Let be positive real numbers such that . In this paper, we prove that for any positive operators in semifinite von Neumann algebra with faithful normal trace that , where . If furthermore for every and , then equality holds if and only if . A log-majorisation version of Young inequality are given as well.
Manjegani, S. M. (2016). A determinant inequality and log-majorisation for operators. International Journal of Nonlinear Analysis and Applications, 7(1), 131-140. doi: 10.22075/ijnaa.2015.301
MLA
Manjegani, S. M. . "A determinant inequality and log-majorisation for operators", International Journal of Nonlinear Analysis and Applications, 7, 1, 2016, 131-140. doi: 10.22075/ijnaa.2015.301
HARVARD
Manjegani, S. M. (2016). 'A determinant inequality and log-majorisation for operators', International Journal of Nonlinear Analysis and Applications, 7(1), pp. 131-140. doi: 10.22075/ijnaa.2015.301
CHICAGO
S. M. Manjegani, "A determinant inequality and log-majorisation for operators," International Journal of Nonlinear Analysis and Applications, 7 1 (2016): 131-140, doi: 10.22075/ijnaa.2015.301
VANCOUVER
Manjegani, S. M. A determinant inequality and log-majorisation for operators. International Journal of Nonlinear Analysis and Applications, 2016; 7(1): 131-140. doi: 10.22075/ijnaa.2015.301