[1] S. Abbaszadeh and A. Ebadian, Nonlinear integrals and Hadamard-type inequalities, Soft Comput. 22(9) (2018) 2843–2849.
[2] M. Alomari and M. Darus, On the Hadamard’s inequality for log-convex functions on the coordinates, J. Ineq. Appl. 2009 (2009) Article ID 283147, 13 pp.
[3] M. Alomari, M. Darus and S.S. Dragomir, New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang. J. Math. 41(4) (2010) 353–359.
[4] M. Alomari, M. Darus and U.S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comp. Math. Appl. 59 (2010) 225–232.
[5] M.U. Awan, M.A. Noor, K.I. Noor and F. Safdar, On strongly generalized convex functions, Filomat 31(18) (2017) 5783–5790.
[6] M.K. Bakula, M.E. Ozdemir and J. Pecaric, Hadamard type inequalities for m-convex and (α, m)-convex, J. Inequal. Pure and Appl. Math. 9 (2008) Article 96.
[7] R.-F. Bai, F. Qi and B.-Y. Xi, Hermite–Hadamard type inequalities for the m- and (α, m)-logarithmically convex functions, Filomat 27(1) (2013) 1–7.
[8] L. Chun and F. Qi, Integral inequalities of Hermite–Hadamard type for functions whose 3rd derivatives are s-convex, Appl. Math. 3 (2012) 1680–1685.
[9] S.S. Dragomir, Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl. 167 (1992) 49–56.
[10] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and their applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11(5) (1998) 91–95.
[11] M.E. Gordji, M.R. Delavar and S.S. Dragomir, Some inequalities related to η-convex functions, RGMIA, 18 (2015) Article No. 8.
[12] M.E. Gordji, M.R. Delavar and M. De La Sen, On φ-convex functions, J. Math. Ineq. 10(1) (2016) 173–183.
[13] M.E. Gordji, S.S. Dragomir and M.R. Delavar, An inequality related to η-convex functions (II), Int. J. Nonlinear Anal. Appl. 6(2) (2015) 27–33.
[14] S. Kermausuor and E.R. Nwaeze, Some new inequalities involving the Katugampola fractional integrals for strongly η-convex functions, Tbil. Math. J. 12(1) (2019) 117–130.
[15] S. Kermausuor, E.R. Nwaeze and A.M. Tameru, New integral inequalities via the Katugampola fractional integrals for functions whose second derivatives are strongly η-convex, Mathematics, 7(2) (2019), Art. 183.
[16] U.S. Kirmaci, M.K. Bakula, M.E. Ozdemir and J. Pecaric, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193(1) (2007) 26–35.
[17] E.R. Nwaeze and S. Kermausuor, Certain results associated with the strongly η-convex function with modulus µ ≥ 0, Acta Math. Univ. Comenian. 89(1) (2020) 61–74.
[18] E.R. Nwaeze, S. Kermausuor and A.M. Tameru, Some new k-Riemann–Liouville fractional integral inequalities associated with the strongly η-quasi convex functions with modulus µ ≥ 0, J. Inequal. Appl. 2018 (2018) 139.
[19] E.R. Nwaeze and D.F.M. Torres, Novel results on the Hermite–Hadamard kind inequality for η-convex functions by means of the (k, r)-fractional integral operators. In: Silvestru Sever Dragomir, Praveen Agarwal, Mohamed Jleli and Bessem Samet (eds.) Advances in Mathematical Inequalities and Applications (AMIA). Trends in Mathematics. Birkhauser, Singapore, 311–321, 2018.
[20] M.Z. Sarikaya, E. Set, H. Yaldiz and N. Basak, Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model. 57(9–10) (2013) 2403–2407.
[21] B.-Y. Xi and F. Qi, Some integral inequalities of Hermite–Hadamard type inequalities for convex functions with applications to means, J. Funct. Space Appl. 2012 (2012) 14.
[22] J. Zhang, Z.-L. Pei and F. Qi, Integral inequalities of Simpson’s type for strongly extended (s; m)-convex functions, J. Comput. Anal. Appl. 26(3) (2019) 499–508.