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Abstract

The total irregularity is a type of graph invariant and for a given simple graph G is calculated by the formula,
rre(G) = 3 Z{u VICV(G) | deggu — deggv |, in which deggv is the degree of the vertex v of G. This paper aims to
offer a classification of polyomino chains based on segments in terms of total irregularity. We can find a sequence for

all polyomino chains concerning this graph invariant by defining a non-decreasing function.
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1 Introduction and Preliminaries

Let G be a simple and undirected graph, with vertex set V(G) and edge set E(G). If a and b are two adjacent
vertices, then the edge connecting them is denoted by e = ab. The degree of a vertex a is denoted by degga. When
the graph under discussion is obvious in context, the subscript G will be omitted. The degree-based graph invariants
are parameters defined by degrees of vertices. Gutman and Trinajestic introduced the first graph parameters more
than thirty years ago, [8]. The Zagreb indices were originally defined as follows:

Mi(G)= ) deggu,
uweV(QG)

M>(G) = Z deggu deggv.
e=uwveE(G)

Here, M;(G) and M>(G) denote the first and the second Zagreb index, respectively. Alternatively the first Zagreb
index can be expressed as

Mi(G) = Z [deggu + degau].
e=uwveE(G)

We refer the reader to [I0] for the proof of this equation. These indices have a long history; interested readers can
look up additional information on Zagreb indices in [7, 10, 17, [16] [18]. The number | degga — deggb | is an important

Email address: zahra.yarahmadi@iau.ac.ir, z.yarahmadi@gmail.com (Zahra Yarahmadi)

Recetved: December 2022  Accepted: January 2023


http://dx.doi.org/10.22075/ijnaa.2023.29433.4164

112 Yarahmadi

parameter associated with the edge e. This number is defined as the imbalance of the edge e = ab. In [], Albertson

defined the irregularity of G as irr(G) = %Ze:uveE(G) | deggu — deggv | . The total irregularity of a graph G was

introduced by Abdo et al. [I] as irr¢(G) = %Z{u vev(e) | degau — deggu | . They obtained all graphs G such that
irr¢(G) are the maximum possible value for them, and proved that among all trees of the same order, the star has the
maximal total irregularity.

Theorem 1.1. [I] For a simple undirected graph G with n vertices, it holds that:

1
(@) < 5(2713 —3n?—2n+3) nisodd
irry(G) <

5(2713 —3n? — 2n) nis even

It is usual to assume that a graph invariant f is a measure of irregularity, when f(G) = 0 if and only if G is regular.
Since the irregularity and total irregularity are zero if and only if G is regular, they are measures of irregularity for

graphs. Furthermore, irr:(G) is an upper bound of irr(G). Dimitrov [5], compared these two important measures of

2 irr(G)

irregularity and proved that irr;(G) < , when G is an n-vertex connected graph. Moreover, for an arbitrary

n-vertex tree G, we have irr,(G) < (n — 2)irr(G). For more information about results on total irregularity of graphs,
see [3 6, T4} [19]. A plane graph is a graph can be embedded on a sphere in such a way that edges intersect each other
only in vertices of the graph. A connected graph G is called 2—connected, if for each vertex a, G — a is connected.
A finite 2—connected plane graph such that each interior face is surrounded by a regular square of length one is said
to be a polyomino system. Polyominoes have a long and rich history, we convey for the origin polyominoes, Klarner
[9. A polyomino chain is a polyomino system, in which the joining of the centers of its adjacent regular forms a
path cics...c,, where ¢; is the center of the i—th square. Let B, be the set of polyomino chains with n squares. For
B, € By, it is easy to see that |V(B,)| =2n+ 2 and |E(B,)| =3n+1.

The following introduces some key notions concerning polyomino chains that will be useful later. A polyomino
chain square can have one or two surrounding squares. A square is called terminal if it has only one nearby square,
and kink if it has two neighboring squares and a vertex of degree 2. In Figure 1, the kinks are denoted by the letter
K. The linear chain is a kink-free polyomino chain, see Figure 2.

Figure 1: The kinks.

Figure 2: A linear chain.

A maximal linear chain in a polyomino chain is called a segment, if it includes the kinks and/or terminal squares at
its end. The length of a segment S, I(.5), is the number of squares in S. Note that for each segment S of a polyomino
chain with n > 2 squares, 2 < I(S) < n. A polyomino chain with n squares consists of a sequence of segments
S1, 89, ..., 8y , 1 <7 <n, with lengths [(S;) =1;, 1 <i <r, wherely +Ils+ ...+ =n+r—1. In Figure 3, the squares
on each segments of a polyomino chain is shown by directional lines.
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Figure 3: Segments of a polyomino chain.

A zigzag chain Z,, with n squares is a polyomino with n — 2 kinks and in another word, a polyomino chain is a
zigzag chain if and only if the length of each segment is 2 , see Figure 4.

Figure 4: The zigzag chains Zg and Z7.

Xu and Chen were studied the PI index of polyomino chains, [IT]. After that Chen et.al. continue this program
to other topological indices, see [12, [13]. Present author in [I5] continue this line of research by calculation the first
and second Zagreb indices of polyomino chains and then determine extremal polyomino chains with respect to Zagreb
indices. In [2], authors present split formula for total irregularity of polyomino chain. In this paper, we are interested
in finding relation between the number of segments and total irregularity of polyomino chains. We classify polyomino
chains based on segments by new approach and using non-decreasing real function.

2 Main results

The purpose of this section is to categorize polyomino chains according to their total irregularity based on segments.
We begin by calculating the overall irregularity of polyomino chains, We have obtained it in a different method from
the proof presented in [2]. Following that, we’ll look at total irregularity’s behavior in relation to the number of
segments in each polyomino chain. The total irregularity of G is defined as:

. 1
irry(G) = 3 Z | degau — degav |,
{uv}CV (@)

where deggv is the degree of the vertex v of G. It is easy to know that, for any B,, € By, {degp,u | u € V(B,)} =
{2,3,4}. We will denote by ns, ng and ny, the number of vertices of degree 2, 3 and 4, respectively. It is obvious that,
ng >4, ng > 2 and |V(B,)| = na + n3g + nyg. For attaining the results of this paper, firstly we consider the following
useful lemma.



114 Yarahmadi
Lemma 2.1. For every B,, € By, the following formula is hold:

(n2n3 + 2nong + n3n4).

N =

irry(By) =

Proof . We begin by defining the following sets:

A = {{u,v} cVv
Ay ={{u,v}CV
Az ={{uv}CV
Ag={{uv}CVv

\degp,u = degp, v},

{degp,u,degp, v} = {273}},
[{degp, u,degp, v} = {2,4}},
[{degp, u,degp, v} = {3,4}}.

n

n

B
B,
B
B

~—~ o~ —~
~—_— — ~— —

n

Of course clearly, >, | degp,u—degp,v =0, ,, | degp,u—degp,v |= nans, 3 4, | degp, u—degp, v [= 2nang
and finally, in the same manner, we can see ), | degp,u — degp, v [= nana.

Then, by definition of total irregularity of B,, and according above arguments, we have:

1
irry(By) = 5 Z |degp, v — degp, v
{u,v}CV(Bn)

4
Z Z |degp, w — degp, v|
i=1 A;

(n2n3 + 2712?’2,4 + ’/7,3714) .

N = N =

O

Now we can apply the above conclusions to special case of polyomino chains and calculate the total irregularity
of linear and zigzag chains. It is easy to see that, irry(L,) = 4n — 4 and irry(Z,) = n?> + 2n — 4. The continuing of
computing total irregularity of polyomino chains is established by our theorem. In the following theorem, we obtain
total irregularity of polyomino chains according the number of segments and squares.

Theorem 2.2. Let B,, be a polyomino chain with n squares and r segments. Then,

irry (Bn) =—r24+2rm+2n—3.

Proof . Let us first prove the following statement P(n) by induction on natural number n.
P(n):” For each polyomino chain with n squares and r segments, no =7+ 3, ng =2n — 2r and ng = r — 1.7

obviously the statement P(n) holds for n = 1. To prove the inductive step, one assumes the induction hypothesis
for n and then uses this assumption to prove that the statement holds for n 4+ 1. Assume that B,11 be a polyomino
chain with n + 1 squares and k segments, the statement P, is as follows for B,

P, 41 : "For polyomino chain B,,; with n+1 squares and k segments, no = k+3, n3 =2n—2k+2and ny = k—1.7

Remove one of a terminal square of B,, ;1. By this removing, we obtain a polyomino chain with n squares, call it
B,,. There are two cases for B,,:

Case 1: If removing terminal square be in the segment S of length rather than 2, (I(S) > 2) in B,41, then B,
has k segments, see Figure 5. By hypothesis induction we have ny, = k+ 3, ny = 2n — 2k and nj, = k — 1, in
which nj, n% and nj are the number of vertices of degree 2, 3 and 4, respectively. Now by adding removed square
and creating B, ;1 again, one can see that the number of vertices of degree 2 and 4 are not changed and just the
number of vertices of degree 3 are increased. Because v1,ve € V(B,,+1) as vertices of degree 2 are added to B,,. Since
degp, v3 = degp,vs = 2 and degp, ,,v3 = degp, ,,v4 = 3, then v3 and vy aren’t vertices of degree 2 in B, y1. It is easy
to check that no = nf = k+3, ng = n4 +2 =2n—2k+2 and ny = n) = k — 1. Hence, the statement P(n+ 1) is hold
for Bpy1-
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Figure 5: Removing terminal square in Case 1.

Case 2: If removing square be in a segment S of length 2 in B,, 1, then B, has k — 1 segments, see Figure 6. By
hypothesis induction, the number of vertices of degree 2, 3 and 4 are as ny =k +2, nf =2n—2k+2 and njy = k — 2,
respectively. Add removed square to create B,11 again. So one added to the vertices of degree 2 and 4 , but the
number of the vertices of degree 3 is not changed. Because vi,vs € V(B,4+1) as vertices of degree 2 are are added,
also degp,vs = 2 and degp, ,,v3 = 3, moreover, degp, ,,v3 = 3 and degp, ,,v4 = 4. It is a simple matter to check that
no=nh+1=k+3,ng=n5=2n—-2k+2and ny =nj +1=4k— 1. In this case as well the statement P(n + 1) is
hold for By, 41.
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Figure 6: Removing terminal square in Case 2.

By above argument about statement P(n) and Lemma 2.1, we have

rry (Bn) = %(TLQTL‘j + 2non4 + n3n4)

:%((r+3)(2n—2r)+2<r+3)(7“—1)+<2”_2T)(T_1))
=—r24+2rm+2n—3.
O

We denote a polyomino chain with n squares and r segments by B;, clearly 1 < r < n — 1.It is necessary to note
that B} and B"~! be linear and zigzag chain with n squares.

Corollary 2.3. The following are hold:
irre(By) =4n — 4
T (Bi) =6n—-7

rry (Bff*l) =n?+2n—4.

In the following theorem, we define a non-decreasing real function and use it to achieve our desired classification.

Theorem 2.4. Let B and B.~! be polyomino chain with n squares and r and r — 1 segments, respectively. Then

irry(B),Y) <irry(B).
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Proof . We define the function f : ® — R, by f(z) = —2%+2rn+2n—3. One can see that f/(r) = —2r+2n > 0 on
[1, n—1], so f is strictly non-decreasingre function. Thus, for every z, z—1 € [1,n—1], we get f(z) < f(z—1). By using
Theorem 2.3, irry (B, 1) = f(r—1) and irr,(B?) = f(r) for r,r—1 € [1, n—1]JNN. Therefore irr,(BL ') < irr,(Br)
and this completes the proof. [J

Corollary 2.5. (i) Let B! be a polyomino chain with n squares and r segments, for 1 < r < n — 1.The following
inequalities are hold:
irry(By) <irry(Br) <--- <irrg(Bpt).

(#) For any By, € By, irry(Ly) < irry(By) <irry(Z,), with right (left) equality if and only if B,, = Z,, (B, = Ly,).
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