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HYERS-ULAM STABILITY OF K-FIBONACCI FUNCTIONAL
EQUATION

M. BIDKHAM∗ AND M. HOSSEINI

Abstract. Let denote by Fk,n the nth k-Fibonacci number where Fk,n = kFk,n−1+
Fk,n−2 for n ≥ 2 with initial conditions Fk,0 = 0, Fk,1 = 1, we may derive a func-
tional equation f(k, x) = kf(k, x − 1) + f(k, x − 2). In this paper, we solve this
equation and prove its Hyere-Ulam stability in the class of functions f : N×R → X,
where X is a real Banach space.

1. Introduction

The stability of functional equation originated from an equaton of Ulam [11]
concerning the stability of group homomorphisms. Later, the result of Ulam was
generated by Rassias [10]. Since then, the stability problems of functional equations
have been extensively investigated by several mathematiciens(see[1-9 ]).
For any positive real number k, the k-Fibonacci sequence, say{Fk,n}n∈N is defined
recurrently by Fk,n = kFk,n−1 + Fk,n−2 for all n ≥ 2 with initial conditions Fk,0 =
0, Fk,1 = 1.From this famous formula, we may derive a functional equation

f(k, x) = kf(k, x− 1) + f(k, x− 2). (1.1)

A function f : N × R → X, will be called a k-Fibonacci function if it satisfies in
(1.1), for all x ∈ R and k ∈ N, where X is a real vector space.
Characteristic equation of k-Fibonacci sequences is x2− kx− 1 = 0. We denote the
positive and negative roots of this function by γ , θ (respectively); i.e,

γ =
k +

√
k2 + 4

2
, θ =

k −
√

k2 + 4

2

for any x ∈ R, k ∈ N.

2. General solution of k-Fibonacci equation

Let X bea real vector space. In the following theorem, we investigate the general
solution for equation of the form (1.1) which is strongly related to the Fk,n.
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Theorem 2.1. Let X be a real vector space. A function f : N × R → X is a
k-Fibonacci function if and only if there exists a function h : N× [−1, 1) → X such
that

f(k, x) =

{
Fk,[x]+1h(k, x− [x]) + Fk,[x]h(k, x− [x]− 1) x ≥ 0

(−1)[x][Fk,−[x]−1h(k, x− [x])− Fk,−[x]h(k, x− [x]− 1)] x < 0
(2.1)

where [x] stands for the largest integer number that does not exceed x.

Proof. From (1.1) we have

f(k, x) = kf(k, x− 1) + f(k, x− 2).

Since γ + θ = k , γθ = −1, hence

f(k, x) = (γ + θ)f(k, x− 1)− γθf(k, x− 2)

= γf(k, x− 1) + θf(k, x− 1)− γθf(k, x− 2)

which implies that{
f(k, x)− γf(k, x− 1) = θ[f(k, x− 1)− γf(k, x− 2)]

f(k, x)− θf(k, x− 1) = γ[f(k, x− 1)− θf(k, x− 2)]
. (2.2)

By induction on n, it follows that{
f(k, x)− γf(k, x− 1) = θn[f(k, x− n)− γf(k, x− n− 1)]

f(k, x)− θf(k, x− 1) = γn[f(k, x− n)− θf(k, x− n− 1)]
. (2.3)

If we replace x by x+n (n ≥ 0) in (2.3), divide the resulting equation by θn (resp.γn)
and replace n by −m in the resulting equation, then we obtain a equation with m in
place of n, where m ∈ {0,−1,−2, ...}. Therefore, (2.3) is true for all x ∈ R, n ∈ Z
and k ∈ N.
Now by multiplying the first and second equations of (2.3) by θ and−γ (respectively)
and then adding with together, we get

f(k, x) =
θn+1 − γn+1

θ − γ
f(k, x− n) +

θn − γn

θ − γ
f(k, x− n− 1) (2.4)

for all x ∈ R , n ∈ Z and k ∈ N. For n = [x], x ≥ 0 in (2.4) and using Binet’s
formula

Fk,n =
θn − γn

θ − γ
,

we have

f(k, x) = Fk,[x]+1f(k, x− [x]) + Fk,[x]f(k, x− [x]− 1)

and if x < 0, then for n = [x] = −|[x]|, we have
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f(k, x) =
θ−|[x]|+1 − γ−|[x]|+1

θ − γ
f(k, x− [x])

+
θ−|[x]| − γ−|[x]|

θ − γ
f(k, x− [x]− 1)

=
−1

(γθ)|[x]|−1

θ|[x]|−1 − γ|[x]|−1

θ − γ
f(k, x− [x])

+
−1

(γθ)|[x]|
θ|[x]| − γ|[x]|

θ − γ
f(k, x− [x]− 1)

= (−1)[x]Fk,|[x]|−1f(k, x− [x]) + (−1)1+[x]Fk,|[x]|f(k, x− [x]− 1)

= (−1)[x][Fk,−[x]−1f(k, x− [x])− Fk,−[x]f(k, x− [x]− 1)].

Since 0 ≤ x − [x] < 1, and −1 ≤ x − [x] − 1 < 0, if we define a function
h : N× [−1, 1) → X, by h := f |N×[−1,1), then f is a function of the form (2.1).

Now,Let f be a function of the form (2.1), where h : N × [−1, 1) → X is an
arbitrary function, we want to show that

f(k, x) = kf(k, x− 1) + f(k, x− 2)

and so f is a k-Fibonacci function.

If x ≥ 2, then x− 1 ≥ 1, x− 2 ≥ 0.
and by (2.1) we have

f(k, x) = Fk,[x]+1h(k, x− [x]) + Fk,[x]h(k, x− [x]− 1)

f(k, x− 1) = Fk,[x−1]+1h(k, x− 1− [x− 1]) + Fk,[x−1]h(k, x− 1− [x− 1]− 1)

Since (x− 1)− [x− 1] = x− [x], hence

f(k, x− 1) = Fk,[x]h(k, x− [x]) + Fk,[x]−1h(k, x− [x]− 1),

f(k, x− 2) = Fk,[x]−1h(k, x− [x]) + Fk,[x]−2h(k, x− [x]− 1).

Therefore

kf(k, x− 1) + f(k, x− 2) = kFk,[x]h(k, x− [x]) + kFk,[x]−1h(k, x− [x]− 1)

+ Fk,[x]−1h(k, x− [x]) + Fk,[x]−2h(k, x− [x]− 1)

= (kFk,[x] + Fk,[x]−1)h(k, x− [x]) + (kFk,[x]−1 + Fk,[x]−2)h(k, x− [x]− 1)

= Fk,[x]+1h(k, x− [x]) + Fk,[x]h(k, x− [x]− 1) = f(k, x).

If 1 ≤ x ≤ 2,then 0 ≤ x− 1 ≤ 1, −1 ≤ x− 2 ≤ 0 and by (2.1), we have

f(k, x) = Fk,[x]+1h(k, x− [x]) + Fk,[x]h(k, x− [x]− 1)

= Fk,2h(k, x− [x]) + Fk,1h(k, x− [x]− 1)

= kh(k, x− [x]) + h(k, x− [x]− 1)
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f(k, x− 1) = Fk,[x−1]+1h(k, x− 1− [x− 1]) + Fk,[x−1]h(k, x− 1− [x− 1]− 1)

= Fk,1h(k, x− [x]) + Fk,0h(k, x− [x]− 1)

= h(k, x− [x])

f(k, x− 2) = (−1)[x−2][Fk,(−[x]−1)h(k, x− [x])− Fk,2−[x]h(k, x− [x]− 1)]

= −[Fk,0h(k, x− [x])− Fk,1h(k, x− [x]− 1)]

= h(k, x− [x]− 1).

Hence

kf(k, x− 1) + f(k, x− 2) = kh(k, x− [x]) + h(k, x− [x]− 1) = f(k, x).

If 0 ≤ x < 1, then −1 ≤ x− 1 < 0, −2 ≤ x− 2 < −1 and by (2.1), we have

f(k, x) = Fk,1h(k, x− [x]) + Fk,0h(k, x− [x]− 1) = h(k, x− [x])

f(k, x− 1) = (−1)−1[Fk,0h(k, x− [x])− Fk,1h(k, x− [x]− 1)] = h(k, x− [x]− 1)

f(k, x−2) = (−1)−2[Fk,1h(k, x−[x])+Fk,2h(k, x−[x]−1)] = h(k, x−[x])−kh(k, x−[x]−1).

Thus, we get

kf(k, x− 1) + f(k, x− 2) = h(k, x− [x]) = f(k, x).

Finally, if x < 0, then we have

f(k, x) = (−1)[x][Fk,−[x]−1h(k, x− [x])− Fk,−[x]h(k, x− [x]− 1)]

f(k, x− 1) = (−1)[x−1][Fk,−[x−1]−1h(k, x− 1− [x− 1])− Fk,−[x−1]h(k, x− 1− [x− 1]− 1)]

= (−1)[x]−1[Fk,−[x]h(k, x− [x])− Fk,−[x]−1h(k, x− [x]− 1)]

f(k, x− 2) = (−1)[x−2][Fk,−[x−2]−1h(k, x− 2− [x− 2])− Fk,−[x−2]h(k, x− 2− [x− 2]− 1)]

= (−1)[x]−2[Fk,−[x]h(k, x− [x])− Fk,−[x]+2h(k, x− [x]− 1)].

Therefore

f(k, x) = kf(k, x− 1) + f(k, x− 2).

�
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3. Hyers-Ulam stability of k-Fibonacci equation

In the following theorem, we investigate the Hyers-Ulam stability for equations of
the form (1.1).

Theorem 3.1. Let (X, ||.||) be a real Banach space. If a function f : N × R → X
satisfies the inequality

||f(k, x)− kf(k, x− 1)− f(k, x− 2)|| ≤ ε, (3.1)

for all x ∈ R , k ∈ N, and for some ε > 0, then there exists a k-Fibonacci function
G : N× R → X such that

‖f(k, x)−G(k, x)‖ ≤ ε

2k
(k + 1− k2 − 3k − 2√

k2 + 4
), (3.2)

for all x ∈ R , k ∈ N.

Proof. As γ + θ = k, γθ = −1, we get from (3.1)

||f(k, x)− (γ + θ)f(k, x− 1) + γθf(k, x− 2)|| ≤ ε

or
||f(k, x)− γf(k, x− 1)− θ[f(k, x− 1)− γf(k, x− 2)]|| ≤ ε,

for all x ∈ R, k ∈ N.
If we replace x by x − t and then multiplying the both sides of this inequality by
|θ|t, we get

||θt[f(k, x−t)−γf(k, x−t−1)]−θt+1[f(k, x−t−1)−γf(k, x−t−2)]|| ≤ |θ|tε (3.3)

for all x ∈ R, k ∈ N, and t ∈ Z. Since

||
n−1∑
t=0

θt[f(k, x− t)− γf(k, x− t− 1)]− θt+1[f(k, x− t− 1)− γf(k, x− t− 2)]||

= ||f(k, x)− γf(k, x− 1)− θn[f(k, x− n)− γf(k, x− n− 1)]||, (3.3)

hence

||f(k, x)− γf(k, x− 1)− θn[f(k, x− n)− γf(k, x− n− 1)]|| ≤
n−1∑
t=0

|θ|tε, (3.4)

for all x ∈ R, k ∈ N, and t ∈ Z.
From (3.3)for all x ∈ R, k ∈ N, we have {θn[f(k, x − n) − γf(k, x − n − 1)]} is a
Cauchy sequence (|θ| < 1). Therefore we can define G1 : N× R → X by

G1(k, x) = lim
n→∞

θn[f(k, x− n)− γf(k, x− n− 1)].

Since X is a Banach space, so it is complete and G1 is well defined function.We have

kG1(k, x− 1) + G1(k, x− 2)

= kθ−1G1(k, x) + θ−2G1(k, x) = G1(k, x)

if n →∞, then from (3.4) we have

||f(k, x)− γf(k, x− 1)−G1(k, x)|| ≤ 2 + k +
√

k2 + 4

2
ε, (3.5)



HYERS-ULAM STABILITY OF K-FIBONACCI FUNCTIONAL EQUATION 47

for all x ∈ R, k ∈ N.
On other hand, from (3.1), we have

||f(k, x)− θf(k, x− 1)− γ[f(k, x− 1)− θf(k, x− 2)]|| ≤ ε,

for all x ∈ R, k ∈ N.
Now if we replace x by x + t and then multiplying the both sides of this inequality
by γ−t, we get

||γ−t[f(k, x+t)−θf(k, x+t−1)]−γ−t+1[f(k, x+t−1)−θf(k, x+t−2)]|| ≤ γ−tε, (3.6)

for all x ∈ R, k ∈ N, and t ∈ Z. Therefore

||γ−n[f(k, x + n)− θf(k, x + n− 1)]− [f(k, x)− θf(k, x− 1)]||

≤
n∑

t=1

||γ−t[f(k, x + t)− θf(k, x + t− 1)]− γ−t+1[f(k, x + t− 1)− θf(k, x + t− 2)]||

≤
n∑

t=1

|γ−t|ε, (3.7)

for all x ∈ R, k ∈ N, and t ∈ Z.
For all x ∈ R, k ∈ N(3.6), we have {γ−n[f(k, x+n)− θf(k, x+n− 1)]} is a Cauchy
sequence and hence we can define G2 : N× R → X by

G2(k, x) = lim
n→∞

γ−n[f(k, x + n)− θf(k, x + n− 1)].

Since X is a Banach space, so it is complete and G2 is well defined function.We have

kG2(k, x− 1) + G2(k, x− 2)

= kγ−1G2(k, x) + γ−2G2(k, x) = G2(k, x).

If n →∞, then from (3.7), we have

||G2(k, x)− f(k, x)− θf(k, x− 1)|| ≤ 2− k +
√

k2 + 4

2k
ε (3.8)

for all x ∈ R, k ∈ N.
For

G(k, x) =
θ

θ − γ
G1(k, x)− γ

θ − γ
G2(k, x),

we have

||f(k, x)−G(k, x)|| = ||f(k, x)− θ

θ − γ
G1(k, x)− γ

θ − γ
G2(k, x)||

=
1

|θ − γ|
||(θ − γ)f(k, x)− [θG1(k, x)− γG2(k, x)]||

≤ 1

γ − θ
||θ[f(k, x)− γf(k, x− 1)−G1(k, x)||

+
1

γ − θ
||γ[G2(k, x)− f(k, x)− θf(k, x− 1)||

≤ ε

2k
(k + 1− k2 − 3k − 2√

k2 + 4
), (By 3.5 and 3.8)
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and it is easy to see G is a k-Fibonacci function.
�

In order to prove G is also unique, we need the following lemma.

Lemma 3.2. Let (X, ||.||) be a real normed space and u, v ∈ X are given. If for all
n ∈ N and for some C ≥ 0 we have

||Fk,n+1u + Fk,nv|| ≤ C

then,
γu + v = 0.

Proof. We have,

Fk,n||γu + v|| = ||γFk,nu + Fk,nv + Fk,n+1u− Fk,n+1u||
≤ ||Fk,n+1u + Fk,nv||+ |Fk,n+1 − γFn|||u||

≤ C + |γ
n+1 − θn+1

γ − θ
− γ

γn − θn

γ − θ
|||u|| (By Binet′s formula)

= C + |θ|n||u||,
for all n ∈ N, k ∈ N.
Since |θ| < 1, if n →∞, then Fk,n →∞, and so γu + v = 0.

�

Theorem 3.3. The k-Fibonacci function in Theorem (3.1) is unique.

Proof. Let there exist k-Fibonacci functions, G1 : N×R −→ X, and G2 : N×R −→
X satisfying

||f(k, x)−Gi(k, x)|| ≤ ε

2k
(k + 1− k2 − 3k − 2√

k2 + 4
), (3.9)

for all x ∈ R, k ∈ N, i ∈ {1, 2}. Since G1 and G2 are k-Fibonacci function,by
Theorem (2.1), there exist functions gi : N× [−1, 1) −→ X (i = {1, 2}) such that

Gi(k, x) =

{
Fk,[x]+1gi(k, x− [x]) + Fk,[x]gi(k, x− [x]− 1) x ≥ 0

(−1)[x][Fk,−[x]−1gi(k, x− [x])− Fk,−[x]gi(k, x− [x]− 1)] x < 0
, (3.10)

for i ∈ 1, 2.
Fix a t in [0, 1), from (3.9), we have

||G1(k, n + t)−G2(k, n + t)||
≤ ||G1(k, n + t)− f(k, n + t)||+ ||f(k, n + t)−G2(k, n + t)||

≤ 2
ε

2k
(k + 1− k2 − 3k − 2√

k2 + 4
),

for all n ∈ Z, k ∈ N.
by (3.10), we have

||Fk,n+1[g1(k, t)− g2(k, t)] + Fk,n[g1(k, t− 1)− g2(k, t− 1)||

= ||G1(k, n + t)−G2(k, n + t)|| ≤ 2
ε

2k
(k + 1− k2 − 3k − 2√

k2 + 4
),
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and

||Fk,n−1[g1(k, t)− g2(k, t)]− Fk,n[g1(k, t− 1)− g2(k, t− 1)||

= ||G1(k,−n + t)−G2(k,−n + t)|| ≤ 2
ε

2k
(k + 1− k2 − 3k − 2√

k2 + 4
),

for all n ∈ N, k ∈ N.
According to Lemma (3.2), we have{

γ[g1(k, t)− g2(k, t)] + [g1(k, t− 1)− g2(k, t− 1)] = 0

−γ[g1(k, t− 1)− g2(k, t− 1)] + [g1(k, t)− g2(k, t)] = 0
or (

γ 1

1 − γ

) (
g1(k, t)− g2(k, t)

g1(k, t− 1)− g2(k, t− 1)

)
=

(
0

0

)
.

Since −γ2 − 1 6= 0, hence

g1(k, t)− g2(k, t) = g1(k, t− 1)− g2(k, t− 1).

Since 0 ≤ t < 1 is arbitrary, therefore g1(k, t) = g2(k, t), for any 0 ≤ t < 1, and from
(3.10), we have G1(k, x) = G2(k, x), for all x ∈ R.

�
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