Lie ternary (σ,τ,ξ)--derivations on Banach ternary algebras

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Basic Sciences and Engineering, Gonbad Kavous University, Gonbad Kavous, Iran

Abstract

Let A be a Banach ternary algebra over a scalar field R or C and X be a ternary Banach A--module. Let σ,τ and ξ be linear mappings on A, a linear mapping D:(A,[ ]A)(X,[ ]X) is called a Lie ternary (σ,τ,ξ)--derivation, if
D([a,b,c])=[[D(a)bc]X](σ,τ,ξ)[[D(c)ba]X](σ,τ,ξ)
for all a,b,cA, where [abc](σ,τ,ξ)=aτ(b)ξ(c)σ(c)τ(b)a and [a,b,c]=[abc]A[cba]A. In this paper, we prove the generalized Hyers--Ulam--Rassias stability of Lie ternary (σ,τ,ξ)--derivations on Banach ternary algebras and C--Lie ternary (σ,τ,ξ)--derivations on C--ternary algebras for the following Euler--Lagrange type additive mapping:
i=1nf(j=1nq(xixj))+nf(i=1nqxi)=nqi=1nf(xi).

Keywords

Volume 9, Issue 1
September 2018
Pages 41-53
  • Receive Date: 30 May 2016
  • Revise Date: 30 November 2017
  • Accept Date: 28 February 2018