For a Banach algebra , is -Weakly amenable if is a Banach -bimodule and . In this paper, among other things, we study the relationships between the -Weakly amenability of and the weak amenability of or . Moreover, we show that the second dual of every -algebra is -Weakly amenable.
Valadkhani, A. and Hosseinioun, S. (2016). Weak and -weak amenability of second dual of Banach algebras. International Journal of Nonlinear Analysis and Applications, 7(2), 39-48. doi: 10.22075/ijnaa.2016.457
MLA
Valadkhani, A. , and Hosseinioun, S. . "Weak and -weak amenability of second dual of Banach algebras", International Journal of Nonlinear Analysis and Applications, 7, 2, 2016, 39-48. doi: 10.22075/ijnaa.2016.457
HARVARD
Valadkhani, A., Hosseinioun, S. (2016). 'Weak and -weak amenability of second dual of Banach algebras', International Journal of Nonlinear Analysis and Applications, 7(2), pp. 39-48. doi: 10.22075/ijnaa.2016.457
CHICAGO
A. Valadkhani and S. Hosseinioun, "Weak and -weak amenability of second dual of Banach algebras," International Journal of Nonlinear Analysis and Applications, 7 2 (2016): 39-48, doi: 10.22075/ijnaa.2016.457
VANCOUVER
Valadkhani, A., Hosseinioun, S. Weak and -weak amenability of second dual of Banach algebras. International Journal of Nonlinear Analysis and Applications, 2016; 7(2): 39-48. doi: 10.22075/ijnaa.2016.457