

Ulam-Hyers-Rassias-stability of a Cauchy-Jensen additive mapping In fuzzy Banach spaces

Hassan Azadi Kenary

Department of Mathematics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran

(Communicated by Michael Th. Rassias)

Abstract

In this paper, We prove the Ulam-Hyers-Rassias stability of a Cauchy-Jensen additive functional equation in fuzzy Banach spaces. The concept of Ulam-Hyers-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.

Keywords: Ulam-Hyers-Rassias stability; fixed point method; fuzzy Banach spaces.

2020 MSC: 39B52, 46S40, 26E50

1 Introduction

The stability problem of functional equations was originated from a question of Ulam [37] concerning the stability of group homomorphisms. Hyers [17] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Th. M. Rassias [30] for linear mappings by considering an unbounded Cauchy difference.

Theorem 1.1. (Th.M.Rassias): Let $f : E \rightarrow E'$ be a mapping from a normed vector space E into a Banach space E' subject to the inequality

$$\|f(x + y) - f(x) - f(y)\| \leq \epsilon(\|x\|^p + \|y\|^p)$$

for all $x, y \in E$, where ϵ and p are constants with $\epsilon > 0$ and $0 \leq p < 1$. Then the limit $L(x) = \lim_{n \rightarrow \infty} \frac{f(2^n x)}{2^n}$ exists for all $x \in E$ and $L : E \rightarrow E'$ is the unique additive mapping which satisfies

$$\|f(x) - L(x)\| \leq \frac{2\epsilon}{2 - 2^p} \|x\|^p$$

for all $x \in E$. Also, if for each $x \in E$ the function $f(tx)$ is continuous in $t \in \mathbb{R}$, then L is linear.

The functional equation

$$f(x + y) + f(x - y) = 2f(x) + 2f(y)$$

is called a *quadratic functional equation*. In particular, every solution of the quadratic functional equation is said to be a *quadratic mapping*. The Ulam-Hyers-Rassias stability of the quadratic functional equation was proved by Skof [36]

Email address: azadi@yu.ac.ir (Hassan Azadi Kenary)

for mappings $f : X \rightarrow Y$, where X is a normed space and Y is a Banach space. Cholewa [7] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerw [8] proved the Ulam-Hyers-Rassias stability of the quadratic functional equation.

The stability problems of several functional equations have been extensively investigated by a number of authors, and there are many interesting results concerning this problem (see [1, 2, 3, 9]–[12], [16], [23]–[35]).

Katsaras [18] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view (see [13], [20], [24]). In particular, Bag and Samanta [4], following Cheng and Mordeson [6], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Karmosil and Michalek type [19]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [5]. Now we consider a mapping $f : X \rightarrow Y$ satisfying the following functional equation, which is introduced by the first author,

$$\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} f\left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l}\right) = \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n f(x_i) \quad (1.1)$$

for all $x_1, \dots, x_n \in X$, where $m, n \in \mathbb{N}$ are fixed integers with $n \geq 2$, $1 \leq m \leq n$. Specially, we observe that in case $m = 1$ the equation (1.1) yields Cauchy additive equation

$$f\left(\sum_{l=1}^n x_{k_l}\right) = \sum_{l=1}^n f(x_i).$$

We observe that in case $m = n$ the equation (1.1) yields Jensen additive equation

$$f\left(\frac{\sum_{j=1}^n x_j}{n}\right) = \frac{1}{n} \sum_{l=1}^n f(x_i).$$

Therefore, the equation (1.1) is a generalized form of the Cauchy-Jensen additive equation and thus every solution of the equation (1.1) may be analogously called general (m, n) -Cauchy- Jensen additive. For the case $m = 2$, we have established new theorems about the Ulam-Hyers-Rassias stability in quasi β -normed spaces [29]. Let X and Y be linear spaces. For each m with $1 \leq m \leq n$, a mapping $f : X \rightarrow Y$ satisfies the equation (1.1) for all $n \geq 2$ if and only if $f(x) - f(0) = A(x)$ is Cauchy additive, where $f(0) = 0$ if $m < n$. In particular, we have $f((n-m+1)x) = (n-m+1)f(x)$ and $f(mx) = mf(x)$, for all $x \in X$.

Definition 1.2. Let X be a real vector space. A function $N : X \times \mathbb{R} \rightarrow [0, 1]$ is called a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,

- (N1) $N(x, t) = 0$ for $t \leq 0$;
- (N2) $x = 0$ if and only if $N(x, t) = 1$, for all $t > 0$;
- (N3) $N(cx, t) = N\left(x, \frac{t}{|c|}\right)$ if $c \neq 0$;
- (N4) $N(x + y, c + t) \geq \min\{N(x, s), N(y, t)\}$;
- (N5) $N(x, \cdot)$ is a non-decreasing function of \mathbb{R} and $\lim_{t \rightarrow \infty} N(x, t) = 1$;
- (N6) for $x \neq 0$, $N(x, \cdot)$ is continuous on \mathbb{R} .

Example 1.3. Let $(X, \|\cdot\|)$ be a normed linear space and $\alpha, \beta > 0$. Then

$$N(x, t) = \begin{cases} \frac{\alpha t}{\alpha t + \beta \|x\|} & t > 0, x \in X \\ 0 & t \leq 0, x \in X \end{cases}$$

is a fuzzy norm on X .

2 Preliminaries

Definition 2.1. Let (X, N) be a fuzzy normed vector space. A sequence $\{x_n\}$ in X is said to be convergent or converge if there exists an $x \in X$ such that $\lim_{t \rightarrow \infty} N(x_n - x, t) = 1$ for all $t > 0$. In this case, x is called the limit of the sequence $\{x_n\}$ in X and we denote it by $N - \lim_{t \rightarrow \infty} x_n = x$.

Definition 2.2. Let (X, N) be a fuzzy normed vector space. A sequence $\{x_n\}$ in X is called Cauchy if for each $\epsilon > 0$ and each $t > 0$ there exists an $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$ and all $p > 0$, we have $N(x_{n+p} - x_n, t) > 1 - \epsilon$.

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping $f : X \rightarrow Y$ between fuzzy normed vector spaces X and Y is continuous at a point $x \in X$ if for each sequence $\{x_n\}$ converging to $x_0 \in X$, then the sequence $\{f(x_n)\}$ converges to $f(x_0)$. If $f : X \rightarrow Y$ is continuous at each $x \in X$, then $f : X \rightarrow Y$ is said to be continuous on X (see [5]).

Definition 2.3. Let X be a set. A function $d : X \times X \rightarrow [0, \infty]$ is called a generalized metric on X if d satisfies the following conditions:

- (1) $d(x, y) = 0$ if and only if $x = y$, for all $x, y \in X$;
- (2) $d(x, y) = d(y, x)$ for all $x, y \in X$;
- (3) $d(x, z) \leq d(x, y) + d(y, z)$, for all $x, y, z \in X$.

Theorem 2.4. Let (X, d) be a complete generalized metric space and $J : X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L < 1$. Then, for all $x \in X$, either

$$d(J^n x, J^{n+1} x) = \infty$$

for all nonnegative integers n or there exists a positive integer n_0 such that

- (1) $d(J^n x, J^{n+1} x) < \infty$ for all $n_0 \geq n_0$;
- (2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J ;
- (3) y^* is the unique fixed point of J in the set $Y = \{y \in X : d(J^{n_0} x, y) < \infty\}$;
- (4) $d(y, y^*) \leq \frac{1}{1-L} d(y, Jy)$ for all $y \in Y$.

3 Fuzzy stability of (m, n) -Cauchy-Jensen additive functional equation (1.1): A fixed point method

In this section, using the fixed point alternative approach we prove the Ulam-Hyers-Rassias stability of functional equation (1.1) in fuzzy Banach spaces. Throughout this paper, assume that X is a vector space and that (Y, N) is a fuzzy Banach space.

Theorem 3.1. Let $\varphi : X^n \rightarrow [0, \infty)$ be a function such that there exists an $L < 1$ with

$$\varphi\left(\frac{x_1}{n-m+1}, \dots, \frac{x_n}{n-m+1}\right) \leq \frac{L\varphi(x_1, x_2, \dots, x_n)}{n-m+1}$$

for all $x_1, \dots, x_n \in X$. Let $f : X \rightarrow Y$ with $f(0) = 0$ is a mapping satisfying

$$\begin{aligned} & N\left(\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} f\left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l}\right) - \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n f(x_i), t\right) \\ & \geq \frac{t}{t + \varphi(x_1, \dots, x_n)} \end{aligned} \tag{3.1}$$

for all $x_1, \dots, x_n \in X$ and all $t > 0$. Then there exists a unique (m, n) -Cauchy-Jensen additive mapping $A : X \rightarrow Y$ such that

$$N(f(x) - A(x), t) \geq \frac{(n-m+1) \binom{n}{m} (1-L)t}{(n-m+1) \binom{n}{m} (1-L)t + L\varphi(x, \dots, x)}, \tag{3.2}$$

for all $x \in X$ and all $t > 0$.

Proof . Replacing (x_1, \dots, x_n) by (x, \dots, x) in (3.1), we have

$$N\left(\binom{n}{m} f((n-m+1)x) - \binom{n}{m} (n-m+1)f(x), t\right) \geq \frac{t}{t+\varphi(x, \dots, x)} \quad (3.3)$$

for all $x \in X$ and $t > 0$. Consider the set $S := \{g : X \rightarrow Y ; g(0) = 0\}$ and the generalized metric d in S defined by

$$d(f, g) = \inf \left\{ \mu \in \mathbb{R}^+ : N(g(x) - h(x), \mu t) \geq \frac{t}{t+\varphi(x, \dots, x)}, \forall x \in X, t > 0 \right\},$$

where $\inf \emptyset = +\infty$. It is easy to show that (S, d) is complete (see [22]). Now, we consider a linear mapping $J : S \rightarrow S$ such that

$$Jg(x) := (n-m+1)g\left(\frac{x}{n-m+1}\right)$$

for all $x \in X$. Let $g, h \in S$ be such that $d(g, h) = \epsilon$. Then $N(g(x) - h(x), \epsilon t) \geq \frac{t}{t+\varphi(x, \dots, x)}$ for all $x \in X$ and $t > 0$. Hence

$$\begin{aligned} & N(Jg(x) - Jh(x), L\epsilon t) \\ &= N\left((n-m+1)g\left(\frac{x}{n-m+1}\right) - (n-m+1)h\left(\frac{x}{n-m+1}\right), L\epsilon t\right) \\ &= N\left(g\left(\frac{x}{n-m+1}\right) - h\left(\frac{x}{n-m+1}\right), \frac{L\epsilon t}{n-m+1}\right) \\ &\geq \frac{\frac{L\epsilon t}{n-m+1}}{\frac{L\epsilon t}{n-m+1} + \varphi\left(\frac{x}{n-m+1}, \dots, \frac{x}{n-m+1}\right)} \geq \frac{\frac{L\epsilon t}{n-m+1}}{\frac{L\epsilon t}{n-m+1} + \frac{L\varphi(x, \dots, x)}{n-m+1}} = \frac{t}{t+\varphi(x, \dots, x)} \end{aligned}$$

for all $x \in X$ and $t > 0$. Thus $d(g, h) = \epsilon$ implies that $d(Jg, Jh) \leq L\epsilon$. This means that $d(Jg, Jh) \leq Ld(g, h)$ for all $g, h \in S$. It follows from (3.3) that

$$\begin{aligned} N\left((n-m+1)f\left(\frac{x}{n-m+1}\right) - f(x), \frac{t}{\binom{n}{m}}\right) &\geq \frac{t}{t+\varphi\left(\frac{x}{n-m+1}, \dots, \frac{x}{n-m+1}\right)} \\ &\geq \frac{t}{t+\frac{L\varphi(x, \dots, x)}{n-m+1}} \end{aligned}$$

for all $x \in X$ and all $t > 0$. So

$$N\left((n-m+1)f\left(\frac{x}{n-m+1}\right) - f(x), \frac{Lt}{(n-m+1)\binom{n}{m}}\right) \geq \frac{t}{t+\varphi(x, \dots, x)}.$$

This implies that

$$d(f, Jf) \leq \frac{L}{(n-m+1)\binom{n}{m}}.$$

By Theorem 2.4, there exists a mapping $A : X \rightarrow Y$ satisfying the following:

(1) A is a fixed point of J , that is,

$$A\left(\frac{x}{n-m+1}\right) = \frac{A(x)}{n-m+1} \quad (3.4)$$

for all $x \in X$. The mapping A is a unique fixed point of J in the set $\Omega = \{h \in S : d(g, h) < \infty\}$. This implies that A is a unique mapping satisfying (3.4) such that there exists $\mu \in (0, \infty)$ satisfying $N(f(x) - A(x), \mu t) \geq \frac{t}{t+\varphi(x, \dots, x)}$, for all $x \in X$ and $t > 0$.

(2) $d(J^p f, A) \rightarrow 0$ as $p \rightarrow \infty$. This implies the equality

$$N\text{-}\lim_{p \rightarrow \infty} \frac{f\left(\frac{x}{(n-m+1)^p}\right)}{(n-m+1)^{-p}} = A(x) \quad (3.5)$$

for all $x \in X$.

(3) $d(f, A) \leq \frac{d(f, Jf)}{1-L}$ with $f \in \Omega$, which implies the inequality

$$d(f, A) \leq \frac{L}{(n-m+1) \binom{n}{m} - (n-m+1) \binom{n}{m} L}$$

This implies that the inequality (3.2) holds. Furthermore, it follows from (3.1) and (3.5) that

$$\begin{aligned} & N \left(\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} A \left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l} \right) - \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n A(x_i), t \right) \\ &= N - \lim_{p \rightarrow \infty} \left((n-m+1)^p \sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} f \left(\frac{\sum_{j=1}^m x_{i_j}}{m(n-m+1)^p} + \sum_{l=1}^{n-m} \frac{x_{k_l}}{(n-m+1)^p} \right) \right. \\ & \quad \left. - \frac{(n-m+1)^{p+1}}{n} \binom{n}{m} \sum_{i=1}^n f \left(\frac{x_i}{(n-m+1)^p} \right), t \right) \\ & \geq \lim_{p \rightarrow \infty} \frac{\frac{t}{(n-m+1)^p}}{\frac{t}{(n-m+1)^p} + \varphi \left(\frac{x_1}{(n-m+1)^p}, \dots, \frac{x_n}{(n-m+1)^p} \right)} \\ & \geq \lim_{p \rightarrow \infty} \frac{\frac{t}{(n-m+1)^p}}{\frac{t}{(n-m+1)^p} + \frac{L^n \varphi(x_1, \dots, x_n)}{(n-m+1)^p}} \rightarrow 1 \end{aligned}$$

for all $x_1, \dots, x_n \in X$, $t > 0$. Hence

$$\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} A \left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l} \right) = \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n A(x_i)$$

for all $x_1, \dots, x_n \in X$ and therefore A satisfies (1.1). So the mapping $A : X \rightarrow Y$ is an additive, as desired. This completes the proof. \square

Corollary 3.2. Let $\theta \geq 0$ and let p be a real number with $p > 1$. Let X be a normed vector space with norm $\|\cdot\|$. Let $f : X \rightarrow Y$ with $f(0) = 0$ be a mapping satisfying the following inequality

$$\begin{aligned} & N \left(\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} f \left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l} \right) - \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n f(x_i), t \right) \\ & \geq \frac{t}{t + \theta (\sum_{i=1}^n \|x_i\|^p)} \end{aligned} \quad (3.6)$$

for all $x_1, \dots, x_n \in X$ and all $t > 0$. Then, the limit $A(x) := N\text{-}\lim_{p \rightarrow \infty} \frac{f\left(\frac{x}{(n-m+1)^p}\right)}{(n-m+1)^{-p}}$ exists for each $x \in X$ and defines a unique (m, n) -Cauchy-Jensen additive mapping $A : X \rightarrow Y$ such that

$$N(f(x) - A(x), t) \geq \frac{(n-m+1) \binom{n}{m} [(n-m+1)^p - (n-m+1)] t}{(n-m+1) \binom{n}{m} [(n-m+1)^p - (n-m+1)] t + n(n-m+1)\theta \|x\|^p}$$

for all $x \in X$ and $t > 0$.

Proof . The proof follows from Theorem 3.1 by taking $\varphi(x_1, \dots, x_n) := \theta(\sum_{i=1}^n \|x_i\|^p)$ for all $x_1, \dots, x_n \in X$. Then we can choose $L = (n-m+1)^{1-p}$ and we get the desired result. \square

Theorem 3.3. Let $\varphi : X^n \rightarrow [0, \infty)$ be a function such that there exists an $L < 1$ with

$$\varphi(x_1, \dots, x_n) \leq (n-m+1)L\varphi\left(\frac{x_1}{n-m+1}, \dots, \frac{x_n}{n-m+1}\right)$$

for all $x_1, x_2, \dots, x_n \in X$. Let $f : X \rightarrow Y$ be a mapping with $f(0) = 0$ satisfying (3.1). Then, the limit $A(x) := N\lim_{p \rightarrow \infty} \frac{f((n-m+1)^p x)}{(n-m+1)^p}$ exists for each $x \in X$ and defines a unique (m, n) -Cauchy-Jensen additive mapping $A : X \rightarrow Y$ such that

$$N(f(x) - A(x), t) \geq \frac{(n-m+1)\binom{n}{m}(1-L)t}{(n-m+1)\binom{n}{m}(1-L)t + \varphi(x, \dots, x)} \quad (3.7)$$

for all $x \in X$ and all $t > 0$.

Proof . Let (S, d) be the generalized metric space defined as in the proof of Theorem 3.1. Consider the linear mapping $J : S \rightarrow S$ such that $Jg(x) := \frac{g((n-m+1)x)}{n-m+1}$, for all $x \in X$. Let $g, h \in S$ be such that $d(g, h) = \epsilon$. Then $N(g(x) - h(x), \epsilon t) \geq \frac{t}{t + \varphi(x, \dots, x)}$, for all $x \in X$ and $t > 0$. Hence

$$\begin{aligned} N(Jg(x) - Jh(x), L\epsilon t) &= N\left(\frac{g((n-m+1)x)}{n-m+1} - \frac{h((n-m+1)x)}{n-m+1}, L\epsilon t\right) \\ &= N\left(g((n-m+1)x) - h((n-m+1)x), (n-m+1)L\epsilon t\right) \\ &\geq \frac{(n-m+1)Lt}{(n-m+1)Lt + \varphi((n-m+1)x, \dots, (n-m+1)x)} \\ &\geq \frac{(n-m+1)Lt}{(n-m+1)Lt + (n-m+1)L\varphi(x, \dots, x)} \\ &= \frac{t}{t + \varphi(x, \dots, x)} \end{aligned}$$

for all $x \in X$ and $t > 0$. Thus $d(g, h) = \epsilon$ implies that $d(Jg, Jh) \leq L\epsilon$. This means that $d(Jg, Jh) \leq Ld(g, h)$ for all $g, h \in S$. It follows from (3.3) that

$$N\left(f(x) - \frac{f((n-m+1)x)}{n-m+1}, \frac{t}{(n-m+1)\binom{n}{m}}\right) \geq \frac{t}{t + \varphi(x, \dots, x)} \quad (3.8)$$

for all $x \in X$ and $t > 0$. So

$$d(f, Jf) \leq \frac{1}{(n-m+1)\binom{n}{m}}.$$

By Theorem 2.4, there exists a mapping $A : X \rightarrow Y$ satisfying the following:

(1) A is a fixed point of J , that is,

$$(n-m+1)A(x) = A((n-m+1)x) \quad (3.9)$$

for all $x \in X$. The mapping A is a unique fixed point of J in the set $\Omega = \{h \in S : d(g, h) < \infty\}$. This implies that A is a unique mapping satisfying (3.9) such that there exists $\mu \in (0, \infty)$ satisfying $N(f(x) - A(x), \mu t) \geq \frac{t}{t + \varphi(x, \dots, x)}$, for all $x \in X$ and $t > 0$.

(2) $d(J^p f, A) \rightarrow 0$ as $p \rightarrow \infty$. This implies the equality

$$A(x) = N\text{-} \lim_{p \rightarrow \infty} \frac{f((n-m+1)^p x)}{(n-m+1)^p}$$

for all $x \in X$.

(3) $d(f, A) \leq \frac{d(f, Jf)}{1-L}$ with $f \in \Omega$, which implies the inequality

$$d(f, A) \leq \frac{1}{(n-m+1) \binom{n}{m} - (n-m+1) \binom{n}{m} L}.$$

This implies that the inequality (3.7) holds. The rest of the proof is similar to that of the proof of Theorem 3.1. \square

Corollary 3.4. Let $\theta \geq 0$ and let p be a real number with $0 < p < 1$. Let X be a normed vector space with norm $\|\cdot\|$. Let $f : X \rightarrow Y$ be a mapping with $f(0) = 0$ satisfying (3.6). Then, the limit

$$A(x) := N\text{-} \lim_{p \rightarrow \infty} \frac{f((n-m+1)^p x)}{(n-m+1)^p}$$

exists for each $x \in X$ and defines a unique (m, n) -Cauchy-Jensen additive mapping $A : X \rightarrow Y$ such that

$$N(f(x) - A(x), t) \geq \frac{(n-m+1) \binom{n}{m} [(n-m+1) - (n-m+1)^p] t}{(n-m+1) \binom{n}{m} [(n-m+1) - (n-m+1)^p] t + n(n-m+1)\theta \|x\|^p}$$

for all $x \in X$.

Proof . The proof follows from Theorem 3.2 by taking $\varphi(x_1, \dots, x_n) := \theta(\sum_{i=1}^n \|x_i\|^p)$ for all $x_1, \dots, x_n \in X$. Then we can choose $L = (n-m+1)^{p-1}$ and we get the desired result. \square

4 Fuzzy stability of (m, n) -Cauchy-Jensen functional equation (1.1): a direct method

In this section, using direct method, we prove the Ulam-Hyers-Rassias stability of functional equation (1.1) in fuzzy Banach spaces. Throughout this section, we assume that X is a linear space, (Y, N) is a fuzzy Banach space and (Z, N') is a fuzzy normed spaces. Moreover, we assume that $N(x, \cdot)$ is a left continuous function on \mathbb{R} .

Theorem 4.1. Assume that a mapping $f : X \rightarrow Y$ with $f(0) = 0$ satisfies the inequality

$$\begin{aligned} & N \left(\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} f \left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l} \right) - \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n f(x_i), t \right) \\ & \geq N'(\varphi(x_1, \dots, x_n), t) \end{aligned} \quad (4.1)$$

for all $x_1, \dots, x_n \in X$, $t > 0$ and $\varphi : X^n \rightarrow Z$ is a mapping for which there is a constant $r \in \mathbb{R}$ satisfying $0 < |r| < \frac{1}{n-m+1}$ such that

$$N' \left(\varphi \left(\frac{x_1}{n-m+1}, \dots, \frac{x_n}{n-m+1} \right), t \right) \geq N' \left(\varphi(x_1, \dots, x_n), \frac{t}{|r|} \right), \quad (4.2)$$

for all $x_1, \dots, x_n \in X$ and all $t > 0$. Then there exists a unique (m, n) -Cauchy-Jensen additive mapping $A : X \rightarrow Y$ satisfying (1.1) and the inequality

$$N(f(x) - A(x), t) \geq N' \left(\frac{|r| \varphi(x, \dots, x)}{\binom{n}{m} (1 - (n-m+1)|r|)}, t \right) \quad (4.3)$$

for all $x \in X$ and all $t > 0$.

Proof . It follows from (4.2) that

$$N' \left(\varphi \left(\frac{x_1}{(n-m+1)^j}, \dots, \frac{x_n}{(n-m+1)^j} \right), t \right) \geq N' \left(\varphi(x_1, \dots, x_n), \frac{t}{|r|^j} \right)$$

for all $x_1, \dots, x_n \in X$ and all $t > 0$. Substituting (x_1, \dots, x_n) by (x, \dots, x) in (4.1), we obtain

$$N \left(\frac{f \left(\frac{x}{(n-m+1)^j} \right)}{(n-m+1)^{-1}} - f(x), \frac{t}{\binom{n}{m}} \right) \geq N' \left(\varphi \left(\frac{x}{n-m+1}, \dots, \frac{x}{n-m+1} \right), t \right)$$

for all $x \in X$ and all $t > 0$. Replacing x by $\frac{x}{(n-m+1)^j}$ in the above inequality, we have

$$\begin{aligned} & N \left(\frac{f \left(\frac{x}{(n-m+1)^{j+1}} \right)}{(n-m+1)^{-j-1}} - \frac{f \left(\frac{x}{(n-m+1)^j} \right)}{(n-m+1)^{-j}}, \frac{(n-m+1)^j t}{\binom{n}{m}} \right) \\ & \geq N' \left(\varphi \left(\frac{x}{(n-m+1)^{j+1}}, \dots, \frac{x}{(n-m+1)^{j+1}} \right), t \right) \\ & \geq N' \left(\varphi(x, \dots, x), \frac{t}{|r|^{j+1}} \right) \end{aligned} \tag{4.4}$$

for all $x \in X$, all $t > 0$ and any integer $j \geq 0$. So,

$$\begin{aligned} & N \left(f(x) - \frac{f \left(\frac{x}{(n-m+1)^p} \right)}{(n-m+1)^{-p}}, \frac{\sum_{j=0}^{p-1} (n-m+1)^j |r|^{j+1} t}{\binom{n}{m}} \right) \\ & = N \left(\sum_{j=0}^{p-1} \left[\frac{f \left(\frac{x}{(n-m+1)^{j+1}} \right)}{(n-m+1)^{-j-1}} - \frac{f \left(\frac{x}{(n-m+1)^j} \right)}{(n-m+1)^{-j}} \right], \frac{\sum_{j=0}^{p-1} (n-m+1)^j |r|^{j+1} t}{\binom{n}{m}} \right) \\ & \geq \min_{0 \leq j \leq p-1} \left\{ N \left(\frac{f \left(\frac{x}{(n-m+1)^{j+1}} \right)}{(n-m+1)^{-j-1}} - \frac{f \left(\frac{x}{(n-m+1)^j} \right)}{(n-m+1)^{-j}}, \frac{(n-m+1)^j |r|^{j+1} t}{\binom{n}{m}} \right) \right\} \\ & \geq N'(\varphi(x, \dots, x), t) \end{aligned} \tag{4.5}$$

which yields

$$\begin{aligned} & N \left(\frac{f \left(\frac{x}{(n-m+1)^{p+q}} \right)}{(n-m+1)^{-p-q}} - \frac{f \left(\frac{x}{(n-m+1)^q} \right)}{(n-m+1)^{-q}}, \frac{\sum_{j=0}^{p-1} (n-m+1)^{j+q} |r|^{j+1} t}{\binom{n}{m}} \right) \\ & \geq N' \left(\varphi \left(\frac{x}{(n-m+1)^q}, \dots, \frac{x}{(n-m+1)^q} \right), t \right) \\ & \geq N' \left(\varphi(x, \dots, x), \frac{t}{|r|^q} \right) \end{aligned} \tag{4.6}$$

for all $x \in X$, $t > 0$ and any integers $p > 0$, $q \geq 0$. So

$$N \left(\frac{f \left(\frac{x}{(n-m+1)^{p+q}} \right)}{(n-m+1)^{-p-q}} - \frac{f \left(\frac{x}{(n-m+1)^q} \right)}{(n-m+1)^{-q}}, \frac{\sum_{j=0}^{p-1} (n-m+1)^{j+q} |r|^{j+q+1} t}{\binom{n}{m}} \right) \geq N'(\varphi(x, \dots, x), t)$$

for all $x \in X$, $t > 0$ and any integers $p > 0$, $q \geq 0$. Hence one obtains

$$N \left(\frac{f\left(\frac{x}{(n-m+1)^{p+q}}\right)}{(n-m+1)^{-p-q}} - \frac{f\left(\frac{x}{(n-m+1)^q}\right)}{(n-m+1)^{-q}}, t \right) \geq N' \left(\varphi(x, \dots, x), \frac{\binom{n}{m} t}{\sum_{j=0}^{p-1} (n-m+1)^{j+q} |r|^{j+q+1}} \right)$$

for all $x \in X$, $t > 0$ and any integers $p > 0$, $q \geq 0$. Since, the series $\sum_{j=0}^{+\infty} (n-m+1)^j |r|^{j+1}$ is convergent series, we see by taking the limit $q \rightarrow \infty$ in the last inequality that the sequence $\left\{ \frac{f\left(\frac{x}{(n-m+1)^p}\right)}{(n-m+1)^{-p}} \right\}$ is a Cauchy sequence in the fuzzy Banach space (Y, N) and so it converges in Y . Therefore a mapping $A : X \rightarrow Y$ defined by $A(x) := N - \lim_{p \rightarrow \infty} \frac{f\left(\frac{x}{(n-m+1)^p}\right)}{(n-m+1)^{-p}}$ is well defined for all $x \in X$. It means that

$$\lim_{p \rightarrow \infty} N \left(A(x) - \frac{f\left(\frac{x}{(n-m+1)^p}\right)}{(n-m+1)^{-p}}, t \right) = 1 \quad (4.7)$$

for all $x \in X$ and all $t > 0$. In addition, it follows from (4.5) that

$$N \left(f(x) - \frac{f\left(\frac{x}{(n-m+1)^p}\right)}{(n-m+1)^{-p}}, t \right) \geq N' \left(\varphi(x, \dots, x), \frac{\binom{n}{m} t}{\sum_{j=0}^{p-1} (n-m+1)^j |r|^{j+1}} \right)$$

for all $x \in X$ and all $t > 0$. So

$$\begin{aligned} & N(f(x) - A(x), t) \\ & \geq \min \left\{ N \left(f(x) - \frac{f\left(\frac{x}{(n-m+1)^p}\right)}{(n-m+1)^{-p}}, (1-\epsilon)t \right), N \left(A(x) - \frac{f\left(\frac{x}{(n-m+1)^p}\right)}{(n-m+1)^{-p}}, \epsilon t \right) \right\} \\ & \geq N' \left(\varphi(x, \dots, x), \frac{\binom{n}{m} \epsilon t}{\sum_{j=0}^{p-1} (n-m+1)^j |r|^{j+1}} \right) \geq N' \left(\varphi(x, \dots, x), \frac{\binom{n}{m} \epsilon (1 - (n-m+1)|r|) t}{|r|} \right) \end{aligned}$$

for sufficiently large n and for all $x \in X$, $t > 0$ and ϵ with $0 < \epsilon < 1$. Since ϵ is arbitrary and N' is left continuous, we obtain

$$N(f(x) - A(x), t) \geq N' \left(\varphi(x, \dots, x), \frac{\binom{n}{m} (1 - (n-m+1)|r|) t}{|r|} \right),$$

for all $x \in X$ and $t > 0$. It follows from (4.1) that

$$\begin{aligned} & N \left((n-m+1)^p \sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l \neq i_j, \forall j \in \{1, \dots, m\} \leq n}} f \left(\frac{\sum_{j=1}^m x_{i_j}}{m(n-m+1)^p} + \sum_{l=1}^{n-m} \frac{x_{k_l}}{(n-m+1)^p} \right) \right. \\ & \quad \left. - \frac{(n-m+1)^{p+1}}{n} \binom{n}{m} \sum_{i=1}^n f \left(\frac{x_i}{(n-m+1)^p} \right), t \right) \\ & \geq N' \left(\varphi \left(\frac{x_1}{(n-m+1)^p}, \dots, \frac{x_n}{(n-m+1)^p} \right), \frac{t}{(n-m+1)^p} \right) \\ & \geq N' \left(\varphi(x_1, \dots, x_n), \frac{t}{(n-m+1)^p |r|^p} \right) \end{aligned}$$

for all $x_1, \dots, x_n \in X$, $t > 0$ and all $n \in \mathbb{N}$. Since $\lim_{p \rightarrow \infty} N' \left(\varphi(x_1, \dots, x_n), \frac{t}{(n-m+1)^p |r|^p} \right) = 1$ and so

$$\begin{aligned} & \lim_{p \rightarrow +\infty} N \left((n-m+1)^p \sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} f \left(\frac{\sum_{j=1}^m x_{i_j}}{m(n-m+1)^p} + \sum_{l=1}^{n-m} \frac{x_{k_l}}{(n-m+1)^p} \right) \right. \\ & \left. - \frac{(n-m+1)^{p+1}}{n} \binom{n}{m} \sum_{i=1}^n f \left(\frac{x_i}{(n-m+1)^p} \right) - A(x), t \right) = 1 \end{aligned}$$

for all $x_1, \dots, x_n \in X$ and all $t > 0$. Therefore, we obtain in view of (4.7)

$$\begin{aligned} & N \left(\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} A \left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l} \right) - \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n A(x_i), t \right) \\ & \geq \min \left\{ N \left(\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} A \left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l} \right) - \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n A(x_i) \right. \right. \\ & \quad - (n-m+1)^p \sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} f \left(\frac{\sum_{j=1}^m x_{i_j}}{m(n-m+1)^p} + \sum_{l=1}^{n-m} \frac{x_{k_l}}{(n-m+1)^p} \right) \\ & \quad \left. \left. - \frac{(n-m+1)^{p+1}}{n} \binom{n}{m} \sum_{i=1}^n f \left(\frac{x_i}{(n-m+1)^p} \right), \frac{t}{2} \right), N \left((n-m+1)^p \right. \right. \\ & \quad \left. \left. - \frac{(n-m+1)^{p+1}}{n} \binom{n}{m} \sum_{i=1}^n f \left(\frac{x_i}{(n-m+1)^p} \right), \frac{t}{2} \right) \right\} \\ & = N \left((n-m+1)^p \sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} f \left(\frac{\sum_{j=1}^m x_{i_j}}{m(n-m+1)^p} + \sum_{l=1}^{n-m} \frac{x_{k_l}}{(n-m+1)^p} \right) \right. \\ & \quad \left. - \frac{(n-m+1)^{p+1}}{n} \binom{n}{m} \sum_{i=1}^n f \left(\frac{x_i}{(n-m+1)^p} \right), \frac{t}{2} \right) \quad (\text{for sufficiently large } p) \\ & \geq N' \left(\varphi(x_1, \dots, x_n), \frac{t}{2(n-m+1)^p |r|^p} \right) \\ & \rightarrow 1 \quad \text{as } p \rightarrow \infty \end{aligned}$$

which implies

$$\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} A \left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l} \right) = \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n A(x_i)$$

for all $x_1, \dots, x_n \in X$. Thus $A : X \rightarrow Y$ is a mapping satisfying the equation (1.1) and the inequality (4.3). To prove the uniqueness, let there is another mapping $L : X \rightarrow Y$ which satisfies the inequality (4.3). Since $L \left(\frac{x}{(m+n-1)^p} \right) =$

$\frac{L(x)}{(m+n-1)^p}$ and $A\left(\frac{x}{(m+n-1)^p}\right) = \frac{A(x)}{(m+n-1)^p}$, for all $x \in X$, we have

$$\begin{aligned}
& N(A(x) - L(x), t) \\
&= N\left(\frac{A\left(\frac{x}{(m+n-1)^p}\right)}{(m+n-1)^{-p}} - \frac{L\left(\frac{x}{(m+n-1)^p}\right)}{(m+n-1)^{-p}}, t\right) \\
&\geq \min \left\{ N\left(\frac{A\left(\frac{x}{(m+n-1)^p}\right)}{(m+n-1)^{-p}} - \frac{f\left(\frac{x}{(m+n-1)^p}\right)}{(m+n-1)^{-p}}, \frac{t}{2}\right), N\left(\frac{f\left(\frac{x}{(m+n-1)^p}\right)}{(m+n-1)^{-p}} - \frac{L\left(\frac{x}{(m+n-1)^p}\right)}{(m+n-1)^{-p}}, \frac{t}{2}\right) \right\} \\
&\geq N'\left(\varphi\left(\frac{x}{(m+n-1)^p}, \dots, \frac{x}{(m+n-1)^p}\right), \frac{\binom{n}{m}(1-(n-m+1)|r|)t}{2|r|(n-m+1)^p}\right) \\
&\geq N\left(\varphi(x, \dots, x), \frac{\binom{n}{m}(1-(n-m+1)|r|)t}{2|r|^{p+1}(n-m+1)^p}\right) \rightarrow 1 \text{ as } n \rightarrow \infty
\end{aligned}$$

for all $t > 0$. Therefore $A(x) = L(x)$ for all $x \in X$. This completes the proof. \square

Corollary 4.2. Let X be a normed spaces and that (\mathbb{R}, N') a fuzzy Banach space. Assume that there exists real numbers $\theta \geq 0$ and $p > 1$ such that a mapping $f : X \rightarrow Y$ with $f(0) = 0$ satisfies the following inequality

$$\begin{aligned}
& N\left(\sum_{\substack{1 \leq i_1 < \dots < i_m \leq n \\ 1 \leq k_l (\neq i_j, \forall j \in \{1, \dots, m\}) \leq n}} f\left(\frac{\sum_{j=1}^m x_{i_j}}{m} + \sum_{l=1}^{n-m} x_{k_l}\right) - \frac{(n-m+1)}{n} \binom{n}{m} \sum_{i=1}^n f(x_i), t\right) \\
&\geq N'\left(\theta \left(\sum_{i=1}^n \|x_i\|^p\right), t\right),
\end{aligned} \tag{4.8}$$

for all $x_1, \dots, x_n \in X$ and $t > 0$. Then there is a unique (m, n) -Cauchy-Jensen additive mapping $A : X \rightarrow Y$ that satisfying (1.1) and the inequality

$$N(f(x) - A(x), t) \geq N'\left(\frac{n\theta\|x\|^p}{\binom{n}{m}[(n-m+1)^p - (n-m+1)]}, t\right).$$

Proof . Let $\varphi(x_1, \dots, x_n) := \theta(\sum_{i=1}^n \|x_i\|^p)$ and $|r| = (n-m+1)^{-p}$. Apply Theorem 4.1, we get desired results. \square

Theorem 4.3. Assume that a mapping $f : X \rightarrow Y$ with $f(0) = 0$ satisfies the inequality (4.1) and $\varphi : X^n \rightarrow Z$ is a mapping for which there is a constant $r \in \mathbb{R}$ satisfying $0 < |r| < n-m+1$ such that

$$N'(\varphi(x_1, \dots, x_n), |r|t) \geq N'\left(\varphi\left(\frac{x_1}{n-m+1}, \dots, \frac{x_n}{n-m+1}\right), t\right) \tag{4.9}$$

for all $x_1, \dots, x_n \in X$ and all $t > 0$. Then there exists a unique (m, n) -Cauchy-Jensen additive mapping $A : X \rightarrow Y$ that satisfying (1.1) and the following inequality

$$N(f(x) - A(x), t) \geq N'\left(\varphi(x, \dots, x), \frac{(n-m+1-|r|)t}{\binom{n}{m}}\right) \tag{4.10}$$

for all $x \in X$ and all $t > 0$.

Proof . It follows from (4.4) that

$$N \left(f(x) - \frac{f((n-m+1)x)}{n-m+1}, \frac{t}{(n-m+1) \binom{n}{m}} \right) \geq N'(\varphi(x, \dots, x), t) \quad (4.11)$$

for all $x \in X$ and all $t > 0$. Replacing x by $(n-m+1)^p x$ in (4.11), we obtain

$$\begin{aligned} & N \left(\frac{f((n-m+1)^{p+1}x)}{(n-m+1)^{p+1}} - \frac{f((n-m+1)^p x)}{(n-m+1)^p}, \frac{t}{(n-m+1)^{p+1} \binom{n}{m}} \right) \\ & \geq N'(\varphi((n-m+1)^p x, \dots, (n-m+1)^p x), t) \\ & \geq N' \left(\varphi(x, \dots, x), \frac{t}{|r|^p} \right). \end{aligned} \quad (4.12)$$

So,

$$N \left(\frac{f((n-m+1)^{p+1}x)}{(n-m+1)^{p+1}} - \frac{f((n-m+1)^p x)}{(n-m+1)^p}, \frac{|r|^p t}{(n-m+1)^{p+1} \binom{n}{m}} \right) \geq N'(\varphi(x, \dots, x), t)$$

for all $x \in X$ and all $t > 0$. Proceeding as in the proof of Theorem 4.1, we obtain that

$$N \left(f(x) - \frac{f((n-m+1)^p x)}{(n-m+1)^p}, \sum_{j=0}^{p-1} \frac{|r|^j t}{(n-m+1)^{j+1} \binom{n}{m}} \right) \geq N'(\varphi(x, \dots, x), t)$$

for all $x \in X$, all $t > 0$ and any integer $n > 0$. So,

$$\begin{aligned} N \left(f(x) - \frac{f((n-m+1)^p x)}{(n-m+1)^p}, t \right) & \geq N' \left(\varphi(x, \dots, x), \frac{t}{\binom{n}{m} \sum_{j=0}^{p-1} \frac{|r|^j}{(n-m+1)^{j+1}}} \right) \\ & \geq N' \left(\varphi(x, \dots, x), \frac{(n-m+1-|r|)t}{\binom{n}{m}} \right). \end{aligned}$$

The rest of the proof is similar to the proof of Theorem 4.1. \square

Corollary 4.4. Let X be a normed spaces and that (\mathbb{R}, N') a fuzzy Banach space. Assume that there exists real number $\theta \geq 0$ and $0 < p < 1$ such that a mapping $f : X \rightarrow Y$ with $f(0) = 0$ satisfies (4.8). Then there is a unique (m, n) -Cauchy-Jensen additive mapping $A : X \rightarrow Y$ that satisfying (1.1) and the inequality

$$N(f(x) - A(x), t) \geq N' \left(n\theta \|x\|^p, \frac{(n-m+1-(n-m+1)^p)t}{\binom{n}{m}} \right).$$

Proof . Let $\varphi(x_1, \dots, x_n) := \theta (\sum_{i=1}^n \|x_i\|^p)$ and $|r| = (n-m+1)^p$. Apply Theorem 4.3, we get desired results. \square

References

- [1] M.R. Abdollahpour and M.T. Rassias, *Hyers-Ulam stability of hypergeometric differential equations*, *Aequ. Math.* **93** (2019), no. 4, 691–698.
- [2] M. R. Abdollahpour, R. Aghayari, and M.T. Rassias, *Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions*, *J. Math. Anal. Appl.* **437** (2016), 605–612.
- [3] J. Aczel and J. Dhombres, *Functional Equations in Several Variables*, Cambridge University Press, 1989.
- [4] T. Bag and S.K. Samanta, *Finite dimensional fuzzy normed linear spaces*, *J. Fuzzy Math.* **11** (2003), 687–705.
- [5] T. Bag and S.K. Samanta, *Fuzzy bounded linear operators*, *Fuzzy Sets Syst.* **151** (2005), 513–547.
- [6] S.C. Cheng and J.N. Mordeson, *Fuzzy linear operators and fuzzy normed linear spaces*, *Bull. Calcutta Math. Soc.* **86** (1994), 429–436.
- [7] P.W. Cholewa, *Remarks on the stability of functional equations*, *Aequ. Math.* **27** (1984), 76–86.
- [8] S. Czerwinski, *On the stability of the quadratic mapping in normed spaces*, *Abh. Math. Sem. Univ. Hambourg* **62** (1992), 239–248.
- [9] M. Eshaghi Gordji and M. Bavand Savadkouhi, *Stability of mixed type cubic and quartic functional equations in random normed spaces*, *J. Ineq. Appl.* **2009** (2009), Article ID 527462, 9 pages.
- [10] M. Eshaghi Gordji, M. Bavand Savadkouhi, and C. Park, *Quadratic-quartic functional equations in RN-spaces*, *J. Ineq. Appl.* **2009** (2009), Article ID 868423, 14 pages.
- [11] M. Eshaghi Gordji and H. Khodaei, *Stability of Functional Equations*, Lap Lambert Academic Publishing, 2010.
- [12] M. Eshaghi Gordji, S. Zolfaghari, J.M. Rassias, and M.B. Savadkouhi, *Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces*, *Abst. Appl. Anal.* **2009** (2009), Article ID 417473, 14 pages.
- [13] C. Felbin, *Finite-dimensional fuzzy normed linear space*, *Fuzzy Sets Syst.* **48** (1992), 239–248.
- [14] S.-M. Jung and M.T. Rassias, *A linear functional equation of third order associated to the Fibonacci numbers*, *Abstr. Appl. Anal.* **2014** (2014), Article ID 137468.
- [15] S.-M. Jung, D. Popa, and M.T. Rassias, *On the stability of the linear functional equation in a single variable on complete metric groups*, *J. Glob. Optim.* **59** (2014), 165–171.
- [16] P. Găvruta, *A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings*, *J. Math. Anal. Appl.* **184** (1994), 431–436.
- [17] D.H. Hyers, *On the stability of the linear functional equation*, *Proc. Nat. Acad. Sci. U.S.A.* **27** (1941), 222–224.
- [18] A.K. Katsaras, *Fuzzy topological vector spaces*, *Fuzzy Sets Syst.* **12** (1984), 143–154.
- [19] I. Karmosil and J. Michalek, *Fuzzy metric and statistical metric spaces*, *Kybernetika* **11** (1975), 326–334.
- [20] S.V. Krishna and K.K.M. Sarma, *Separation of fuzzy normed linear spaces*, *Fuzzy Sets Syst.* **63** (1994), 207–217.
- [21] Y.-H. Lee, S. Jung, and M.T. Rassias, *Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation*, *J. Math. Inequal.* **12** (2018), no. 1, 43–61.
- [22] D. Mihet and V. Radu, *On the stability of the additive Cauchy functional equation in random normed spaces*, *J. Math. Anal. Appl.* **343** (2008), 567–572.
- [23] C. Park and M.T. Rassias, *Additive functional equations and partial multipliers in C^* -algebras*, *Rev. Real Acad. Cienc. Exactas Ser. A. Mate.* **113** (2019), no. 3, 2261–2275.
- [24] C. Park, *Fuzzy stability of a functional equation associated with inner product spaces*, *Fuzzy Sets Syst.* **160** (2009), 1632–1642.
- [25] C. Park, *Generalized Hyers-Ulam-Rassias stability of n -sesquilinear-quadratic mappings on Banach modules over C^* -algebras*, *J. Comput. Appl. Math.* **180** (2005), 279–291.
- [26] C. Park, *Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras*,

Fixed Point Theory Appl. **2007** (2007), Art. ID 50175.

[27] C. Park, *Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: A fixed point approach*, Fixed Point Theory Appl. **2008** (2008), Art. ID 493751.

[28] J.M. Rassias and H.-M. Kim, *Approximate homomorphisms and derivations between C^* -ternary algebras*, J. Math. Phys. **49** (2008), ID. 063507, 10 pages.

[29] J.M. Rassias and H. Kim, *Generalized Hyers-Ulam stability for general additive functional equations in quasi β -normed spaces*, J. Math. Anal. Appl. **356** (2009), 302–309.

[30] Th.M. Rassias, *On the stability of the linear mapping in Banach spaces*, Proc. Amer. Math. Soc. **72** (1978), 297–300.

[31] Th.M. Rassias, *On the stability of the quadratic functional equation and it's application*, Studia Univ. Babes Bolyai **43** (1998), 89–124.

[32] Th.M. Rassias, *On the stability of functional equations in Banach spaces*, J. Math. Anal. Appl. **251** (2000), 264–284.

[33] Th.M. Rassias and P. Šemrl, *On the Hyers-Ulam stability of linear mappings*, J. Math. Anal. Appl. **173** (1993), 325–338.

[34] R. Saadati, M. Vaezpour, and Y.J. Cho, *A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces"*, J. Ineq. Appl. **2009** (2009), Article ID 214530.

[35] R. Saadati, M.M. Zohdi, and S.M. Vaezpour, *Nonlinear L -random stability of an ACQ functional equation*, J. Ineq. Appl. **2011** (2011), Article ID 194394, 23 pages.

[36] F. Skof, *Local properties and approximation of operators*, Rend. Semin. Mate. Fis. Milano **53** (1983), 113–129.

[37] S.M. Ulam, *Problems in Modern Mathematics*, John Wiley and Sons, New York, NY, USA, 1964.