For a Banach algebra $A$, $A''$ is $(-1)$-Weakly amenable if $A'$ is a Banach $A''$-bimodule and $H^1(A'',A')=\{0\}$. In this paper, among other things, we study the relationships between the $(-1)$-Weakly amenability of $A''$ and the weak amenability of $A''$ or $A$. Moreover, we show that the second dual of every $C^\ast$-algebra is $(-1)$-Weakly amenable.
Valadkhani, A., Hosseinioun, S. (2016). Weak and $(-1)$-weak amenability of second dual of Banach algebras. International Journal of Nonlinear Analysis and Applications, 7(2), 39-48. doi: 10.22075/ijnaa.2016.457
MLA
A. Valadkhani; S.A.R. Hosseinioun. "Weak and $(-1)$-weak amenability of second dual of Banach algebras". International Journal of Nonlinear Analysis and Applications, 7, 2, 2016, 39-48. doi: 10.22075/ijnaa.2016.457
HARVARD
Valadkhani, A., Hosseinioun, S. (2016). 'Weak and $(-1)$-weak amenability of second dual of Banach algebras', International Journal of Nonlinear Analysis and Applications, 7(2), pp. 39-48. doi: 10.22075/ijnaa.2016.457
VANCOUVER
Valadkhani, A., Hosseinioun, S. Weak and $(-1)$-weak amenability of second dual of Banach algebras. International Journal of Nonlinear Analysis and Applications, 2016; 7(2): 39-48. doi: 10.22075/ijnaa.2016.457