Fixed point results of Perov type contractive mappings in generalized $F$-metric spaces

Document Type : Review articles

Authors

1 Department of Mathematics, Islamic Azad University, South Tehran Branch, Tehran, Iran

2 Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11120 Beograd 35, Serbia

3 Faculty of Science, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia

Abstract

The purpose of this paper is to present some fixed point results in spaces endowed with a vector-valued $ F$-metric. The results are extensions or generalizations of results proved by Perov \cite{Perov}. To show the usability of our results, we present two examples.

Keywords

[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 416–420.
[2] R.P. Agarwal, M.A. El-Gebeily, and D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), no. 1, 109–116.
[3] S. Aleksić, Z. Kadelburg, Z.D. Mitrović, and S. Radenović, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst. 9 (2019), 93–121.
[4] A. Asif, M. Nazam, M. Arshad, and S.O. Kim, F-Metric, F-Contraction and Common Fixed-Point Theorems with Applications, Mathematics 7 (2019), 586.
[5] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math. 3 (1922), 133–181.
[6] I. Beg and A.R. Butt, Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71 (2009), no. 9, 3699–3704.
[7] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), no. 2, 263–276.
[8] Z. Fadail, A. Savić, and S. Radenović, New distance in cone S-metric spaces and common fixed point theorems, J. Math. Computer Sci. 26 (2022), 368–378.
[9] H. Faraji and S. Radenović, Some fixed point results for FG-contraction in F-metric spaces endowed with a graph, J. Math. Exten. 16 (2022), no. 5, 1–18.
[10] H. Faraji, N. Mirkov, Z.D. Mitrović, R. Ramaswamy, O.A. Abdelnaby, and S. Radenović, Some new results for (α,β)-admissible mappings in F-metric spaces with applications to differential equations, Symmetry 14 (2022), 2429.
[11] H. Faraji and S. Radenović, Some fixed point results for convex contraction mappings on F-metric spaces, Ser. Math. Inf. 35 (2020), 939–948.
[12] A.D. Filip and A. Petruşel, Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory Appl. 2010 (2010), Art. ID 281381, 15 pp.
[13] R. George, R. Rajagopalan, H.A. Nabwey, and S. Radenović, Dislocated Cone Metric Spaces over Banach Algebra and Fixed Points of α-Quasi Contraction Mappings of Perov type, Fixed Point Theory Appl. 2017 (2017), 24.
[14] L. Guran, M.-F. Bota, A. Naseem, Z.D. Mitrović, M. de la Sen, and S. Radenović, On some new multivalued results in the metric spaces of Perov’s type, Mathematics 8 (2020), no. 3, 1–12.
[15] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
[16] J. Jachymski and J. Klima, Around Perov’s fixed point theorem for mappings on generalized metric spaces, Fixed Point Theory 17 (2016), no. 2, 367–380.
[17] M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl. 20 (2018), no. 3, Paper No. 128, 20 pp.
[18] Z. Kadelburg, N. Fabiano, N. Mirkov, and S. Radenović, On ordered topological vector groups - new results, J. Nonlinear Convex Anal. 23 (2022), no. 6, 1231–1254.
[19] G.N.V. Kishore, R.P. Agarwal, B.S. Rao, and R.V.N.S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl. 2018 (2018), 1–13.
[20] N. Mirkov, S. Radenović, and S. Radojević, Some new observations for F-contractions in vector-valued metric spaces of Perov’s type, Axioms 10 (2021), no. 2, 127.
[21] N. Mirkov, N. Fabiano, and S. Radenović, Critical remarks on "A new fixed point result of Perov type and its application to a semilinear operator system", TWMS J. Pure Appl. Math. 14 (2023), no. 1, 141–145.
[22] Z.D. Mitrović, H. Aydi, N. Hussain, and A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on F-metric spaces and an application, Mathematics 7 (2019), 387.
[23] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G-metric spaces, Cubo 12 (2010), no. 1, 83–93.
[24] A.I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964), 115–134.
[25] S. Radenović and F. Vetro, Some remarks on Perov type mappings in cone metric spaces, Mediterr. J. Math. 14 (2017), no. 6, Paper No. 240, 15 pp.
[26] A. Savić, N. Fabiano, N. Mirkov, A. Sretenović, and S. Radenović, Some significant remarks on multivalued Perov type contractions on cone metric spaces with a directed graph, AIMS Math. 7 (2022), no. 1, 187–198.
[27] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1861–1869.
[28] F. Vetro and S. Radenović, Some results of Perov type on rectangular cone metric spaces, J. Fixed Point Theory Appl. 20 (2018), no. 1, Article 41.
[29] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94, 6 pp.
[30] S. Xu, Y. Han, S. Aleksić, and S. Radenović, Fixed Point Results for Nonlinear Contractions of Perov Type in Abstract Metric Spaces with Applications, AIMS Math. 7 (2022), no. 8, 14895–14921.
[31] K. Zoto, Z.D. Mitrović, and S.N. Radenović, Unified setting of generalized contractions by extending simulation mappings in b-metric-like spaces, Acta Math. Univ. Comenianae 9 (2022), 247–258.

Articles in Press, Corrected Proof
Available Online from 04 November 2025
  • Receive Date: 19 April 2024
  • Revise Date: 05 August 2024
  • Accept Date: 10 October 2024