In this paper, using a generalized Dunkl translation operator, we obtain an analog of Titchmarsh's Theorem for the Dunkl transform for functions satisfying the Lipschitz-Dunkl condition in $mathrm{L}_{2,alpha}=mathrm{L}_{alpha}^{2}(mathbb{R})=mathrm{L}^{2}(mathbb{R}, |x|^{2alpha+1}dx), alpha>frac{-1}{2}$.
Daher, R., El Hamma, M. (2012). An analog of Titchmarsh's theorem for the Dunkl transform in the space $mathrm{L}_{alpha}^{2}(mathbb{R})$. International Journal of Nonlinear Analysis and Applications, 3(1), 55-60. doi: 10.22075/ijnaa.2012.48
MLA
R. Daher; M. El Hamma. "An analog of Titchmarsh's theorem for the Dunkl transform in the space $mathrm{L}_{alpha}^{2}(mathbb{R})$". International Journal of Nonlinear Analysis and Applications, 3, 1, 2012, 55-60. doi: 10.22075/ijnaa.2012.48
HARVARD
Daher, R., El Hamma, M. (2012). 'An analog of Titchmarsh's theorem for the Dunkl transform in the space $mathrm{L}_{alpha}^{2}(mathbb{R})$', International Journal of Nonlinear Analysis and Applications, 3(1), pp. 55-60. doi: 10.22075/ijnaa.2012.48
VANCOUVER
Daher, R., El Hamma, M. An analog of Titchmarsh's theorem for the Dunkl transform in the space $mathrm{L}_{alpha}^{2}(mathbb{R})$. International Journal of Nonlinear Analysis and Applications, 2012; 3(1): 55-60. doi: 10.22075/ijnaa.2012.48