Gr$\ddot{u}$ss type integral inequalities for a new class of $k$-fractional integrals

Document Type : Research Paper


1 Department of Mathematics‎, ‎G.C‎. ‎University Faisalabad‎, ‎Faisalabad‎, ‎Pakistan

2 Department of Mathematics‎, ‎COMSATS University Islamabad‎, ‎Attock Campus‎, ‎Pakistan

3 Department of Mathematics‎, ‎University of Sargodha‎, ‎Sargodha‎, ‎Pakistan‎


‎The main aim of this research article is to present the generalized $k$-fractional conformable integrals and an improved version of Gr$\ddot{u}$ss integral inequality via the fractional conformable integral in status of a new parameter $k>0$‎. ‎Here for establishing Gr$\ddot{u}$ss inequality in fractional calculus the classical method of proof has been adopted also related results with Gr$\ddot{u}$ss inequality have been discussed‎. ‎This work contributes in the current research by providing mathematical results along with their verifications‎.


[1] G. Abbas, K.A. Khan, G. Farid and A. Ur Rehman, Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function, J. Inequal. Appl. 2017 (2017) 121.
[2] G. Abbas and G. Farid, Some integral inequalities for m-convex functions via generalized fractional integral operator containing generalized Mittag-Leffler function, Cogent Math. 3 (2016) 1269589.
[3] Abdeljawad, T., 2015. On conformable fractional calculus. J. Comput. Appl. Math. 279, 57-66.
[4] Agarwal, P., Salahshour, S., Ntouyas, S.K., Tariboon, J., 2014. Certain inequalities involving generalized Erd´elyiKober fractional q-integral operators. Sci. World J. Article ID 174126, 11 pages.
[5] Ayub, W., Farid, G., Ur Rehman, A., 2017. Generalization of the Fejer-Hadamard type inequalities for p-convex functions via k-fractional integrals. Communication in Mathematical Modeling and Applications. 2(3), 1-15.
[6] Akin, E., Asliy¨uce, S., G¨uvenilir, A.F., Kaymak¸calan, B., 2015. Discrete Gr¨uss type inequality on fractional calculus. J. Inequal. Appl. 2015:174.
[7] Baleanu, D., Agarwal, P., 2014. Certain inequalities involving the fractional q-integral operators. Abstr. Appl. Anal. 2014, 10 pages.
[8] Choi, J., Agarwal, P., 2014. Some new Saigo type fractional integral inequalities and their q-analogues. Abstr. Appl. Anal. 2014, 11 pages.
[9] Choi, J., Ritelli, D., Agarwal, P., 2015. Some new inequalities involving generalized Erd´elyi-Kober fractional q-integral operator. Appl. Math. Sci. 9, 3577-3591.
[10] Chen, F., 2014. A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals. Ital. J. Pure Appl. Math. 2014, 299-306.
[11] Dragomir, S.S., 1999. A generalization of Gr¨uss inequality in inner product spaces and applications. J. Math. Anal. Appl. 237, 74-82.
[12] Diaz, R., Pariguan, E., 2007. On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15, 179-192.
[13] Dahmani, Z., 2012. About some integral inequalities using Riemann-Liouville integrals. Gen. Math. 20, 63-69.
[14] Elezovi´c, N., Marangunic, L.J., Pe´cariˇc, J., 2007. Some improvements of Gr¨uss type inequality. J. Math. Ineq. 1(3), 425-436.
[15] Farid, G., Ur Rehman, A., 2016. On Chebyshev functional and Ostrowski-Gr¨uss type inequalities for two coordinates. Int. J. Anal. App. 12(2), 180-187.
[16] Farid, G., Rafique, S., Ur Rehman, A., 2017. More on Ostrowski and Ostrowski-Gruss type inequalities. Commun. Optim. Theory. 2017, 9 pages.
[17] Gr¨uss, G., 1935. Uber das maximum des absoluten Betrages 1 b−a R b af(x)g(x)dx −1 (b−a) 2 R b a f(x)dx 1 b−a R b a g(x)dx. Math. Z. 39, 215-226.
[18] Jarad, F., Ugurlu, E., Abdeljawad, T., Baleanu, D., 2017. On a new class of fractional operators. Adv. Difference Equ. 1, 247.
[19] Ka¸car, E., Yildirim, H., 2015. Gr¨uss type integral inequalities for generalized Riemann-Liouville fractional integrals. Int. J. Pure Appl. Math. 101, 55-70.
[20] Krasniqi, V., 2010 Inequalities and monotonicity for the ration of k-gamma functions. Sci. Magna. 6, 40-45.
[21] Kokologiannaki, CG., Krasniqi, V., 2013. Some properties of the k-gamma function. Le Mathematiche. 68, 13-22.
[22] Li, X., Mohapatra, RN., Rodriguez, RS., 2002. Gr¨uss-type inequalities. J. Math. Anal. Appl. 267, 434-443.
[23] Liao, Y., Deng, J., Wang, J., 2013. Riemann-Liouville fractional Hermite-Hadamard inequalities. Part I. for once differentiable geometric-arithmetically s-convex functions. J. Inequal. Appl. 2013:443.
[24] Liu, X., Zhang, L., Agarwal, P., Wang, G., 2016. On some new integral inequalities of Gronwall-Bellman-Bihari type with delay for discontinuous functions and their applications. Indag. Math. 27(1), 1-10.
[25] Mubeen, S., Habibullah, G.M., 2012. k-fractional integrals and application. Int. J. Contemp. Math. Sci. 7, 89-94.
[26] Park, J., 2015. Some integral inequalities for convex functions via Riemann-Liouville integrals. Appl. Math. Sci. 9, 1341-1353.
[27] Pachpatte, B.G., 2002. On multidimensional Gr¨uss type inequalities. J. Inequal. Pure Appl. Math. 3, 1-15.
[28] Romero, L.G., Luque, L.L., Dorrego, G.A., Cerutti, RA., 2013. On the k-Riemann-Liouville Fractional Derivative. Int. J. Contemp. Math. Sciences. 8, 41-51.
[29] Sarikaya, M.Z., Filiz, H., Kiris, M.E., 2015. On some generalized integral inequalities for Riemann-Liouville fractional integrals. Filomat. 29(6), 1307-1314.
[30] Sarikaya, M.Z., Karaca, A., 2014. On the k-Riemann-Liouville fractional integral and applications. Int. J. Math. Stat. 1, 033-043.
[31] Sarikaya, M.Z., Dahmani, Z., Kiris, M.E., Ahmad, F., 2016. (k, s)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77–89.
[32] Tariboon, J., Ntouyas, S.K., Sudsutad, W., 2014. Some new Riemann-Liouville fractional integral inequalities. Int. J. Math. Math. Sci. 2014, 6 pages.
[33] Tunc, T., 2013. On new inequalities for h-convex functions via Riemann-Liouville fractional integration. Filomat.27:4, 559-565.
[34] Tunc, T., Usta, F., Budak, H. and Sarikaya, M.Z., 2017. On Gr¨uss type inequalities utilizing generalized fractional integral operators. AIP Conference Proceedings, 1833:020045.
[35] Usta, F. and Sarkaya, M.Z., 2017. Explicit bounds on certain integral inequalities via conformable fractional calculus. Cogent Mathematics, 4:1277505.
[36] Usta, F., Budak, H., and Sarkaya, M.Z., 2017. On Chebychev type inequalities for fractional integral operators, AIP Conference Proceedings, 1833: 020045.
[37] Usta, F., and Sarkaya, M.Z., 2017. Some Improvements of Conformable Fractional Integral Inequalities. International Journal of Analysis and Applications, 14: 162-166.
[38] Usta, F. and Sarkaya, M.Z., 2018. On generalization conformable fractional integral inequalities, FILOMAT, 32.
[39] G. Wang, P. Agarwal and M. Chand, Certain Gru¨ss type inequalities involving the generalized fractional integral operator, J. Inequal. Appl. 2014 (2014) 147.
[40] A. Waheed, G. Farid, A. Ur Rehman and W. Ayub, k-fractional integral inequalities for harmonically convex functions via Caputo k-fractional derivatives, Bull. Math. Anal. Appl. 10 (2018) 55–67.
Volume 12, Issue 1
May 2021
Pages 541-554
  • Receive Date: 28 May 2018
  • Revise Date: 11 November 2019
  • Accept Date: 06 February 2020
  • First Publish Date: 06 February 2021