We discuss the existence of a positive solution to the innite semipositone problem u = au bu f(u) c u ; x 2 ; u = 0; x 2 @ ; where is the Laplacian operator, > 1, 2 (0; 1), a; b and c are positive constants, is a bounded domain in RN with smooth boundary @ , and f : [0;1) ! R is a continuous function such that f(u) ! 1 as u ! 1. Also we assume that there exist A > 0 and > 1 such that f(s) As, for all s 0. . We obtain our result via the method of sub- and supersolutions.
Ghaemi, M., Choubin, M. (2013). On positive solutions for a class of infinite semipositone problems. International Journal of Nonlinear Analysis and Applications, 4(1), 49-54. doi: 10.22075/ijnaa.2013.25
MLA
M. B. Ghaemi; M. Choubin. "On positive solutions for a class of infinite semipositone problems". International Journal of Nonlinear Analysis and Applications, 4, 1, 2013, 49-54. doi: 10.22075/ijnaa.2013.25
HARVARD
Ghaemi, M., Choubin, M. (2013). 'On positive solutions for a class of infinite semipositone problems', International Journal of Nonlinear Analysis and Applications, 4(1), pp. 49-54. doi: 10.22075/ijnaa.2013.25
VANCOUVER
Ghaemi, M., Choubin, M. On positive solutions for a class of infinite semipositone problems. International Journal of Nonlinear Analysis and Applications, 2013; 4(1): 49-54. doi: 10.22075/ijnaa.2013.25