Let be a Banach algebra, be continuous homomorphism on with . The bounded linear map is -derivation, if We say that A is -weakly amenable, when for each bounded derivation , there exists such that . For a commutative Banach algebra , we show is -weakly amenable if and only if every -derivation from into a -symmetric Banach -bimodule is zero. Also, we show that a commutative Banach algebra is -weakly amenable if and only if is -weakly amenable, where .
Yazdanpanah, T. and Mozzami Zadeh, I. (2013). -weak amenability of Banach algebras. International Journal of Nonlinear Analysis and Applications, 4(1), 66-73. doi: 10.22075/ijnaa.2013.28
MLA
Yazdanpanah, T. , and Mozzami Zadeh, I. . "-weak amenability of Banach algebras", International Journal of Nonlinear Analysis and Applications, 4, 1, 2013, 66-73. doi: 10.22075/ijnaa.2013.28
HARVARD
Yazdanpanah, T., Mozzami Zadeh, I. (2013). '-weak amenability of Banach algebras', International Journal of Nonlinear Analysis and Applications, 4(1), pp. 66-73. doi: 10.22075/ijnaa.2013.28
CHICAGO
T. Yazdanpanah and I. Mozzami Zadeh, "-weak amenability of Banach algebras," International Journal of Nonlinear Analysis and Applications, 4 1 (2013): 66-73, doi: 10.22075/ijnaa.2013.28
VANCOUVER
Yazdanpanah, T., Mozzami Zadeh, I. -weak amenability of Banach algebras. International Journal of Nonlinear Analysis and Applications, 2013; 4(1): 66-73. doi: 10.22075/ijnaa.2013.28