[1] M.A. Abdlhusein, Doubly connected bi-domination in graphs, Disc. Math. Algo. Appl. 13(2) (2021) 2150009.
[2] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Disc. Math. Algo. Appl. (2020) 2150038.
[3] M.N. Al-Harere and M.A. Abdlhusein, Pitchfork domination in graphs, Disc. Math. Algo. Appl. 12(2) (2020) 2050025.
[4] M.N. Al-Harere, A.A. Omran, and A.T. Breesam, Captive domination in graphs, Disc. Math. Algo. Appl. 12(6) (2020) 2050076.
[5] M.N. Al-Harere and A.A. Omran, On binary operation graphs, Bol. Soci. Paran. Mate. 38(7) (2020) 59-67.
[6] M.N. Al-Harere and A.A. Omran, Binary operation graphs, AIP Conf. Proc. 2086, Maltepe University, Istanbul, Turkey, 030008, 31 July - 6 August, 2018.
[7] I.A. Alwan and A.A. Omran, Domination polynomial of the composition of complete graph and star graph, J. Phys. Conf. Ser. 1591 (2020) 012048.
[8] E. Harary, Graph Theory, Addison Wesky, MA, 1969.
[9] T.W. Haynes, S.M. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[10] A.A. Jabor and A.A. Omran, Domination in discrete topology graph, AIP Conf. Proc., 2019, 2183.
[11] A.A. Jabor and A.A. Omran, Hausdorff topological of path in graph, IOP Conf. Ser. Mater. Sci. Eng. 928 (2020) 042008.
[12] Q.M. Mahioub and N.D. Soner, The split domination number of fuzzy graphs, Far East J. Appl. Math. 30 (2008) 125-132.
[13] A.A. Omran, M.N. Al-Harere and S.Sh. Kahat, Equality co-neighborhood domination in graphs, Disc. Math. Algo. Appl. to appear (2021).
[14] A.A. Omran and T. Swadi, Observer domination number in graphs, J. Adv. Res. Dyn. Cont. Syst. 11(1) (2019).
[15] A.A. Omran and M.M. Shalaan, Inverse co-even domination of graphs, IOP Conf. Ser. Mater. Sci. Eng. 928 (2020) 042025.
[16] S.J. Radhi, M.A. Abdlhusein and A.E. Hashoosh, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl. 12(1) (2021) 473-480.
[17] A. Rosenfeld, L.A. Zedeh, K.S. Fu, K. Tanaka and M. Shimura, Fuzzy Sets and Their Application to Cognitive and Decision Processes, Academic Press, New York, 1975.
[18] M.M. Shalaan and A.A. Omran, Co-even domination number in some graphs, IOP Conf. Ser. Mater. Sci. Eng. 928 (2020) 042015.
[19] A. Somasundaram and S. Somasundaram, Domination in fuzzy graphs I, Pat. Recog. Let. 19 (1998) 787-791.
[20] A. Somasundaram, Domination in fuzzy graphs II, J. Fuzzy Math. 13 (2005) 281-288.
[21] S.H. Talib, A.A. Omran and Y. Rajihy, Inverse frame domination in graphs, IOP Conf. Ser. Mater. Sci. Eng. 928 (2020) 042024.
[22] S.H. Talib, A.A. Omran and Y. Rajihy, Additional properties of frame domination in graphs, J. Phys. Conf. Ser. 1664 (2020) 012026.
[23] D.A. Xavior, F. Isido and V.M. Chitra, On domination in fuzzy graphs, Inter. J. Comput. Algo. 2 (2013) 248–250.
[24] L.A. Zadeh, Fuzzy sets, Infor. Sci. 8 (1965) 338–353.
[25] H.J. Yousif and A.A. Omran, The split anti fuzzy domination in anti fuzzy graphs, J. Phys. Conf. Ser. 1591 (2020) 012054.
[26] H.J. Yousif and A.A. Omran, 2-anti fuzzy domination in anti fuzzy graphs, IOP Conf. Ser. Mater. Sci. Eng. 928 (2020) 042027.