Stability of fuzzy orthogonally $*$-$n$-derivation in orthogonally fuzzy $C^*$-algebras

Document Type : Research Paper


1 Department of Mathematics‎, ‎Shiraz Branch‎, ‎Islamic Azad University‎, ‎Shiraz‎, ‎Iran

2 Department of Mathematics‎, ‎Semnan University P.O‎. ‎Box 35195-363‎, ‎Semnan‎, ‎Iran‎


‎In this paper‎, ‎using fixed point methods‎, ‎we prove the fuzzy orthogonally $*$-$n$-derivation on orthogonally fuzzy $C^*$-algebra for the functional equation‎
‎f(\frac{\mu x+\mu y}{2}+\mu w)+f(\frac{\mu x+\mu w}{2}+\mu y)+f(\frac{\mu y+\mu w}{2}+\mu x)‎
‎=2\mu f(x)-2\mu f(y)-2\mu f(w)‎.


[1] R.P. Agarwal, Y.J. Cho, R. Saadati and S. Wang, Nonlinear L-fuzzy stability of cubic functional equations, J. Inequal. Appl. 2012 (2012) 1–19.
[2] A. Bahraini, G. Askari, M. Eshaghi Gordji, et al. Stability and hyperstability of orthogonally ∗-m-homomorphisms in orthogonally Lie C∗-algebras: A fixed point approach, J. Fixed Point Theory Appl. 20 (2018) 1–12.
[3] T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (2003) 687–705.
[4] M. Eshaghi-Gordji and S. Abbaszadeh, Stability of Cauchy-Jensen inequalities in fuzzy Banach spaces, Appl. Comput. Math. 11 (2012) 27–36.
[5] M. Eshaghi Gordji, G. Askari, N. Ansari, G. A. Anastassiou and C. Park, Stability and hyperstability of generalized orthogonally quadratic ternary homomorphisms in non-Archimedean ternary Banach algebras: A fixed point approach, J. Comput. Anal. Appl. 21 (2016) 1–6.
[6] M. Eshaghi Gordji, M. Ramezani, M. De La Sen and Y.J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory 18 (2017) 569–578.
[7] C. Felbin, Finite-dimensional fuzzy normed linear space, Fuzzy Sets Syst. 48 (1992) 239–248.
[8] P. Gavruta and L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl. 1 (2010) 11–18.
[9] R. Gholami, G. Askari and M. Eshaghi Gordji, Stability and hyperstability of orthogonally ring ∗-n-derivations and orthogonally ring ∗-n-homomorphisms on C-algebras, J. Linear Topol. Alg. 7 (2018) 109–119.
[10] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941) 222–224.
[11] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968) 305–309.
[12] D. Mihet, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008) 567–572.
[13] A.K. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets Syst. 159 (2008) 730–738.
[14] A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Inf. Sci. 178 (2008) 3791–3798.
[15] C. Park, Lie ∗-homomorphism between Lie C∗-algebra and Lie ∗-derivation on Lie C∗-algebra, J. Math. Anal. Appl. 15 (2004) 419–434.
[16] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003) 91–96.

[17] T.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (1978) 297–300.
[18] D. Shin, C. Park and Sh. Farhadabadi, On the superstability of ternary Jordan C-homomorphisms, J. Comput. Anal. Appl. 16 (2014) 964–973.
[19] R. Thakur and S.K. Samanta, Fuzzy Banach algebra with Felbin’s type fuzzy norm, J. Fuzzy Math. 18 (2011) 943–954.
[20] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, science Editions., Wiley, New York, 1964.
Volume 12, Issue 1
May 2021
Pages 533-540
  • Receive Date: 04 April 2020
  • Revise Date: 28 September 2020
  • Accept Date: 06 February 2021