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Abstract

This paper deals with the numerical solution of a class cordial Volterra integral equation with the Mittag-Lefller
solution. A numerical approach based on the generalized log orthogonal functions is proposed to solve this kind
of Volterra integral equation. By using the generalized log orthogonal functions as a basis function, the presented
numerical method can effectively approximate the solution of problems with singular behaviour. The error estimate
with respect to L?—norm is investigated. Finally, the accuracy of the method is illustrated through a numerical
example.
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1 Introduction

This work is concerned with numerical solution for the second kind linear cordial Volterra integral equations
(CVIEs) of the form

u(t) = F(t) + a/o 1ot Ls)h(E, 5)u(s)ds, (1.1)

0o n

n=0 F(lz-l-nd)’ z €

C,d > 0, in which T' denotes the gamma function. The function f € C™(I), a stands for an arbitrary constant,
b —1 _\b—1

ot 1ts) = %, 0 < b < 1, and without loss of generality we assume k(t,s) = 1. The cordial Volterra integral

operator

whose solution can be expressed in terms of the Mittag—Leffler function defined by E4(z) = Y

(Vou)(t) :/0 t ot s)k(t, s)u(s)ds, tel:=[0,T], (1.2)

is inspired by Vainikko’s studies [T} [12]. The function ¢ € L'(0,1) is the core of the operator, and k € C™(D) for
some m > 0 where D = {(t,s) : 0 < s <t < T}. The cordial Volterra integral operators are a special class of Volterra
integral operators with weak singular kernels that appear in the study of heat conduction problems with mixed
boundary conditions and some Volterra integral operators with certain kernel singularities [IL [7]. Such operators and
the associated Volterra integral equations have been studied by Vainikko [I3] [I4] and several other authors [5l, [6] [16].
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It is of interest to know the CVIEs have singular behavior at the initial point ¢ = 0. In general, facing singular
problems, in order to develop accurate spectral methods, there are some strategies such as employing a local adaptive
procedure in finite differences/finite elements [§], singular functions method [10], the enriched spectral methods [2, [3],
and mapped spectral methods [9], [15]. In [4] authors suggested that mapped spectral methods on the non-uniformly
Sobolev weighted spaces are more suitable for equations with singular behaviors. Actually, these methods lead to better
convergence results than numerical methods for instance finite-element, finite-difference and spectral methods on usual
Sobolev spaces. The choice of a log mapping to generalized Laguerre polynomials Lﬁf) (), @ > —1, seemed to be the
best adapted to their theory. Thus, they introduced two new classes of orthogonal functions on the non-uniformly
Sobolev weighted spaces, log orthogonal functions (LOFs) and generalized log orthogonal functions (GLOFs). Now,
in order to solve numerically , we apply the spectral collocation method using the GLOF's as basis functions.

The layout of this paper is as follows: Section [2, presents definitions and some properties of the LOFs and their
generalized type, approximation by the GLOF's along with operational matrices, and applies the well-known spectral
collocation method for solving . The error estimation of the approximate solution will be studied in section (3| In
Section [d] a numerical example is given to clarify the effectiveness of the proposed method. Finally, in the last section,
we present our conclusion.

2 Generalized log orthogonal functions

In this section, the generalized log orthogonal functions will be introduced [4].

Definition 2.1. For a, 8 > —1 the LOFs are defined by
S*O(t) = L (2(t)) = LEV (=(B+ Dlog(t),  n=0,1,...,
with satisfying the following properties:

o Three-term recurrence relation
S P(t) =1,
Sty = (B+1)log(t) + a + 1,

(@,8) 5y _ 2n+a+1+(8+41)log(t) (@) T (a,B) .
S (t) = T SpP(t) 7n+18”’1 (1), n=1,2,...,
e Orthogonality
1
'n+a+1)
S8 (1) S8 (1) (— log(£))* P dt = 7§, () = : 2.1
| sen s - tose) 7 e = (2.1)

Definition 2.2. For a, 3 > —1, A € R, the GLOFs are defined by
SeBN () = tB=N28@B (1) N eR, n>0,

with satisfying orthogonality condition

1
/ SEBN (OSSN (t) (— og(t) *dt = 3o, (2:2)
0

in which fy,(La’B ) is already defined in ([2.1). It is interesting to know that by choosing A = 3, the GLOF's are the same
as the LOFs.

2.1 Approximation by the GLOF's

To obtain an approximation of any function f € L?[0,1] in terms of the GLOFSs, one can write

oo n

O =SV, ) = fat) =Y @SV (@) = CTe(t) = o7 (1)C

=0 =0
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where ¢; = (f(t),SfO"ﬂ’A) (t)) in which (.,.) denotes the inner product with respect to the weight function x**(t) :=
(—log(t))*t*, and (n + 1)-order vectors C, ®(t) are given by
C=leo,cr,veal’s @) = [S§PN (1), 8PV (), ... AN )T (2.3)

Similarly, approximation of a two-variable function K(t,s) € L2([0, 1] x [0, 1]) is as follows
K(t, s) ~ Z Z/cws WD ()81 (5) = BT (H)KD(s), (2.4)
=0 j=0
where K is an (n + 1) x (n + 1) matrix with coefficients IC;; are given by
NCIDN a,B, ..
Kij = (SP 0, (19,5 V) xonheaws 67 =01,.m.

?

2.2 Operational matrices

We can approximate the integration of the vector ®(t) defined in (2.3) as follows

¢
/ O(7)dr ~ PO(t), (2.5)

0
where P is the GLOF's operational matrix of integration of order (n + 1) x (n + 1) with coefficients P;; are given by

)

Pij = (2.6)
a,B,A a,B,\
CREIORS I O)
Furthermore, we have ~ .
()T (t)C ~ CTd(t), T (1) Cd(t) = CTd(t), (2.7)
where C is the product operation matrix of two GLOFs and using (2.2) the elements {C’ } - can be calculated
i,j=
from
éij = ( ﬁ)) chgzjk7
where

1
= [ SIS S 0 og(t) .
0
Similarly, entries of matrix C can be obtained that are related to the vector C.

2.3 Methodology

Here, a numerical method based on the GLOFs and their operational matrices is introduced to solve (|1.1)). In order
to solve using the collocation method, we approximate the functions u(t), f(t), and K(t, s) := at~Lp(t71s)k(t, s)
by the GLOF's with coefficients determined by collocating at the nodal points {t;}!"_,, which are (n+ 1) roots of
Chebyshev polynomials T;,11(t) of degree (n + 1) on [0,1]. Assume

n

Zczs“’“ =CTot) =T ()0, f(t) =D LSV = FTe(t), K(ts)~@T(t)Kd(s), (2.8)

=0

where C, K are defined in 2.4)), respectlvely, and F [fos f1,- 1, fn] is a known vector defined similarly to C.
It is obtained by Substltutlng 1 D into , using and ( ., and setting ¥ := KCTP

CTo(t) ~ FTo(1) + / BT (1) (5) 07 (5)Cds
0

= FTo(t) + T (t)KCT /t ®(s)ds
0

= FTo(t) + T () KCTPD(t)
=FTo(t) + YTd(t).
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It follows that .
(CT _FT YT) ®(t) ~ 0. (2.9)

Now, if we collocate ([2.9) in (n + 1) points {¢;};"_, and replace ~ with =, we achieve

(CT—FT—?T) B(t;)=0, i=01,...,n. (2.10)

The equation (2.10) produces a linear system of (n + 1) equations and (n + 1) unknowns that can be solved for the
unknown vector C. Thus, the approximate solution of (T.1]) will be obtained by u(t) ~ CT®(t).

3 Convergence

In this section, we present the approximation error by the GLOFs. The construction is due to Chen and Shen [4].
First of all, suppose that u,(t) is the approximate solution of (1.1)). The error function will be

ent) = ut) —un(t) = Y &SPV ().
i=n+1
Consider a pseudo—derivative with respect to the LOF's as follows

(iu = tO0su.

Assume »
AR (1) = {1/ €L2un(l): 8jv e Luiyn(D),j=1,2, k} . keN,

is a non—uniformly weighted Sobolev space equipped with the semi—norm and norm

m 1/2
0 Lag =l O i, w llag = (Z v |?4g,ﬁ> .
k=0
The pseudo—derivative with respect to the GLOFs can be defined as
(’:)%tu =ttty {t‘”u} .

Furthermore, to better describe the approximability of w,(t) by the GLOFs, we need to define a non—uniformly
weighted Sobolev space as

3

AR o (T) = {u €L (1) 0y veLlun(D),j=1.2 k} . keN,

equipped with semi—norm and norm as
m 1/2
L VTSN T D TT N
k=0

|Z/‘Am,

Theorem 3.1. [4] Given f(t) = t"(—log(t))¥,r > 0,k € Ng. Let A > —1 —2r,a, 3 > —1 and 8 > A. Then, we have

2r+A—p
L2, d R, = 1
fe Yoo an N:DY 2T+2+)\+B < 1,
and % + o + 2
oatl n ¢
|| f — fn ||X0,AS C(k + 1)'71 2 (Rr7ﬁ7)\) when n > —m7
where

2a+1+k(6+ 1)2a+27k
TN B A2 2)etE
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In particular, if &« = A = 0, then an accurate estimate for the GLOFSs to singular functions in L?—norm is obtained
as

n—k
—k
| £ = fu < V3" B+ ) hin* 2B+ 1) \2 5
Also, for f(t) =1t", r > 0, we have
£ fu s VB D 5220

Theorem 3.2. [4] Let m,n,k € NyA € R and «, 8 > —1. For any u € AZ@A(I) and 0 < k < m = min{m,n + 1},
we have

—m n—ﬁl—i—l
95 (=) o< Wu)k e L S W

In particular, in the case of a = = A =k =0 and m < n + 1, it holds that
=y (< en™™ | O u [y

where X = ™0 = (—logt)™

4 Numerical examples

In this section, we implement the collocation method given in Subsection numerically for
t
u(t) =1-— ﬁ/ t~ro(t™ s)u(s)ds, 0<t<1, (4.1)
0

which has the exact solution u(t) = Ejo(v/wt). Here p(t™'s) = w Table |1 and Figure illustrate the
asymptotics of the proposed method numerically for this example. Table [I| exhibits the errors obtained by using the
GLOFs with a = 0,8 = 1, A = —1. It can be seen that as the number of the GLOFs increases the accuracy of the

solution will reasonably improve. In Figure[l] we have shown the graphic representation of the exact and approximate
solution of (4.1)) for n =6 with =0, =1, A = —1.

Table 1: The absolute errors with « =0, 8 =1, A = —1 in (4.1).

t n=2 n=4 n==~06

0 0 0
0.125 | 9.507FE — 2 1.921F — 3 6.181FE — 6
0.250 | 9.409F — 2 9.815F — 4 3.570F — 6
0.375 | 3.022F — 2 5.985E — 4 5.473E — 6
0.500 | 3.158F — 2 9.382F — 5 2.173E — 6
0.625 | 6.673F — 2 2.710E — 4 1.425FE — 6
0.750 | 6.411F — 2 2.620F — 5 1.797F — 6
0.875 | 1.839F — 2 1.970F — 4 1.320F — 6
1.000 | 7.298F — 2 1.648FE — 4 1.292FE — 6

5 Conclusion

The log orthogonal functions and their generalized type were introduced. The distinctive feature of these functions
is that they are very useful in resolving singularities. These functions were used to numerically solve equation (|1.1)).
An illustrative example is presented to assess the effectiveness of the method.
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Figure 1: The approximate and the exact solution (left) and the absolute error (right) for n =6 with « =0, 8 =1, A = —1 in (4.1).
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