[1] M. Abbas, M. Alikhan and S. Radenovic, Common coupled fixed point theorems in cone metric spaces for ωcompatible mappings, Appl. Math. Comp. 217(1) (2010) 195–202.
[2] A.H. Ansari, H. Isık and S. Radenovic, Coupled fixed point theorems for contractive mappings involving new function classes and applications, Filomat, 31(7) (2017) 1893-–1907.
[3] H. Aydi, Some coupled fixed point results on partial metric spaces, Int. J. Math. Mathematical Sci. 2011 (2011) Article ID 647091.
[4] H. Baghani, M.E. Gordji and M. Ramezani, Orthogonal sets: The axiom of choice and proof of a fixed point theorem, J. Fixed Point Theory Appl. 18(3) (2016) 465-–477.
[5] S. Banach, Sur les operations dans les ensembles abstraits etleur applications aux equations integrals, Fund. Math.3 (1922) 133–181.
[6] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379–1393.
[7] N.V. Can, V. Berinde, N.V. Luong and N.X. Thuan, A coupled coincidence point theorem in partially ordered metric spaces, Kragujevac J. Math. 37(1) (2013) 103–119.
[8] Y.J. Cho, B.E. Rhoades, R. Saadati, B. Samet and W. Shatanawi, Nonlinear coupled fixed point theorems in ordered generalized metric spaces with integral type, Fixed Point Theory Appl. 8 (2012) 1–14.
[9] M.E. Gordji and H. Habibi, Fixed point theory in generalized orthogonal metric space, J. LinearTop. Alg. 6(3)(2017) 251–260.
[10] M.E. Gordji, M. Ramezani, M. De la Sen and Y.J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18(2) (2017) 569–578.
[11] D. Guo and V. Lakshmikantham, Coupled fixed point of nonlinear operators with applications, Nonlinear Anal. 11 (1987) 623–632.
[12] H. Isık, Solvability to coupled systems of functional equations via fixed point theory, TWMS J. App. Eng. Math. 8(1a) (2018) 230—237.
[13] H. Isık and C. Park, Existence of a common solution to systems of integral equations via fixed point results, Open Math. 18(1) (2020) 249–261.
[14] H. Isık and S. Radenovi´c, A new version of coupled fixed point results in ordered metric spaces with applications, U. P. B. Sci. Bull. Series A 79(2) (2017) 131—138.
[15] H. Isık and W. Sintunavarat, An investigation of the common solutions for coupled systems of functional equations arising in dynamic programming, Math. 7(10) (2019) 977.
[16] H. Isık and D. Turkoglu, Coupled fixed point theorems for new contractive mixed monotone mappings and applications to integral equations, Filomat 28 (2014) 1253-–1264.
[17] S. Khalehoghli, H. Rahimi and M. Eshaghi Gordji, Fixed point theorems in R-metric spaces with applications, AIMS Math. 5(4) (2020) 3125–3137.
[18] V. Lakshmikantham and Lj. C´iri´c, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341–4349.
[19] N. V. Luong and N. X. Thuan, Coupled fixed point in partially ordered metric spaces and application, Nonlinear Anal. 74 (2011) 983–992.
[20] A. Mutlu and U. Gurdal, Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl. 9(9) (2016) 5362–5373.
[21] A. Mutlu, K. Ozkan and U. Gurdal, Coupled fixed point theorems on bipolar metric spaces, European J. Pure Appl. Math. 10(4) (2017) 655–667.
[22] A. Mutlu, N. Yolcu and B. Mutlu, Coupled fixed point theorems for mixed monotone mappings on partially ordered dislocated quasi metric spaces, Global J. Math. 1(1) (2015) 12–17.
[23] A. Petrusel, G. Petrusel, B. Samet and J.C. Yao, Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to operator equations systems, Fixed Point Theory 17(2) (2016) 457–476.
[24] M. Ramezani and H. Baghani, Contractive gauge functions in strongly orthogonal metric spaces, Int. J. Nonlinear Anal. Appl. 8(2) (2017) 23–28.
[25] B. Samet and C. Vetro, Coupled fixed point theorem for multivalued nonlinear contraction mappings in partially ordered metric spaces, Nonlinear Anal. 74(12) (2011) 4260–4268.
[26] W. Sintunavarat, Y.J. Cho and P. Kumam, Coupled fixed point theorems for nonlinear contractions without mixed monotone property, Fixed Point Theory Appl. 2012 (2012) 170.