Document Type : Research Paper
Authors
1 Department of Mathematics, Semnan University, P.O. Box 35195-363, Semnan, Iran
2 Kosar University of Bojnord, Bojnord, Iran
Abstract
Let $X$ be a real normed space, then $C(\subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)\subseteq \Bbb R $ is convex for all bounded linear transformations $T\in B(X,R)$; and $K(\subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)\subseteq \Bbb R $ is closed for all bounded linear transformations $T\in B(X,R)$. We improve the Krein-Milman theorem on finite dimensional spaces. We partially prove the Chebyshev 60 years old open problem. Finally, we introduce the notion of functionally convex functions. The function $f$ on $X$ is functionally convex (briefly, $F$-convex) if epi $f$ is a $F$-convex subset of $X\times \mathbb{R}$. We show that every function $f : (a,b)\longrightarrow \mathbb{R}$ which has no vertical asymptote is $F$-convex.
Keywords