Let be a Banach ternary algebra over a scalar field or and be a ternary Banach --module. Let and be linear mappings on , a linear mapping is called a Lie ternary --derivation, if for all , where and . In this paper, we prove the generalized Hyers--Ulam--Rassias stability of Lie ternary --derivations on Banach ternary algebras and --Lie ternary --derivations on --ternary algebras for the following Euler--Lagrange type additive mapping:
Farokhzad Rostami, R. (2018). Lie ternary --derivations on Banach ternary algebras. International Journal of Nonlinear Analysis and Applications, 9(1), 41-53. doi: 10.22075/ijnaa.2018.3081
MLA
Farokhzad Rostami, R. . "Lie ternary --derivations on Banach ternary algebras", International Journal of Nonlinear Analysis and Applications, 9, 1, 2018, 41-53. doi: 10.22075/ijnaa.2018.3081
HARVARD
Farokhzad Rostami, R. (2018). 'Lie ternary --derivations on Banach ternary algebras', International Journal of Nonlinear Analysis and Applications, 9(1), pp. 41-53. doi: 10.22075/ijnaa.2018.3081
CHICAGO
R. Farokhzad Rostami, "Lie ternary --derivations on Banach ternary algebras," International Journal of Nonlinear Analysis and Applications, 9 1 (2018): 41-53, doi: 10.22075/ijnaa.2018.3081
VANCOUVER
Farokhzad Rostami, R. Lie ternary --derivations on Banach ternary algebras. International Journal of Nonlinear Analysis and Applications, 2018; 9(1): 41-53. doi: 10.22075/ijnaa.2018.3081