Construction of generating functions of the products of Vieta polynomials with Gaussian numbers and polynomials

Document Type : Research Paper

Authors

1 LMAM Laboratory and Department of Mathematics‎, ‎Mohamed Seddik Ben Yahia University‎, ‎Jijel‎, ‎Algeria

2 LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria

3 LMAM Laboratory and Department of Mathematics, Mohamed Seddik Ben Yahia University, Jijel, Algeria.

Abstract

‎In the present paper‎, ‎we introduce the recurrence relations of Vieta‎ ‎Fibonacci‎, ‎Vieta Lucas‎, ‎Vieta Pell and Vieta Pell Lucas polynomials‎. ‎We‎ obtain the generating functions of these polynomials‎, ‎then we give the new‎ ‎generating functions of the products of these polynomials and the products‎ ‎of these polynomials with Gaussian numbers and polynomials‎. ‎These results‎ ‎are based on the relation between Vieta polynomials and Chebyshev‎ ‎polynomials of first and second kinds‎.

Keywords

[1] A. Boussayoud, On some identities and generating functions for Pell Lucas numbers, Online J. Anal. Comb. 12 (2017) 1–10.
[2] A. Boussayoud, M. Boulyer and M. Kerada, A simple and accurate method for determination of some generalized sequence of numbers, Int. J. Pure Appl. Math.108 (2016) 503–511.
[3] A. Boussayoud, Laction de l’operateur δke1e2 sur la serie ∑n=0=Sn(A)en1zn, Doctoral dissertation, Mohamed Seddik Ben Yahia University, Jijel, Algeria, 2017.
[4] A. Boussayoud, A. Abderrezzak and M. Kerada, Some applications of symmetric functions, Integers. 15 (2015)1–7.
[5] A. F. Horadam, Vieta Polynomials, Fibonacci Q. 40 (2002) 223–232.
[6] D. Tasci and F. Yalcin, Vieta-Pell and Vieta-Pell-Lucas polynomials, Adv. in Difference Equ, 2013.
[7] E. Jacobsthal, Uber vertauschbare polynome. Math. Z. 63 (1955) 244–276.
[8] N. Robbins, Vieta’s triangular array and a related family of polynomials, Int. J. Math. Math. Sci. 14 (1991) 239–244.
[9] N. Saba, M. Ferkioui, A. Boussayoud and S. Boughaba, Symmetric Functions of Binary Products of Gaussian Jacobsthal Lucas Polynomials and Chebyshev Polynomials, Palest. J. Math (accepted).
[10] S. Boughaba and A. Boussayoud, On Some Identities and Generating Function of Both K-jacobsthal Numbers and Symmetric Functions in Several Variables, Konuralp J. Math. 7 (2019) 235–242.
[11] S. Boughaba and A. Boussayoud, Construction of Symmetric Functions of Generalized Fibonacci Numbers, Tamap Journal of Mathematics and Statistics. 3 (2019) 1–8.
[12] S. Boughaba, A. Boussayoud and Kh. Boubellouta, Generating Functions of Modified Pell Numbers and Bivariate Complex Fibonacci Polynomials, Turkish Journal of Analysis and Number. 7 (2019) 113–116.
[13] S. Boughaba, H. Merzouk, A. Boussayoud and N. Saba, Generating functions of the products of Gaussian Numbers with Chebyshev Polynomials of First and Second Kind, Transactions Issue Mathematics (Submitted).
[14] J. H. Jordan, Gaussian Fibonacci and Lucas numbers, Fibonacci Q. 3 (1965) 315–318.
[15] M. Asci and E. Gurel, Gaussian Jacobsthal and Gaussian Jacobsthal Lucas polynomials, Notes Number Theory Discrete Math. 19 (2013) 25–36.
[16] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, Oxford (1979).
[17] S. Halici and S. Oz, On Some Gaussian Pell and Pell-Lucas Numbers, Ordu Univ. J. Sci. Tech. 6 (2016) 8–18.
[18] S. Halici and S. Oz, On Gaussian Pell Polynomials and Their Some Properties, Palest. J. Math. 7 (2018) 251–256.
[19] R. Vitula and D. Slota, On modified Chebyshev polynomials. J. Math. Anal. Appl. 324 (2006) 321–343.
Volume 12, Issue 1
May 2021
Pages 649-668
  • Receive Date: 06 April 2020
  • Revise Date: 28 September 2020
  • Accept Date: 15 December 2020