Using the fixed point method, we prove the generalized Hyers-Ulam-Rassias stability of the following functional equation in multi-Banach spaces: begin{equation} sum_{ j = 1}^{n}fBig(-2 x_{j} + sum_{ i = 1, ineq j}^{n} x_{i}Big) = (n-6) fBig(sum_{ i = 1}^{n} x_{i}Big) + 9 sum_{ i = 1}^{n} f(x_{i}). end{equation}
Alizadeh, S., Moradlou, F. (2016). Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach. International Journal of Nonlinear Analysis and Applications, 7(1), 63-75. doi: 10.22075/ijnaa.2015.295
MLA
Sattar Alizadeh; Fridoun Moradlou. "Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach". International Journal of Nonlinear Analysis and Applications, 7, 1, 2016, 63-75. doi: 10.22075/ijnaa.2015.295
HARVARD
Alizadeh, S., Moradlou, F. (2016). 'Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach', International Journal of Nonlinear Analysis and Applications, 7(1), pp. 63-75. doi: 10.22075/ijnaa.2015.295
VANCOUVER
Alizadeh, S., Moradlou, F. Approximate a quadratic mapping in multi-Banach spaces, a fixed point approach. International Journal of Nonlinear Analysis and Applications, 2016; 7(1): 63-75. doi: 10.22075/ijnaa.2015.295