2}{\sqrt{k^{2}+4}}\right),
\end{array}
$$

for all $n \in \mathbb{N}, k \in \mathbb{N}$.
According to Lemma (3.2), we have

$$
\left\{\begin{array}{c}
\gamma\left[g_{1}(k, t)-g_{2}(k, t)\right]+\left[g_{1}(k, t-1)-g_{2}(k, t-1)\right]=0 \\
-\gamma\left[g_{1}(k, t-1)-g_{2}(k, t-1)\right]+\left[g_{1}(k, t)-g_{2}(k, t)\right]=0
\end{array}\right.
$$

or

$$
\left(\begin{array}{cc}
\gamma & 1 \\
1 & -\gamma
\end{array}\right)\binom{g_{1}(k, t)-g_{2}(k, t)}{g_{1}(k, t-1)-g_{2}(k, t-1)}=\binom{0}{0} .
$$

Since $-\gamma^{2}-1 \neq 0$, hence

$$
g_{1}(k, t)-g_{2}(k, t)=g_{1}(k, t-1)-g_{2}(k, t-1) .
$$

Since $0 \leq t<1$ is arbitrary, therefore $g_{1}(k, t)=g_{2}(k, t)$, for any $0 \leq t<1$, and from (3.10), we have $G_{1}(k, x)=G_{2}(k, x)$, for all $x \in \mathbb{R}$.

References

1. J. Baker, J. Lawrence and F. Zorzitto, The stability of the $f(x+y)=f(x) f(y)$, Proc. Amer. Math. Soc. 74(1979), 2 42-246.
2. G. L. Forti, Hyers- Ulam stability of functional equations in several variables, Aequationes Math. 50(1995), 143-190.
3. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14(1991), 431-434.
4. P. Gǎvrutǎ, A generalization of the Hyers- Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994), 431-436.
5. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27(1941), 221-224.
6. D. H. Hyers, G. Isac and Th. M. Rassias, stability of functional equations in several variables, Birkhäuser, Boston, 1998.
7. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequations Math. 44(1992), 125-153.
8. S. M. Jung, Hyers-Ulam-Rassias stability of functional equations, Dynamic Sys. Appl. 6(1997), 541-566.
9. S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
10. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Pros. Amer. Math. Soc. 72(1978), 297-300.
11. S. M. Ulam, A Collection of the Mathematical Problems, Intersience, New York, 1960.

Department of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, IRAN.

E-mail address: mdbidkham@gmail.com, hosseini_mps@yahoo.com

[^0]: Date: Received: January 2010; Revised: Jun 2010.
 2000 Mathematics Subject Classification. Primary 39B82, 39B52.
 Key words and phrases. Stability; Fibonacci functional equation.
 *: Corresponding author .

