In this paper, we obtain the general solution and the generalized Hyers-Ulam-Rassias stability in random normed spaces, in non-Archimedean spaces and also in $p$-Banach spaces and finally the stability via fixed point method for a functional equation \begin{align*} &D_f(x_{1},.., x_{m}):= \sum^{m}_{k=2}(\sum^{k}_{i_{1}=2} \sum^{k+1}_{i_{2}=i_{1}+1}... \sum^{m}_{i_{m-k+1}=i_{m-k}+1}) f(\sum^{m}_{i=1, i\neq i_{1},...,i_{m-k+1} } x_{i}-\sum^{m-k+1}_{ r=1} x_{i_{r}})\\& \hspace {2.8cm}+f(\sum^{m}_{ i=1} x_{i}) -2^{m-1} f(x_{1})=0 \end{align*} where $m \geq 2$ is an integer number.
Farokhzad Rostami, R., Hoseinioun, S. (2016). Approximately generalized additive functions in several variables via fixed point method. International Journal of Nonlinear Analysis and Applications, 7(1), 167-181. doi: 10.22075/ijnaa.2015.304
MLA
R. Farokhzad Rostami; S.A.R. Hoseinioun. "Approximately generalized additive functions in several variables via fixed point method". International Journal of Nonlinear Analysis and Applications, 7, 1, 2016, 167-181. doi: 10.22075/ijnaa.2015.304
HARVARD
Farokhzad Rostami, R., Hoseinioun, S. (2016). 'Approximately generalized additive functions in several variables via fixed point method', International Journal of Nonlinear Analysis and Applications, 7(1), pp. 167-181. doi: 10.22075/ijnaa.2015.304
VANCOUVER
Farokhzad Rostami, R., Hoseinioun, S. Approximately generalized additive functions in several variables via fixed point method. International Journal of Nonlinear Analysis and Applications, 2016; 7(1): 167-181. doi: 10.22075/ijnaa.2015.304