[1] J. Ahmad, A.E. Al-Mazrooei, Y.J. Cho and Y.O. Yang, Fixed point results for generalized Θ-contractions, J. Nonlinear Sci. Appl. 10 (2017), no. 5, 2350–2358.
[2] A. Al-Rawashdeh and J. Ahmad, Common fixed point theorems for JS-contractions, Bull. Math. Anal. Appl. 8 (2016), no. 4, 12–22.
[3] J. Ahmad, A. Al-Rawashdeh and A. Azam, New fixed point theorems for generalized F- contractions in complete metric spaces, Fixed Point Theory Appl. 2015 (2015), Article Number 80.
[4] J. Ahmad, N. Hussain, A.R. Khan and A. Azam, Fixed point results for generalized multi-valued contractions, J. Nonlinear Sci. Appl. 8 (2015), 909-918
[5] N.A. Assad and W.A. Kirk, Fixed point theorems for setvalued mappings of contractive type, Pacific J. Math. 43 (1972), 533–562.
[6] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math. 3 (1922), 133–181
[7] M.F. Barnsley, Fractals Everywhere, 2nd ed., Academic Press, San Diego, CA, 1993.
[8] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20 (1969), 458–464
[9] M. Edelstein, An extension of Banach’s contraction principle, Proc. Amer. Math. Soc. 12 (1961), 7–10.
[10] HA. Hancer, G. Minak and I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory 18 (2017), no. 1, 229–236.
[11] N. Hussain, J. Ahmad, L. Ciric and A. Azam, Coincidence point theorems for generalized contractions with application to integral equations, Fixed Point Theory Appl. 2015 (2015), Article Number 78.
[12] N. Hussain, V. Parvaneh, B. Samet and C. Vetro, Some fixed point theorems for generalized contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2015 (2015), Article Number 185.
[13] N. Hussain, J. Ahmad, L. Ciric and A. Azam, Coincidence point theorems for generalized contractions with application to integral equations, Fixed Point Theory Appl. 2015 (2015), no. 1.
[14] N. Hussain, J. Ahmad and A. Azam, On Suzuki-Wardowski type fixed point theorems, J. Nonlinear Sci. Appl. 8 (2015), 1095–1111.
[15] N. Hussain, J. Ahmad and A. Azam, Generalized fixed point theorems for multivalued α−ψ−contractive mappings, J. Ineq. Appl. 2014 (2014), 15 pages.
[16] N. Hussain, J. Ahmad and M.A. Kutbi, Fixed point theorems for generalized Mizoguchi-Takahashi contractions, J. Funct. Spaces 2016 (2016), Article ID 6514920, 7 pages
[17] J. Hutchinson, Fractals and self-similarity, Indiana Univ. J. Math. 30 (1981), no. 3, 713–747
[18] M. Jleli and B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014 (2014), 38.
[19] M.A. Kutbi, J. Ahmad and A. Azam, On fixed points of α−ψ- contractive multi-valued mappings in cone metric spaces, Abst. Appl. Anal. 2013, Article ID 313782, 6 pages.
[20] M.A. Kutbi, J. Ahmad, A. Azam and A.S. Al-Rawashdeh, Generalized common fixed point results via greatest lower bound property, J. Appl. Math. 2014 (2014), Article ID 265865, 11 pages
[21] MA. Kutbi, M. Arshad, J. Ahmad and A. Azam, Generalized common fixed point results with applications, Abstr. Appl. Anal. 2014 (2014), Article ID 363925, 7 pages
[22] Z. Li and S. Jiang, Fixed point theorems of JS-quasi-contractions, Fixed Point Theory Appl. 2016 (2016), 40.
[23] S.B. Nadler, Multivalued contraction mappings, Pacific J. Math. 30 (1969), 475-488
[24] T. Nazir, S. Silvestrov and M. Abbas, Fractals of generalized F-hutchinson operator, Waves, Wavelets Fractals Adv. Anal. 2 (2016), 29–40.
[25] T. Nazir, S. Silvestrov and X. Qi, Fractals of generalized F-hutchinson operator in b-metric spaces, J. Oper. 2016 (2016), Article ID 5250394, 9 pages.
[26] W. Onsod, T. Saleewong, J. Ahmad, A. E. Al-Mazrooei and P. Kumam, Fixed points of a Θ-contraction on metric spaces with a graph, Commun. Nonlinear Anal. 2 (2016), 139–149
[27] E. Rakotch, A note on contractive mappings, Proc. Amer. Math. Soc. 13 (1962), 459–465