[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), no. 1, 416–420.
[2] R.P. Agarwal, M.A. El-Gebeily, and D. O’Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), no. 1, 109–116.
[3] S. Aleksić, Z. Kadelburg, Z.D. Mitrović, and S. Radenović, A new survey: Cone metric spaces, J. Int. Math. Virtual Inst. 9 (2019), 93–121.
[4] A. Asif, M. Nazam, M. Arshad, and S.O. Kim, F-Metric, F-Contraction and Common Fixed-Point Theorems with Applications, Mathematics 7 (2019), 586.
[5] S. Banach, Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales, Fund. Math. 3 (1922), 133–181.
[6] I. Beg and A.R. Butt, Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal. 71 (2009), no. 9, 3699–3704.
[7] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), no. 2, 263–276.
[8] Z. Fadail, A. Savić, and S. Radenović, New distance in cone S-metric spaces and common fixed point theorems, J. Math. Computer Sci. 26 (2022), 368–378.
[9] H. Faraji and S. Radenović, Some fixed point results for FG-contraction in F-metric spaces endowed with a graph, J. Math. Exten. 16 (2022), no. 5, 1–18.
[10] H. Faraji, N. Mirkov, Z.D. Mitrović, R. Ramaswamy, O.A. Abdelnaby, and S. Radenović, Some new results for (α,β)-admissible mappings in F-metric spaces with applications to differential equations, Symmetry 14 (2022), 2429.
[11] H. Faraji and S. Radenović, Some fixed point results for convex contraction mappings on F-metric spaces, Ser. Math. Inf. 35 (2020), 939–948.
[12] A.D. Filip and A. Petruşel, Fixed point theorems on spaces endowed with vector-valued metrics, Fixed Point Theory Appl. 2010 (2010), Art. ID 281381, 15 pp.
[13] R. George, R. Rajagopalan, H.A. Nabwey, and S. Radenović, Dislocated Cone Metric Spaces over Banach Algebra and Fixed Points of α-Quasi Contraction Mappings of Perov type, Fixed Point Theory Appl. 2017 (2017), 24.
[14] L. Guran, M.-F. Bota, A. Naseem, Z.D. Mitrović, M. de la Sen, and S. Radenović, On some new multivalued results in the metric spaces of Perov’s type, Mathematics 8 (2020), no. 3, 1–12.
[15] L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332 (2007), no. 2, 1468–1476.
[16] J. Jachymski and J. Klima, Around Perov’s fixed point theorem for mappings on generalized metric spaces, Fixed Point Theory 17 (2016), no. 2, 367–380.
[17] M. Jleli and B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl. 20 (2018), no. 3, Paper No. 128, 20 pp.
[18] Z. Kadelburg, N. Fabiano, N. Mirkov, and S. Radenović, On ordered topological vector groups - new results, J. Nonlinear Convex Anal. 23 (2022), no. 6, 1231–1254.
[19] G.N.V. Kishore, R.P. Agarwal, B.S. Rao, and R.V.N.S. Rao, Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications, Fixed Point Theory Appl. 2018 (2018), 1–13.
[20] N. Mirkov, S. Radenović, and S. Radojević, Some new observations for F-contractions in vector-valued metric spaces of Perov’s type, Axioms 10 (2021), no. 2, 127.
[21] N. Mirkov, N. Fabiano, and S. Radenović, Critical remarks on "A new fixed point result of Perov type and its application to a semilinear operator system", TWMS J. Pure Appl. Math. 14 (2023), no. 1, 141–145.
[22] Z.D. Mitrović, H. Aydi, N. Hussain, and A. Mukheimer, Reich, Jungck, and Berinde common fixed point results on F-metric spaces and an application, Mathematics 7 (2019), 387.
[23] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G-metric spaces, Cubo 12 (2010), no. 1, 83–93.
[24] A.I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964), 115–134.
[25] S. Radenović and F. Vetro, Some remarks on Perov type mappings in cone metric spaces, Mediterr. J. Math. 14 (2017), no. 6, Paper No. 240, 15 pp.
[26] A. Savić, N. Fabiano, N. Mirkov, A. Sretenović, and S. Radenović, Some significant remarks on multivalued Perov type contractions on cone metric spaces with a directed graph, AIMS Math. 7 (2022), no. 1, 187–198.
[27] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1861–1869.
[28] F. Vetro and S. Radenović, Some results of Perov type on rectangular cone metric spaces, J. Fixed Point Theory Appl. 20 (2018), no. 1, Article 41.
[29] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94, 6 pp.
[30] S. Xu, Y. Han, S. Aleksić, and S. Radenović, Fixed Point Results for Nonlinear Contractions of Perov Type in Abstract Metric Spaces with Applications, AIMS Math. 7 (2022), no. 8, 14895–14921.
[31] K. Zoto, Z.D. Mitrović, and S.N. Radenović, Unified setting of generalized contractions by extending simulation mappings in b-metric-like spaces, Acta Math. Univ. Comenianae 9 (2022), 247–258.