Let be a vector space over a field of real or complex numbers. We will prove the superstability of the following Go{\l}\c{a}b-Schinzel type equation where are unknown functions (satisfying some assumptions). Then we generalize the superstability result for this equation with values in the field of complex numbers to the case of an arbitrary Hilbert space with the Hadamard product. Our result refers to papers by Chudziak and Tabor [J. Math. Anal. Appl. 302 (2005) 196-200], Jab\l o'{n}ska [Bull. Aust. Math. Soc. 87 (2013), 10-17] and Rezaei [Math. Ineq. Appl., 17 (2014), 249-258].
Tial, M. , Zeglami, D. and Kabbaj, S. (2015). On Hilbert Golab-Schinzel type functional equation. International Journal of Nonlinear Analysis and Applications, 6(2), 149-159. doi: 10.22075/ijnaa.2015.265
MLA
Tial, M. , , Zeglami, D. , and Kabbaj, S. . "On Hilbert Golab-Schinzel type functional equation", International Journal of Nonlinear Analysis and Applications, 6, 2, 2015, 149-159. doi: 10.22075/ijnaa.2015.265
HARVARD
Tial, M., Zeglami, D., Kabbaj, S. (2015). 'On Hilbert Golab-Schinzel type functional equation', International Journal of Nonlinear Analysis and Applications, 6(2), pp. 149-159. doi: 10.22075/ijnaa.2015.265
CHICAGO
M. Tial , D. Zeglami and S. Kabbaj, "On Hilbert Golab-Schinzel type functional equation," International Journal of Nonlinear Analysis and Applications, 6 2 (2015): 149-159, doi: 10.22075/ijnaa.2015.265
VANCOUVER
Tial, M., Zeglami, D., Kabbaj, S. On Hilbert Golab-Schinzel type functional equation. International Journal of Nonlinear Analysis and Applications, 2015; 6(2): 149-159. doi: 10.22075/ijnaa.2015.265