[1] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, Greedy layer-wise training of deep networks, Adv. Neural Inf. Process. Syst. 19 (2006).
[2] Y. Bengio, A. Courville and P. Vincent, Representation learning: A review and new perspectives, IEEE Trans. Pattern Anal. Machine Intell. 35(8) (2016) 1798-1828.
[3] O. Cicek, A. Abdulkadir, S.S. Lienkamp, T. Brox, and O. Ronneberger, 3D U-Net: Learning dense volumetric segmentation from sparse annotation, Int. Conf. Medical Image Comput. Computer-assisted Intervention, Springer, 2016.
[4] H. Greenspan, B. Van Ginneken and R.M. Summers, Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans. Medical Imag. 35(5) (2016) 1153-1159.
[5] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, and T. Chen, Recent advances in convolutional neural networks, Pattern Recog. 77 (2018) 354-377.
[6] G.E. Hinton, S. Osindero and Y.W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18(7) (2006) 1527-1554.
[7] S. Hashemi, H. Hassanpour, E. Kozegar, and T. Tan, Cystoscopy image classification using deep convolutional neural networks, Int. J. Nonlinear Anal. Appl.10(1) (2019) 193-215.
[8] S. Hashemi, H. Hassanpour, E. Kozegar and T. Tan. Cystoscopic image classification based on combining MLP and GA, Int. J. Nonlinear Anal. Appl. 11(1) (2020) 93-105.
[9] K. Kamnitsas, C. Ledig, V.F.J. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, and B. Glocker, Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Medical Image Anal. 36 (2017) 61-78.
[10] L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, John Wiley & Sons, Inc., 2004.
[11] F. Milletari, N. Navab, and S.A. Ahmadi. V-net: Fully convolutional neural networks for volumetric medical image segmentation, Fourth Int. Conf. 3D Vision (3DV), IEEE, 2016.
[12] A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen, Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network, Int. Conf. Medical Image Comput. Computer-assisted Intervention, Springer, 2013.
[13] D. Ravı, Deep learning for health informatics, IEEE J. Biomed. Health Inf. 21(1) (2016) 4-21.
[14] O. Ronneberger, P. Fischer and T. Brox. U-net: Convolutional networks for biomedical image segmentation, Int. Conf. Medical Image Comput. Computer-assisted Intervention, Springer, 2015.
[15] J. Schmidhuber, Deep learning in neural networks: An overview, Neural networks 61 (2015) 85-117.
[16] A.A.A. Setio, F. Ciompi, G. Litjens, P Gerke, C. Jacobs, S.J. Van Riel, M.M.W. Wille, M. Naqibullah, C.I. Sánchez, and B. Van Ginneken, Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks, IEEE Trans. Medical Imag. 35(5) (2016) 1160-1169.
[17] N. Simforoosh, Iranian Textbook of Urology, Shahid Beheshti University of Medical Sciences, Tehran, 2007.
[18] Y. Song, L. Zhang, S. Chen, D. Ni, B. Lei, and T. Wang, Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning, IEEE Trans. Biomed. Engin. 62(10) (2015) 2421-2433.
[19] C. Szegedy, W. Liu, Y. Jia, and P. Sermanet, Going deeper with convolutions, Proc. IEEE Conf. Comput. Vision Pattern Recognition, 2015, pp. 1-9.
[20] W. Yang, Y. Chen, Y. Liu, L. Zhong, G. Qin, Z. Lu, Q. Feng, and W. Chen, Cascade of multi-scale convolutional neural networks for bone suppression of chest radiographs in gradient domain, Medical Image Anal. 35 (2017) 421-433.