
Int. J. Nonlinear Anal. Appl. 17 (2026) 2, 163–176
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2024.34404.5139

Ulam-Hyers-Rassias-stability of a Cauchy-Jensen additive
mapping In fuzzy Banach spaces

Hassan Azadi Kenary

Department of Mathematics, College of Sciences, Yasouj University, Yasouj 75914-353, Iran

(Communicated by Michael Th. Rassias)

Abstract

In this paper, We prove the Ulam-Hyers-Rassias stability of a Cauchy-Jensen additive functional equation in fuzzy
Banach spaces. The concept of Ulam-Hyers-Rassias stability originated from Th. M. Rassias’ stability theorem that
appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978),
297-300.
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1 Introduction

The stability problem of functional equations was originated from a question of Ulam [37] concerning the stability
of group homomorphisms. Hyers [17] gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’ Theorem was generalized by Th. M. Rassias [30] for linear mappings by considering an unbounded Cauchy
difference.

Theorem 1.1. (Th.M.Rassias): Let f : E → E′ be a mapping from a normed vector space E into a Banach space
E′ subject to the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ϵ(∥x∥p + ∥y∥p)

for all x, y ∈ E, where ϵ and p are constants with ϵ > 0 and 0 ≤ p < 1. Then the limit L(x) = limn→∞
f(2nx)

2n exists
for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥f(x)− L(x)∥ ≤ 2ϵ

2− 2p
∥x∥p

for all x ∈ E. Also, if for each x ∈ E the function f(tx) is continuous in t ∈ R, then L is linear.

The functional equation
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be
a quadratic mapping. The Ulam-Hyers-Rassias stability of the quadratic functional equation was proved by Skof [36]
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for mappings f : X → Y , where X is a normed space and Y is a Banach space. Cholewa [7] noticed that the theorem of
Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik [8] proved the Ulam-Hyers-Rassias
stability of the quadratic functional equation.
The stability problems of several functional equations have been extensively investigated by a number of authors, and
there are many interesting results concerning this problem (see [1, 2, 3, 9]–[12], [16], [23]–[35]).

Katsaras [18] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space.
Some mathematicians have defined fuzzy norms on a vector space from various points of view (see [13], [20], [24]).
In particular, Bag and Samanta [4], following Cheng and Mordeson [6], gave an idea of fuzzy norm in such a manner
that the corresponding fuzzy metric is of Karmosil and Michalek type [19]. They established a decomposition theorem
of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [5].
Now we consider a mapping f : X → Y satisfying the following functional equation, which is introduced by the first
author, ∑

1≤i1<···<im≤n
1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
=

(n−m+ 1)

n

(
n
m

) n∑
i=1

f(xi) (1.1)

for all x1, · · · , xn ∈ X, where m,n ∈ N are fixed integers with n ≥ 2, 1 ≤ m ≤ n. Specially, we observe that in case
m = 1 the equation (1.1) yields Cauchy additive equation

f

(
n∑

l=1

xkl

)
=

n∑
l=1

f(xi).

We observe that in case m = n the equation (1.1) yields Jensen additive equation

f

(∑n
j=1 xj

n

)
=

1

n

n∑
l=1

f(xi).

Therefore, the equation (1.1) is a generalized form of the Cauchy-Jensen additive equation and thus every solution
of the equation (1.1) may be analogously called general (m,n)-Cauchy- Jensen additive. For the case m = 2, we have
established new theorems about the Ulam-Hyers-Rassias stability in quasi β-normed spaces [29]. Let X and Y be
linear spaces. For each m with 1 ≤ m ≤ n, a mapping f : X → Y satisfies the equation (1.1) for all n ≥ 2 if and only if
f(x)−f(0) = A(x) is Cauchy additive, where f(0) = 0 ifm < n. In particular, we have f((n−m+1)x) = (n−m+1)f(x)
and f(mx) = mf(x), for all x ∈ X.

Definition 1.2. Let X be a real vector space. A function N : X × R → [0, 1] is called a fuzzy norm on X if for all
x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only if N(x, t) = 1, for all t > 0;

(N3) N(cx, t) = N
(
x, t

|c|

)
if c ̸= 0;

(N4) N(x+ y, c+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, .) is a non-decreasing function of R and limt→∞ N(x, t) = 1;

(N6) for x ̸= 0, N(x, .) is continuous on R.

Example 1.3. Let (X, ∥.∥) be a normed linear space and α, β > 0. Then

N(x, t) =

{ αt
αt+β∥x∥ t > 0, x ∈ X

0 t ≤ 0, x ∈ X

is a fuzzy norm on X.

2 Preliminaries

Definition 2.1. Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is said to be convergent or
converge if there exists an x ∈ X such that limt→∞ N(xn − x, t) = 1 for all t > 0. In this case, x is called the limit of
the sequence {xn} in X and we denote it by N − limt→∞ xn = x.
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Definition 2.2. Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is called Cauchy if for each ϵ > 0
and each t > 0 there exists an n0 ∈ N such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1− ϵ.

It is well known that every convergent sequence in a fuzzy normed vector space is Cauchy. If each Cauchy sequence
is convergent, then the fuzzy norm is said to be complete and the fuzzy normed vector space is called a fuzzy Banach
space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y is continuous at a point x ∈ X
if for each sequence {xn} converging to x0 ∈ X, then the sequence {f(xn)} converges to f(x0). If f : X → Y is
continuous at each x ∈ X, then f : X → Y is said to be continuous on X (see [5]).

Definition 2.3. Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on X if d satisfies the
following conditions:

(1) d(x, y) = 0 if and only if x = y, for all x, y ∈ X;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

Theorem 2.4. Let (X,d) be a complete generalized metric space and J : X → X be a strictly contractive mapping
with Lipschitz constant L < 1. Then, for all x ∈ X, either

d(Jnx, Jn+1x) = ∞

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n0 ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

3 Fuzzy stability of (m,n)−Cauchy-Jensen additive functional equation (1.1): A fixed
point method

In this section, using the fixed point alternative approach we prove the Ulam-Hyers-Rassias stability of functional
equation (1.1) in fuzzy Banach spaces. Throughout this paper, assume that X is a vector space and that (Y,N) is a
fuzzy Banach space.

Theorem 3.1. Let φ : Xn → [0,∞) be a function such that there exists an L < 1 with

φ

(
x1

n−m+ 1
, . . . ,

xn

n−m+ 1

)
≤ Lφ(x1, x2, . . . , xn)

n−m+ 1

for all x1, · · · , xn ∈ X. Let f : X → Y with f(0) = 0 is a mapping satisfying

N

 ∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
− (n−m+ 1)

n

(
n
m

) n∑
i=1

f(xi), t


≥ t

t+ φ(x1, . . . , xn)
(3.1)

for all x1, · · · , xn ∈ X and all t > 0 . Then there exists a unique (m,n)−Cauchy-Jensen additive mapping A : X → Y
such that

N(f(x)−A(x), t) ≥
(n−m+ 1)

(
n
m

)
(1− L)t

(n−m+ 1)

(
n
m

)
(1− L)t+ Lφ(x, · · · , x)

, (3.2)

for all x ∈ X and all t > 0.
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Proof . Replacing (x1, · · · , xn) by (x, · · · , x) in (3.1), we have

N

((
n
m

)
f((n−m+ 1)x)−

(
n
m

)
(n−m+ 1)f(x), t

)
≥ t

t+ φ(x, · · · , x)
(3.3)

for all x ∈ X and t > 0. Consider the set S := {g : X → Y ; g(0) = 0} and the generalized metric d in S defined by

d(f, g) = inf
{
µ ∈ R+ : N(g(x)− h(x), µt) ≥ t

t+ φ(x, · · · , x)
, ∀x ∈ X, t > 0

}
,

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [22]). Now, we consider a linear mapping J : S → S
such that

Jg(x) := (n−m+ 1)g

(
x

n−m+ 1

)
for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ϵ. Then N(g(x) − h(x), ϵt) ≥ t

t+φ(x,··· ,x) for all x ∈ X and t > 0.

Hence

N(Jg(x)− Jh(x), Lϵt)

= N

(
(n−m+ 1)g

(
x

n−m+ 1

)
− (n−m+ 1)h

(
x

n−m+ 1

)
, Lϵt

)
= N

(
g

(
x

n−m+ 1

)
− h

(
x

n−m+ 1

)
,

Lϵt

n−m+ 1

)
≥

Lt
n−m+1

Lt
n−m+1 + φ

(
x

n−m+1 , · · · ,
x

n−m+1

) ≥
Lt

n−m+1

Lt
n−m+1 + Lφ(x,··· ,x)

n−m+1

=
t

t+ φ(x, · · · , x)

for all x ∈ X and t > 0. Thus d(g, h) = ϵ implies that d(Jg, Jh) ≤ Lϵ. This means that d(Jg, Jh) ≤ Ld(g, h) for all
g, h ∈ S. It follows from (3.3) that

N

(n−m+ 1)f

(
x

n−m+ 1

)
− f(x),

t(
n
m

)
 ≥ t

t+ φ
(

x
n−m+1 , · · · ,

x
n−m+1

)
≥ t

t+ Lφ(x,··· ,x)
n−m+1

for all x ∈ X and all t > 0. So

N

(n−m+ 1)f

(
x

n−m+ 1

)
− f(x),

Lt

(n−m+ 1)

(
n
m

)
 ≥ t

t+ φ (x, · · · , x)
.

This implies that

d(f, Jf) ≤ L

(n−m+ 1)

(
n
m

) .

By Theorem 2.4, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

A

(
x

n−m+ 1

)
=

A(x)

n−m+ 1
(3.4)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈ S : d(g, h) < ∞}. This implies that A
is a unique mapping satisfying (3.4) such that there exists µ ∈ (0,∞) satisfying N(f(x)−A(x), µt) ≥ t

t+φ(x,··· ,x) , for

all x ∈ X and t > 0.
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(2) d(Jpf,A) → 0 as p → ∞. This implies the equality

N - lim
p→∞

f
(

x
(n−m+1)p

)
(n−m+ 1)−p

= A(x) (3.5)

for all x ∈ X.

(3) d(f,A) ≤ d(f,Jf)
1−L with f ∈ Ω, which implies the inequality

d(f,A) ≤ L

(n−m+ 1)

(
n
m

)
− (n−m+ 1)

(
n
m

)
L

This implies that the inequality (3.2) holds. Furthermore, it follows from (3.1) and (3.5) that

N

 ∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

A

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
− (n−m+ 1)

n

(
n
m

) n∑
i=1

A(xi), t


= N − lim

p→∞

(
(n−m+ 1)p

∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

( ∑m
j=1 xij

m(n−m+ 1)p
+

n−m∑
l=1

xkl

(n−m+ 1)p

)

− (n−m+ 1)p+1

n

(
n
m

) n∑
i=1

f

(
xi

(n−m+ 1)p

)
, t

)

≥ lim
p→∞

t
(n−m+1)p

t
(n−m+1)p + φ

(
x1

(n−m+1)p , · · · ,
xn

(n−m+1)p

)
≥ lim

p→∞

t
(n−m+1)p

t
(n−m+1)p + Lnφ(x1,··· ,xn)

(n−m+1)p

→ 1

for all x1, · · · , xn ∈ X, t > 0. Hence∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

A

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
=

(n−m+ 1)

n

(
n
m

) n∑
i=1

A(xi)

for all x1, · · · , xn ∈ X and therefore A satisfies (1.1). So the mapping A : X → Y is an additive, as desired. This
completes the proof. □

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space with norm ∥.∥.
Let f : X → Y with f(0) = 0 be a mapping satisfying the following inequality

N

 ∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
− (n−m+ 1)

n

(
n
m

) n∑
i=1

f(xi), t


≥ t

t+ θ (
∑n

i=1 ∥xi∥p)
(3.6)

for all x1, · · · , xn ∈ X and all t > 0. Then, the limit A(x) := N - limp→∞
f( x

(n−m+1)p )
(n−m+1)−p exists for each x ∈ X and defines

a unique (m,n)−Cauchy-Jensen additive mapping A : X → Y such that

N(f(x)−A(x), t) ≥
(n−m+ 1)

(
n
m

)[
(n−m+ 1)p − (n−m+ 1)

]
t

(n−m+ 1)

(
n
m

)[
(n−m+ 1)p − (n−m+ 1)

]
t+ n(n−m+ 1)θ∥x∥p
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for all x ∈ X and t > 0.

Proof . The proof follows from Theorem 3.1 by taking φ(x1, · · · , xn) := θ (
∑n

i=1 ∥xi∥p) for all x1, · · · , xn ∈ X. Then
we can choose L = (n−m+ 1)1−p and we get the desired result. □

Theorem 3.3. Let φ : Xn → [0,∞) be a function such that there exists an L < 1 with

φ(x1, · · · , xn) ≤ (n−m+ 1)Lφ

(
x1

n−m+ 1
, · · · , xn

n−m+ 1

)
for all x1, x2, · · · , xn ∈ X. Let f : X → Y be a mapping with f(0) = 0 satisfying (3.1).Then, the limit A(x) :=

N - limp→∞
f((n−m+1)px)

(n−m+1)p exists for each x ∈ X and defines a unique (m,n)−Cauchy-Jensen additive mapping A :

X → Y such that

N(f(x)−A(x), t) ≥
(n−m+ 1)

(
n
m

)
(1− L)t

(n−m+ 1)

(
n
m

)
(1− L)t+ φ(x, · · · , x)

(3.7)

for all x ∈ X and all t > 0.

Proof . Let (S, d) be the generalized metric space defined as in the proof of Theorem 3.1. Consider the linear

mapping J : S → S such that Jg(x) := g((n−m+1)x)
n−m+1 , for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ϵ. Then

N(g(x)− h(x), ϵt) ≥ t
t+φ(x,··· ,x) , for all x ∈ X and t > 0 . Hence

N(Jg(x)− Jh(x), Lϵt) = N

(
g((n−m+ 1)x)

n−m+ 1
− h((n−m+ 1)x)

n−m+ 1
, Lϵt

)
= N

(
g((n−m+ 1)x)− h((n−m+ 1)x), (n−m+ 1)Lϵt

)
≥ (n−m+ 1)Lt

(n−m+ 1)Lt+ φ((n−m+ 1)x, , · · · , (n−m+ 1)x)

≥ (n−m+ 1)Lt

(n−m+ 1)Lt+ (n−m+ 1)Lφ(x, , · · · , x)

=
t

t+ φ(x, · · · , x)

for all x ∈ X and t > 0. Thus d(g, h) = ϵ implies that d(Jg, Jh) ≤ Lϵ. This means that d(Jg, Jh) ≤ Ld(g, h) for all
g, h ∈ S. It follows from (3.3) that

N

f(x)− f((n−m+ 1)x)

n−m+ 1
,

t

(n−m+ 1)

(
n
m

)
 ≥ t

t+ φ(x, · · · , x)
(3.8)

for all x ∈ X and t > 0. So

d(f, Jf) ≤ 1

(n−m+ 1)

(
n
m

) .

By Theorem 2.4, there exists a mapping A : X → Y satisfying the following:

(1) A is a fixed point of J , that is,

(n−m+ 1)A(x) = A((n−m+ 1)x) (3.9)

for all x ∈ X. The mapping A is a unique fixed point of J in the set Ω = {h ∈ S : d(g, h) < ∞}. This implies that A
is a unique mapping satisfying (3.9) such that there exists µ ∈ (0,∞) satisfying N(f(x)−A(x), µt) ≥ t

t+φ(x,··· ,x) , for

all x ∈ X and t > 0.
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(2) d(Jpf,A) → 0 as p → ∞. This implies the equality

A(x) = N - lim
p→∞

f((n−m+ 1)px)

(n−m+ 1)p

for all x ∈ X.

(3) d(f,A) ≤ d(f,Jf)
1−L with f ∈ Ω, which implies the inequality

d(f,A) ≤ 1

(n−m+ 1)

(
n
m

)
− (n−m+ 1)

(
n
m

)
L

.

This implies that the inequality (3.7) holds. The rest of the proof is similar to that of the proof of Theorem 3.1. □

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space with norm
∥.∥. Let f : X → Y be a mapping with f(0) = 0 satisfying (3.6). Then, the limit

A(x) := N - lim
p→∞

f((n−m+ 1)px)

(n−m+ 1)p

exists for each x ∈ X and defines a unique (m,n)−Cauchy-Jensen additive mapping A : X → Y such that

N(f(x)−A(x), t) ≥
(n−m+ 1)

(
n
m

)[
(n−m+ 1)− (n−m+ 1)p

]
t

(n−m+ 1)

(
n
m

)[
(n−m+ 1)− (n−m+ 1)p

]
t+ n(n−m+ 1)θ∥x∥p

for all x ∈ X.

Proof . The proof follows from Theorem 3.2 by taking φ(x1, · · · , xn) := θ (
∑n

i=1 ∥xi∥p) for all x1, · · · , xn ∈ X. Then
we can choose L = (n−m+ 1)p−1 and we get the desired result. □

4 Fuzzy stability of (m,n)−Cauchy-Jensen functional equation (1.1): a direct method

In this section, using direct method, we prove the Ulam-Hyers-Rassias stability of functional equation (1.1) in
fuzzy Banach spaces. Throughout this section, we assume that X is a linear space, (Y,N) is a fuzzy Banach space
and (Z,N ′) is a fuzzy normed spaces. Moreover, we assume that N(x, .) is a left continuous function on R.

Theorem 4.1. Assume that a mapping f : X → Y with f(0) = 0 satisfies the inequality

N

 ∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
− (n−m+ 1)

n

(
n
m

) n∑
i=1

f(xi), t


≥ N ′(φ(x1, . . . , xn), t) (4.1)

for all x1, . . . , xn ∈ X, t > 0 and φ : Xn → Z is a mapping for which there is a constant r ∈ R satisfying
0 < |r| < 1

n−m+1 such that

N ′
(
φ

(
x1

n−m+ 1
, . . . ,

xn

n−m+ 1

)
, t

)
≥ N ′

(
φ(x1, . . . , xn),

t

|r|

)
, (4.2)

for all x1, . . . , xn ∈ X and all t > 0. Then there exists a unique (m,n)−Cauchy-Jensen additive mapping A : X → Y
satisfying (1.1) and the inequality

N(f(x)−A(x), t) ≥ N ′

 |r|φ(x, . . . , x)(
n
m

)
(1− (n−m+ 1)|r|)

, t

 (4.3)

for all x ∈ X and all t > 0.
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Proof . It follows from (4.2) that

N ′
(
φ

(
x1

(n−m+ 1)j
, . . . ,

xn

(n−m+ 1)j

)
, t

)
≥ N ′

(
φ(x1, . . . , xn),

t

|r|j

)
for all x1, · · · , xn ∈ X and all t > 0. Substituting (x1, · · · , xn) by (x, · · · , x) in (4.1), we obtain

N

 f
(

x
n−m+1

)
(n−m+ 1)−1

− f(x),
t(
n
m

)
 ≥ N ′

(
φ

(
x

n−m+ 1
, . . . ,

x

n−m+ 1

)
, t

)

for all x ∈ X and all t > 0. Replacing x by x
(n−m+1)j in the above inequality, we have

N

 f
(

x
(n−m+1)j+1

)
(n−m+ 1)−j−1

−
f
(

x
(n−m+1)j

)
(n−m+ 1)−j

,
(n−m+ 1)jt(

n
m

)


≥ N ′
(
φ

(
x

(n−m+ 1)j+1
, · · · , x

(n−m+ 1)j+1

)
, t

)
(4.4)

≥ N ′
(
φ(x, · · · , x), t

|r|j+1

)
for all x ∈ X, all t > 0 and any integer j ≥ 0. So,

N

f(x)−
f
(

x
(n−m+1)p

)
(n−m+ 1)−p

,

∑p−1
j=0(n−m+ 1)j |r|j+1t(

n
m

)


= N

p−1∑
j=0

 f
(

x
(n−m+1)j+1

)
(n−m+ 1)−j−1

−
f
(

x
(n−m+1)j

)
(n−m+ 1)−j

 ,

∑p−1
j=0(n−m+ 1)j |r|j+1t(

n
m

)


≥ min
0≤j≤p−1

N

 f
(

x
(n−m+1)j+1

)
(n−m+ 1)−j−1

−
f
(

x
(n−m+1)j

)
(n−m+ 1)−j

,
(n−m+ 1)j |r|j+1t(

n
m

)



≥ N ′(φ(x, · · · , x), t) (4.5)

which yields

N

 f
(

x
(n−m+1)p+q

)
(n−m+ 1)−p−q

−
f
(

x
(n−m+1)q

)
(n−m+ 1)−q

,

∑p−1
j=0(n−m+ 1)j+q|r|j+1t(

n
m

)


≥ N ′
(
φ

(
x

(n−m+ 1)q
, · · · , x

(n−m+ 1)q

)
, t

)
(4.6)

≥ N ′
(
φ(x, · · · , x), t

|r|q

)
for all x ∈ X, t > 0 and any integers p > 0, q ≥ 0. So

N

 f
(

x
(n−m+1)p+q

)
(n−m+ 1)−p−q

−
f
(

x
(n−m+1)q

)
(n−m+ 1)−q

,

∑p−1
j=0(n−m+ 1)j+q|r|j+q+1t(

n
m

)
 ≥ N ′ (φ(x, · · · , x), t)
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for all x ∈ X, t > 0 and any integers p > 0, q ≥ 0. Hence one obtains

N

 f
(

x
(n−m+1)p+q

)
(n−m+ 1)−p−q

−
f
(

x
(n−m+1)q

)
(n−m+ 1)−q

, t

 ≥ N ′

φ(x, · · · , x),

(
n
m

)
t∑p−1

j=0(n−m+ 1)j+q|r|j+q+1


for all x ∈ X, t > 0 and any integers p > 0, q ≥ 0. Since, the series

∑+∞
j=0(n−m+1)j |r|j+1 is convergent series, we see by

taking the limit q → ∞ in the last inequality that the sequence

{
f( x

(n−m+1)p )
(n−m+1)−p

}
is a Cauchy sequence in the fuzzy Banach

space (Y,N) and so it converges in Y . Therefore a mapping A : X → Y defined by A(x) := N − limp→∞
f( x

(n−m+1)p )
(n−m+1)−p

is well defined for all x ∈ X. It means that

lim
p→∞

N

A(x)−
f
(

x
(n−m+1)p

)
(n−m+ 1)−p

, t

 = 1 (4.7)

for all x ∈ X and all t > 0. In addition, it follows from (4.5) that

N

f(x)−
f
(

x
(n−m+1)p

)
(n−m+ 1)−p

, t

 ≥ N ′

φ(x, · · · , x),

(
n
m

)
t∑p−1

j=0(n−m+ 1)j |r|j+1


for all x ∈ X and all t > 0. So

N(f(x)−A(x), t)

≥ min

N

f(x)−
f
(

x
(n−m+1)p

)
(n−m+ 1)−p

, (1− ϵ)t

 , N

A(x)−
f
(

x
(n−m+1)p

)
(n−m+ 1)−p

, ϵt


≥ N ′

φ(x, · · · , x),

(
n
m

)
ϵt∑p−1

j=0(n−m+ 1)j |r|j+1

 ≥ N ′

φ(x, · · · , x),

(
n
m

)
ϵ(1− (n−m+ 1)|r|)t

|r|


for sufficiently large n and for all x ∈ X, t > 0 and ϵ with 0 < ϵ < 1. Since ϵ is arbitrary and N ′ is left continuous, we
obtain

N(f(x)−A(x), t) ≥ N ′

φ(x, · · · , x),

(
n
m

)
(1− (n−m+ 1)|r|)t

|r|

 ,

for all x ∈ X and t > 0. It follows from (4.1) that

N

(
(n−m+ 1)p

∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

( ∑m
j=1 xij

m(n−m+ 1)p
+

n−m∑
l=1

xkl

(n−m+ 1)p

)

− (n−m+ 1)p+1

n

(
n
m

) n∑
i=1

f

(
xi

(n−m+ 1)p

)
, t

)

≥ N ′
(
φ

(
x1

(n−m+ 1)p
, · · · , xn

(n−m+ 1)p

)
,

t

(n−m+ 1)p

)
≥ N ′

(
φ(x1, · · · , xn),

t

(n−m+ 1)p|r|p

)
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for all x1, · · · , xn ∈ X, t > 0 and all n ∈ N. Since limp→∞ N ′
(
φ(x1, · · · , xn),

t
(n−m+1)p|r|p

)
= 1 and so

lim
p→+∞

N

(
(n−m+ 1)p

∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

( ∑m
j=1 xij

m(n−m+ 1)p
+

n−m∑
l=1

xkl

(n−m+ 1)p

)

− (n−m+ 1)p+1

n

(
n
m

) n∑
i=1

f

(
xi

(n−m+ 1)p

)
−A(x), t

)
= 1

for all x1, · · · , xn ∈ X and all t > 0. Therefore, we obtain in view of (4.7)

N

 ∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

A

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
− (n−m+ 1)

n

(
n
m

) n∑
i=1

A(xi), t


≥ min

{
N

( ∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

A

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
− (n−m+ 1)

n

(
n
m

) n∑
i=1

A(xi)

−(n−m+ 1)p
∑

1≤i1<···<im≤n
1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

( ∑m
j=1 xij

m(n−m+ 1)p
+

n−m∑
l=1

xkl

(n−m+ 1)p

)

− (n−m+ 1)p+1

n

(
n
m

) n∑
i=1

f

(
xi

(n−m+ 1)p

)
,
t

2

)
, N

(
(n−m+ 1)p

∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

( ∑m
j=1 xij

m(n−m+ 1)p
+

n−m∑
l=1

xkl

(n−m+ 1)p

)

− (n−m+ 1)p+1

n

(
n
m

) n∑
i=1

f

(
xi

(n−m+ 1)p

)
,
t

2

)}

= N

(
(n−m+ 1)p

∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,...,m})≤n

f

( ∑m
j=1 xij

m(n−m+ 1)p
+

n−m∑
l=1

xkl

(n−m+ 1)p

)

− (n−m+ 1)p+1

n

(
n
m

) n∑
i=1

f

(
xi

(n−m+ 1)p

)
,
t

2

)
(for sufficiently large p)

≥ N ′
(
φ(x1, . . . , xn),

t

2(n−m+ 1)p|r|p

)
→ 1 as p → ∞

which implies

∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

A

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
=

(n−m+ 1)

n

(
n
m

) n∑
i=1

A(xi)

for all x1, · · · , xn ∈ X. Thus A : X → Y is a mapping satisfying the equation (1.1) and the inequality (4.3). To prove

the uniqueness, let there is another mapping L : X → Y which satisfies the inequality (4.3). Since L
(

x
(m+n−1)p

)
=
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L(x)
(m+n−1)p and A

(
x

(m+n−1)p

)
= A(x)

(m+n−1)p , for all x ∈ X, we have

N(A(x)− L(x), t)

= N

A
(

x
(m+n−1)p

)
(m+ n− 1)−p

−
L
(

x
(m+n−1)p

)
(m+ n− 1)−p

, t


≥ min

N

A
(

x
(m+n−1)p

)
(m+ n− 1)−p

−
f
(

x
(m+n−1)p

)
(m+ n− 1)−p

,
t

2

 , N

 f
(

x
(m+n−1)p

)
(m+ n− 1)−p

−
L
(

x
(m+n−1)p

)
(m+ n− 1)−p

,
t

2


≥ N ′

φ

(
x

(m+ n− 1)p
, · · · , x

(m+ n− 1)p

)
,

(
n
m

)
(1− (n−m+ 1)|r|)t

2|r|(n−m+ 1)p



≥ N

φ(x, · · · , x),

(
n
m

)
(1− (n−m+ 1)|r|)t

2|r|p+1(n−m+ 1)p

→ 1 as n → ∞

for all t > 0. Therefore A(x) = L(x) for all x ∈ X. This completes the proof. □

Corollary 4.2. Let X be a normed spaces and that (R, N ′) a fuzzy Banach space. Assume that there exists real
numbers θ ≥ 0 and p > 1 such that a mapping f : X → Y with f(0) = 0 satisfies the following inequality

N

 ∑
1≤i1<···<im≤n

1≤kl(̸=ij ,∀j∈{1,··· ,m})≤n

f

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
− (n−m+ 1)

n

(
n
m

) n∑
i=1

f(xi), t


≥ N ′

(
θ

(
n∑

i=1

∥xi∥p
)
, t

)
, (4.8)

for all x1, . . . , xn ∈ X and t > 0. Then there is a unique (m,n)−Cauchy-Jensen additive mapping A : X → Y that
satisfying (1.1) and the inequality

N(f(x)−A(x), t) ≥ N ′

 nθ∥x∥p(
n
m

)[
(n−m+ 1)p − (n−m+ 1)

] , t
 .

Proof . Let φ(x1, · · · , xn) := θ (
∑n

i=1 ∥xi∥p) and |r| = (n−m+ 1)−p. Apply Theorem 4.1, we get desired results. □

Theorem 4.3. Assume that a mapping f : X → Y with f(0) = 0 satisfies the inequality (4.1) and φ : Xn → Z is a
mapping for which there is a constant r ∈ R satisfying 0 < |r| < n−m+ 1 such that

N ′ (φ(x1, . . . , xn), |r|t) ≥ N ′
(
φ

(
x1

n−m+ 1
, . . . ,

xn

n−m+ 1

)
, t

)
(4.9)

for all x1, · · · , xn ∈ X and all t > 0. Then there exists a unique (m,n)−Cauchy-Jensen additive mapping A : X → Y
that satisfying (1.1) and the following inequality

N(f(x)−A(x), t) ≥ N ′

φ(x, . . . , x),
(n−m+ 1− |r|)t(

n
m

)
 (4.10)

for all x ∈ X and all t > 0.
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Proof . It follows from (4.4) that

N

f(x)− f((n−m+ 1)x)

n−m+ 1
,

t

(n−m+ 1)

(
n
m

)
 ≥ N ′(φ(x, . . . , x), t) (4.11)

for all x ∈ X and all t > 0. Replacing x by (n−m+ 1)px in (4.11), we obtain

N

f((n−m+ 1)p+1x)

(n−m+ 1)p+1
− f((n−m+ 1)px)

(n−m+ 1)p
,

t

(n−m+ 1)p+1

(
n
m

)


≥ N ′(φ((n−m+ 1)px, . . . , (n−m+ 1)px), t) (4.12)

≥ N ′
(
φ(x, . . . , x),

t

|r|p

)
.

So,

N

f((n−m+ 1)p+1x)

(n−m+ 1)p+1
− f((n−m+ 1)px)

(n−m+ 1)p
,

|r|pt

(n−m+ 1)p+1

(
n
m

)
 ≥ N ′(φ(x, . . . , x), t)

for all x ∈ X and all t > 0. Proceeding as in the proof of Theorem 4.1, we obtain that

N

f(x)− f((n−m+ 1)px)

(n−m+ 1)p
,

p−1∑
j=0

|r|jt

(n−m+ 1)j+1

(
n
m

)
 ≥ N ′(φ(x, . . . , x), t)

for all x ∈ X, all t > 0 and any integer n > 0. So,

N

(
f(x)− f((n−m+ 1)px)

(n−m+ 1)p
, t

)
≥ N ′

φ(x, . . . , x),
t(

n
m

)∑p−1
j=0

|r|j
(n−m+1)j+1



≥ N ′

φ(x, . . . , x),
(n−m+ 1− |r|)t(

n
m

)
 .

The rest of the proof is similar to the proof of Theorem 4.1. □

Corollary 4.4. Let X be a normed spaces and that (R, N ′) a fuzzy Banach space. Assume that there exists real
number θ ≥ 0 and 0 < p < 1 such that a mapping f : X → Y with f(0) = 0 satisfies (4.8). Then there is a unique
(m,n)−Cauchy-Jensen additive mapping A : X → Y that satisfying (1.1) and the inequality

N(f(x)−A(x), t) ≥ N ′

nθ∥x∥p, (n−m+ 1− (n−m+ 1)p)t(
n
m

)
 .

Proof . Let φ(x1, . . . , xn) := θ (
∑n

i=1 ∥xi∥p) and |r| = (n−m+ 1)p. Apply Theorem 4.3, we get desired results. □
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