On the dynamics of a nonautonomous rational difference equation

Document Type : Research Paper

Authors

Laboratory of Applied Mathematics‎, ‎Badji Mokhtar-Annaba University‎, ‎P.O‎. ‎Box 12‎, ‎Annaba‎, ‎23000‎, ‎Algeria‎

Abstract

‎In this paper‎, ‎we study the following nonautonomous rational difference equation‎
‎\[‎
‎y_{n+1}=\frac{\alpha_n+y_n}{\alpha_n+y_{n-k}},\quad n=0,1,...‎,
‎\]‎
‎where $\left\{\alpha_n\right\}_{n\geq0}$ is a bounded sequence of positive numbers‎, ‎$k$ is a positive integer and the initial values $y_{-k},...,y_0$ are positive real numbers‎. ‎We give sufficient conditions under which the unique equilibrium $\bar{y}=1$ is globally asymptotically stable‎. ‎Furthermore‎, ‎we establish an oscillation result for positive solutions about the equilibrium point‎. ‎Our work generalizes and improves earlier results in the literature‎.

Keywords

[1] R. Abo-Zeid, Global behavior of a higher order rational difference equation, Filomat 30(12) (2016) 3265–3276.
[2] M. Abu Alhalawa and M. Saleh, Dynamics of higher order rational difference equation xn+1 =α+βxn/A+Bxn+Cxn−k, Int. J. Nonlinear Anal. Appl. 8(2) (2017) 363–379.
[3] E. Chatterjee and S. Hassan, On the asymptotic character of a generalized rational difference equation, Dis. Cont. Dyn. Sys. A 38 (2018) 1707–1718.
[4] I. Dekkar, N. Touafek and Q. Din, On the global dynamics of a rational difference equation with periodic coefficients, J. Appl. Math. Comput. 60(1) (2019) 567–588.
[5] S. Elaydi, An Introduction to Difference Equations, Undergraduate Texts in Mathematics, Springer, New York, 2005.
[6] M. Gumus and R. Abo-Zeid, On the solutions of a (2k + 2)th order difference equation, Dyn. Contin. Discrete Impuls Syst. Ser. B Appl. Algorithms 25 (2018) 129–143.
[7] M. G¨um¨us and R. Abo-Zeid, Global behavior of a rational second order difference equation, J. Appl. Math. Comput. 62(1) (2020) 119–133.
[8] T. F. Ibrahim and N. Touafek, On a third order rational difference equation with variable coefficients, Dyn. Contin. Discrete Impuls Syst. Ser. B Appl. Algorithms 20 (2013) 251–264.
[9] A. Jafar and M. Saleh, Dynamics of nonlinear difference equation xn+1 =βxn+γxn−k/A+Bxn+Cxn−k, J. Appl. Math. Comput. 57(1-2) (2018) 493–522.
[10] M.A. Kerker, E. Hadidi, and A. Salmi, Qualitative behavior of a higher-order nonautonomous rational difference equation, J. Appl. Math. Comput. 64 (2020) 399–409.
[11] V. L. Kocic and G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers, Dordrecht, 1993.
[12] V. L. Kocic, G. Ladas, and L. W. Rodrigues, On rational recursive sequences, J. Math. Anal. Appl. 173 (1993)127–157.
[13] V. Lakshmikantham and D. Trigiante, Theory of Difference Equations, Numerical Methods and Applications, Marcel Dekker, Inc., New York, 2002.
[14] P. Liu, C. Wang, Y. Li and R. Li, Asymptotic behavior of equilibrium point for a system of fourth-order rational difference equations, J. Comput. Anal. Appl. 27 (2019) 947–961.
[15] C. Qian and J. Smith, On quasi-periodic solutions of forced higher order nonlinear difference equations, Electron.J. Qual. Theory Differ. Equ. 2020(2020) 20. Id/No 6.
[16] M. Saleh, N. Alkoumi and A. Farhat, On the dynamics of a rational difference equation xn+1 =α+βxn+γxn−k /Bxn+Cxn−k, Chaos Solitons Fractals 96 (2017) 76–84.
[17] M. Saleh and A. Farhat, Global asymptotic stability of the higher order equation xn+1 =axn+bxn−k/A+Bxn−k, J. Appl. Math. Comput. 55(1-2) (2017) 135–148.
[18] N. Touafek, On a second order rational difference equation, Hacet. J. Math. Stat. 41 (2012) 867–874.
[19] C. Wang, S. Wang and W. Wang, Global asymptotic stability of equilibrium point for a family of rational difference equations, Appl. Math. Lett. 24 (2011) 714–718.
Volume 12, Issue 1
May 2021
Pages 203-213
  • Receive Date: 07 August 2020
  • Revise Date: 21 December 2020
  • Accept Date: 25 December 2020