A generalization of Darbo's theorem with application to the‎ ‎solvability of systems of integral-differential equations in Sobolev spaces

Document Type : Research Paper

Authors

1 Department of Mathematics‎, ‎Mashhad Branch‎, ‎Islamic Azad University‎, ‎Mashhad‎, ‎Iran

2 Department of Mathematics, Mashhad Branch, Islamic Azad University, Mashhad, Iran.

Abstract

‎In this article‎, ‎we introduce the notion of $(\alpha,\beta)$-generalized Meir-Keeler condensing operator in a‎ ‎Banach space‎, ‎a characterization using strictly L-functions and provide an extension of Darbo's fixed point theorem associated with measures‎ of noncompactness‎. ‎Then‎, ‎we establish some results on the existence of coupled fixed points for a‎ ‎class of condensing operators in Banach spaces‎. ‎As an application‎, ‎we study the‎ ‎problem of existence of entire solutions for a general system of nonlinear integral-differential equations in a Sobolev space‎. ‎Further‎, an example is presented to verify the effectiveness and applicability of our main results‎.

Keywords

[1] R. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications, Cambridge University Press, 2004.
[2] A. Aghajani, R. Allahyari, and M. Mursaleen, A generalization of Darbo’s theorem with application to the solvability of systems of integral equations, J. Comput. Appl. Math. 260 (2014) 68–77.
[3] A. Aghajani and Y. Jalilian, Existence of nondecreasing positive solution for a system of singular integral equations, Mediter. J. Math. 8 (2011) 563–576.
[4] A. Aghajani, M. Mursaleen and A. Shole Haghighi, Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Math. Science. 35B (2015) 552–566.
[5] A. Aghajani, D. O’Regan and A. Shole Haghighi, Measure of noncompactness on Lp(Rn) and applications, Cubo A Math. J. 17 (2015) 85–97.
[6] A. Aghajani, and N. Sabzali, Existence of coupled fixed points via measure of noncompactness and applications, J. Nonlinear Convex Anal. 15(5) (2014) 941–952.
[7] R.R. Akhmerov, M.I. Kamenski, A.S. Potapov, A.E. Rodkina and B.N. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhauser Verlag. Basel, 1992.
[8] J. Bana´s, and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes In Pure And Applied Mathematics, 60, Dekker, New York, 1980.
[9] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer Science. Business Media, LLC, 2011.
[10] S.S. Chang, Y.J. Cho and N.J. Huang, Coupled fixed point theorems with applications, J. Korean Math. Soc. 33 (1996) 575–585.
[11] G. Darbo, Punti uniti in trasformazioni a codominio non compatto, Rend. Sem. Mat. Uni. Padova. 24 (1955) 84–92.
[12] P. Drabek, and J. Milota, Methods of Nonlinear Analysis, Birkhauser Velgar AG, 2007.
[13] H. Hanche-Olsen and H. Holden, The Kolmogrov-Riesz compactness theorem, Expo. Math. 28 (2010) 385–394.
[14] K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930) 301-309.
[15] T. C. Lim, On characterizations of Meir-Keeler contractive maps, Nonlinear Anal. 46 (2001) 113–120.
[16] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969) 326–329.
Volume 12, Issue 1
May 2021
Pages 287-300
  • Receive Date: 20 July 2018
  • Revise Date: 08 September 2019
  • Accept Date: 16 September 2020