In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresponding functional equation.
Baghani, H. (2018). Generalized multivalued $F$-contractions on non-complete metric spaces. International Journal of Nonlinear Analysis and Applications, 9(2), 71-84. doi: 10.22075/ijnaa.2018.1644.1432
MLA
Hamid Baghani. "Generalized multivalued $F$-contractions on non-complete metric spaces". International Journal of Nonlinear Analysis and Applications, 9, 2, 2018, 71-84. doi: 10.22075/ijnaa.2018.1644.1432
HARVARD
Baghani, H. (2018). 'Generalized multivalued $F$-contractions on non-complete metric spaces', International Journal of Nonlinear Analysis and Applications, 9(2), pp. 71-84. doi: 10.22075/ijnaa.2018.1644.1432
VANCOUVER
Baghani, H. Generalized multivalued $F$-contractions on non-complete metric spaces. International Journal of Nonlinear Analysis and Applications, 2018; 9(2): 71-84. doi: 10.22075/ijnaa.2018.1644.1432